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Abstract 
 
 

The HFC model for parallel evolutionary 
computation is inspired by the stratified 
competition often seen in society and biology.  
Subpopulations are stratified by fitness.  
Individuals move from low-fitness to 
higher-fitness subpopulations if and only if they 
exceed the fitness-based admission threshold of 
the receiving subpopulation, but not of a higher 
one. The HFC model implements several critical 
features of a competent parallel evolutionary 
computation model, simultaneously and 
naturally, allowing rapid exploitation while 
impeding premature convergence. The AHFC 
model is an adaptive version of HFC, extending it 
by allowing the admission thresholds of fitness 
levels to be determined dynamically by the 
evolution process itself. The effectiveness of the 
Adaptive HFC model is compared with the HFC 
model on a genetic programming-based 
evolutionary synthesis example.   

1 INTRODUCTION 
Parallel evolutionary algorithms (PEA’s) have gained 
increasing attention in many large-scale application 
problems including graph-partitioning problems, set 
partitioning problems, and many commercial efforts in 
analog circuit synthesis at Analog Design Automation Co. 
(Liang, 2001), Neolinear Inc (Ochotta, 1996; Krasnicki, 
1999) and Genetic Programming Inc. (Andre, 1996). 
Parallel evolutionary computation models can be largely 
categorized into three classes (Cantu-Paz, 1998; 
Nowostawski, 1999): (1) global single- population 
master-slave models (2) single-population fine grained 
models, and (3) multi-population coarse-grained (or 
island) models. As cluster computing and networked PC's 

have become available in many companies, 
multi-population parallel models (sometimes combined 
with master-slave models) have become increasingly 
popular. Parallel evolutionary algorithms have major 
advantages over single-population models, including 
parallel evaluation and rapid exploration with decreased 
risk of premature convergence. However, current parallel 
EA's are still not competent vis-a-vis scalability, either 
with respect to increasing degree of difficulty of the 
problem or to speedup with an increasing number of 
processors. It is clear that a competent parallel 
evolutionary algorithm should have the capability to: 

(1) quickly exploit high-fitness individuals as they 
are discovered. One of these mechanisms is 
Elitism, which is effective in preserving good 
individuals, as has been demonstrated in several 
of the most successful evolutionary 
multi-objective optimization algorithms, such as 
NSGAII and SPEAII (Zitzler, 2000). 

(2) keep multiple high-fitness individuals 
simultaneously to facilitate exploration in 
multiple search areas or directions 

(3) maintain diversity of the population to avoid 
premature convergence 

(4) be scalable with respect to increasing number of 
processors 

(5) adapt its parameters for autonomous 
evolutionary computation. 

Multi-population PEA’s can be classified into 
homogeneous models and heterogeneous models. Sprave 
(1999) proposed a unified model of population structures 
in PEAs, but his model doesn’t concern with the 
heterogeneity of the sub-populations. In homogeneous 
parallel EA models, each subpopulation is regarded as 
playing the same role in evolution. Homogeneous PEA’s 
often lack efficient mechanisms to exploit the newly 
discovered high-fitness individuals. Although they may 
keep several high fitness individuals in different demes, 



they suffer from the fact that high-fitness individuals may 
easily dominate all subpopulations by means of the 
exchange (“migration”) process. Heterogeneous parallel 
EA’s are typically more resistant to this phenomenon. For 
example, the injection island GA (iiGA) (Lin, 1994; Eby, 
1999) uses a hierarchical structure, typically stratifying 
subpopulations according to the level of resolution of the 
representation, allowing control of the tradeoff between 
low-resolution exploration and high-resolution 
exploitation.  The iiGA has also been used with different 
fitness functions in various subpopulations, even if they 
used the same problem representation.   Aickelin (1999) 
also proposed such a PEA, which he called a pyramidal 
EA, in which the hierarchical structure of the 
subpopulations is defined by a hierarchy of fitness 
functions.  

In a recent paper (Hu and Goodman, 2002), we proposed 
the Hierarchical Fair Competition (HFC) model for 
parallel evolutionary computation. The HFC model is 
inspired by the observation of a strategy employed in 
some societal and biological systems to maintain different 
high-fitness individuals in a whole population. HFC turns 
out to have the features of a competent PEA cited above 
except the adaptability of (6). In this paper, we introduce 
an adaptive version of the HFC model, in which the 
admission thresholds are automatically determined and 
adjusted in the evolutionary process. In Section 2, the 
metaphor and the HFC model are described relative to the 
above features. In Section 3, an adaptive mechanism for 
determining the parameters of the HFC model is 
presented, along with the algorithm. We apply the AHFC 
model to a genetic programming problem and compare it 
with the static HFC model in Section 4. The conclusions 
and discussion are provided in Section 5.  

2 THE HIERARCHICAL FAIR 
COMPETION MODEL (HFC) FOR 
PARALLEL EVOLUTION 

2.1 MOTIVATION AND BACKGROUND OF 
HFC 

The HFC model originates from an effort to combat the 
premature convergence phenomenon in traditional genetic 
algorithms and genetic programming. In a traditional GA, 
as the evolutionary process goes on, the average fitness of 
the population gets higher and higher, so that new 
individuals tend to survive only if they have similarly 
high fitness.  New “explorer” individuals in fairly 
different regions of the search space usually have low 
fitness, until some local exploration and exploitation of 
their beneficial characteristics has occurred.  So a 
standard EA tends to concentrate more and more of its 
search effort near one or more early-discovered peaks, 
and to get “stuck” near these attractors (or local optima). 
It is clear that in a standard EA, there exists a severely 
unfair competition. That is, selection pressure makes 
high-fitness individuals reproduce quickly and thus 

supplant other individuals with lower fitness, some of 
which may lie in the vicinity of the global optimum, when 
if their neighborhood were explored more thoroughly, 
much higher-fitness individuals would be found. This fact 
holds true even when we find search points near a global 
optimum, as long as they are not close enough to have 
high fitness relative to those near other, earlier-explored 
local optima. This “unfair” competition contributes a lot 
to the slow search progress of many EA’s when 
confronted with difficult, high- dimensionality, 
multi-modal problems. To address this unfair competition 
problem, we need allow young but promising individuals 
(i.e., those in relatively newly-found regions, which may 
ultimately give rise to high-fitness offspring, but which 
are currently not of high fitness) to “grow up” and, at an 
appropriate time, join in the cruel competition process and 
be kept for further exploitation or be killed (as appropriate) 
when they are demonstrated with some confidence to be 
bad. At the same time, we hope to maintain the 
already-discovered high-fitness individuals and select 
from them even more promising individuals for 
exploitation without killing younger individuals. 
Following the tradition of getting inspiration from biology, 
we find that in some societal and biological systems, there 
exists an efficient mechanism that can maintain and foster 
potentially-high-fitness individuals (or, more accurately, 
potential progenitors of high-fitness individuals) 
efficiently. This is the hierarchical fair competition (HFC) 
principle as discussed below. 

2.2 THE METAPHOR OF HFC: 
HIERARCHICAL FAIR COMPETITION IN 
SOCIETAL AND BIOLOGICAL SYSTEMS 

Competition is widespread in societal and biological 
systems, but diversity remains large.  After close 
examination, we find there is a fundamental principle 
underlying many types of competition in both societal and 
biological systems: the Fair Competition Principle. 

2.2.1 The Fair Competition Principle in Societal 
Systems 

In human society, competitions are often organized into a 
hierarchy of levels. None of them will allow unfair 
competition – for example, a young child will not 
normally compete with college students in a math 
competition. We use the educational system to illustrate 
this principle in more detail. 

In the education system of China and many other 
developing countries, primary school students compete to 
get admission to middle schools and middle school 
students compete for spots in high schools. High school 
students compete to go to college and college students 
compete to go to graduate school (Fig. 1) (in many 
Western countries, this competition starts at a later level, 
but is eventually present, nonetheless). In this 
hierarchically structured competition, at each level, only 
individuals of roughly equivalent ability will participate 



in any competition; i.e., in such societal systems, only fair 
competition is allowed. This hierarchical competition 
system is an efficient mechanism to protect young, 
potentially promising individuals from unfair competition, 
by allowing them to survive, learn, and grow before 
joining more intense levels of competition. Individuals 
that “lose” in these fair competitions were selected against 
while competing fairly only against their peers.  Students 
compete fairly against others in their grade level because 
they are usually of similar absolute fitness levels, having 
been exposed to similar amounts of education and 
experience. 

An interesting phenomenon sometimes found in societal 
competitions is the “child prodigy.” A ten-year-old child 
may have some extraordinary academic ability. These 
prodigies may skip across several educational levels and 
begin to take college classes at a young age.  An 
individual with sufficient ability (fitness) is allowed to 
join any level of competition.  This also suggests that in 
subpopulation migration, we should migrate individuals 
according to their fitness levels, rather than according to 
“time in grade.” 

With such a fair competition mechanism that exports 
high-fitness individuals to higher-level competitions, 
societal systems reduce the prevalence of unfair 
competition and the unhealthy dominance or disruption 
that might otherwise be caused by “early-achieving” 
individuals. 

2.2.2 The Fair Competition Principle in Biological 
Systems 

It is somewhat surprising that in “cruel” biological/ 
ecological systems, the fair competition principle also 
holds in many cases. For example, there are mechanisms 
that reduce unmatched or unfair competition between 
young animals and mature ones. Among mammals, young 
individuals often compete with their siblings under the 
supervision of parents, but not directly with other mature 
individuals, since their parents protect them against other 

adults. When the young grow up enough, they leave their 
parents and join the competition with other mature 
individuals. Evolution has found the mechanisms of 
parental care and sibling competition to be useful in 
protecting the young and allowing them to grow up and 
develop their full potentials. Fair competition seems to be 
beneficial to the evolution of many species. 

2.3 THE HFC MODEL 

Inspired by the fair competition principle and the 
hierarchical organization of competition within 
subpopulations in societal systems, we propose the 
Hierarchical Fair Competition parallel model (HFC), for 
genetic algorithms, genetic programming, and other forms 
of evolutionary computation.  
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In this model (Fig 3), multiple subpopulations are 
organized in a hierarchy, in which each subpopulation can 
only accommodate individuals within a specified range of 
fitness. The entire range of possible fitnesses is spanned 
by the union of the subpopulations’ ranges. Conceptually, 
each subpopulation has an admission buffer that has an 
admission threshold determined either initially (fixed) or 
adaptively. The admission buffer is used to collect 
qualified candidates, synchronously or asynchronously, 
from other subpopulations. Each subpopulation also has 
an export threshold (fitness level), defined by the 
admission threshold of the next higher-level 
subpopulation. Only individuals whose fitnesses are 
between the subpopulation’s admission threshold and 
export threshold are allowed to stay in that subpopulation. 
Otherwise, they are exported to the appropriate 
higher-level subpopulation. Exchange of individuals is 
allowed only in one direction, from lower-fitness 
subpopulations to higher-fitness subpopulations, but 
migration is not confined to only the immediately higher 
level.  

Each subpopulation can have the same or different sizes, 
operators, and other parameters. However, considering 
that there are often more low-fitness peaks than 
high-fitness peaks, we tend to allocate larger population 
sizes or more subpopulations to lower fitness levels, to 
provide extensive exploration; and we tend to use higher 
selection pressures in higher-fitness-level subpopulations 
to ensure efficient exploitation.  As it is often easier to 
make a big fitness jump in a lower level subpopulation, 
we often end up using larger fitness ranges for low-level 
subpopulations, and smaller ranges for high-level 
subpopulations (Fig. 2), but, of course, that depends on 
the properties of the fitness landscape being explored. The 
critical point is that the whole range of possible fitnesses 
must be spanned by the union of the ranges of all levels of 
subpopulations.  Of course, the highest-level 
subpopulation(s) need no export threshold (unbounded 
above) and the lowest-level subpopulation(s) need no 
admission threshold (unbounded below). 

Exchange of individuals can be conducted synchronously 
after a certain interval, or asynchronously, as in many 
parallel models. At each moment of exchange, each 
individual in each subpopulation is examined, and if it is 
outside the fitness range for its subpopulation, it is 
exported to the admission buffer of a subpopulation with 
an appropriate fitness range. When a new candidate is 
inserted into an admission buffer, it can be inserted into a 
random position or inserted by sorting (or a null buffer 
may be used, inserting migrants directly into the receiving 
subpopulation, using some replacement rule). After export, 
each subpopulation imports the appropriate number of 
qualified candidates from its admission buffer into its 
pool. Subpopulations (especially at the base level) fill any 
spaces still open after emptying their admission buffers by 
generating new individuals at random to fill the spaces 
left by the exported individuals. 

The number of levels in the hierarchy or number of 
subpopulations (if each level has only one subpopulation) 
can be determined initially or adaptively. In the static 
HFC model, we must manually decide into how many 
levels the fitness range will be divided, the fitness 
thresholds, and all other GA parameters. In a dynamic 
HFC model, we can dynamically change the number of 
levels, number of subpopulations, size of each 
subpopulation, and admission and export fitness 
thresholds. As will be seen below, a benefit of the 
adaptive HFC model (an example of a dynamic HFC) is 
that it can adaptively allocate search effort according to 
the characteristics of the search space of the problem to be 
solved, thereby searching more efficiently (initial research 
on various methods for adaptation of thresholds is in 
preparation for reporting elsewhere).  However, even 
“coarse” setting of the parameters in a static HFC model 
has yielded major improvement in search efficiency over 
current EA’s on example problems.  

Another useful extension to HFC used here is to introduce 
one or more sliding subpopulations, with dynamic 
admission thresholds that are continually reset to the 
admission threshold of the level in which the current best 
individual has been found.  Thus, these subpopulations 
provide additional search in the vicinity of the advancing 
frontier in the hierarchy. 

2.3.1 HFC as a competent parallel model for 
parallel evolutionary computation 

(1) While low-fitness individuals can persist long enough 
to allow thorough exploration, as soon as they 
produce high-fitness offspring, the offspring can 
advance to higher-fitness levels immediately for 
further exploitation, to compete and be recombined 
with other high-fitness individuals. 

(2) The HFC model maintains a large number of 
high-fitness individuals in high-fitness-level 
subpopulations without threatening lower-fitness (but 
perhaps promising) individuals. Thus possibly 
promising new search locales can persist long enough 
to be appropriately exploited. 

(3) HFC provides another mechanism for maintaining 
diversity. First, the diversity of the population is 
ensured by the stratification in the fitness space. 
Second, continuous introduction of random 
individuals into the lowest-level subpopulations and 
the promotion of their high-fitness offspring to 
upper-level subpopulations can be regarded as the 
introduction of entropy and randomness into the 
overall evolutionary system. Actually, looking from 
low-fitness levels to higher-fitness levels, we observe 
increasing order in the population. The HFC 
evolution is thus a self-organizing process in which 
the highest order is achieved at the top fitness level. 
This mechanism reduces the chance of HFC 
becoming “stuck” at local optima and helps it explore 
new search areas. HFC thus implements implicitly a 



multi-start or re-initialization mechanism on a 
continual basis.  

(4) The HFC model quickly captures superior offspring 
and moves them to a place where they are free to 
compete with, and be recombined with, each other.  
This produces an effect similar to the elitism often 
used in multi-objective evolutionary computation, 
such as NSGAII or SPEAII (Zitzler et al., 2000), in 
which superior individuals are also kept separately. 
At that level, we can control the intensity of selection 
to determine the tradeoff between exploitation of 
those high-fitness individuals and exploration in their 
neighborhoods.   

(5) HFC has a good scalability to more processing hosts. 
As more processors are available, they can be 
distributed to different fitness levels – either to 
low-level subpopulations for more extensive 
exploration, or to the higher-level ones for intensive 
exploitation of high-fitness individuals.  

One of the major difficulties in the HFC evolutionary 
algorithm is the determination of the admission thresholds 
for a given problem. As the fitness landscape is often 
unknown before evolutionary search, it is hard to define 
these admission thresholds initially. Considering that 
admission thresholds in HFC are only used to segregate 
the whole population to avoid unfair competition, the 
behavior of the search is generally not extremely sensitive 
to the values of these admission thresholds, so that it is 
not necessary to set them to exactly optimal values. The 
only requirement for these thresholds is that the union of 
the fitness level ranges (which is determined by these 
admission thresholds) span the entire range of possible 
fitnesses. Based on this analysis, we propose an automatic 
admission thresholds determination mechanism for HFC 
model. 

3 THE ADAPTIVE HFC MODEL 
In the static HFC model, we need to determine the 
number of subpopulations, the number of fitness levels, 
the relationship of subpopulations to fitness levels and the 
admission thresholds of each fitness level. All the 
admission thresholds are determined based on some initial 
exploration of the fitness landscape of the problem, such 
as the range of the fitness or distribution of 
early-discovered peaks. The threshold adaptation 
mechanism proposed here enables us to be relieved from 
this prerequisite expertise in the problem space. All we 
must decide is the number of admission levels ( lN ). 

Since in HFC, random individuals are continuously 
inserted into subpopulations of the base fitness level, the 
export threshold of the base fitness level can be set as the 
average fitness of the whole population after several 
(nCalibGen) generations. In AHFC, this is called the 
calibration stage, which determines the level of the 
fitness value of frequently encountered (“normal”) 
individuals with respect to random individuals. So the 
base level is used to export normal individuals to higher 

levels for further exploitation. At the end of the 
calibration process, the standard deviation fσ and the 
max fitness maxf of individuals at the highest level, the 
average fitness fµ of individuals at the base level are 
calculated. Then the fitness range of each level can be 
calculated by the following formula: 

Admission threshold of base level= -∞       (1) 

Admission threshold of the first level = fµ    (2) 

Admission threshold of the highest fitness level =  

maxf fσ−                       (3) 

Admission thresholds of other fitness levels iL , are 

determined by: 

 ( )/( 2) 1,..., 1maxf L f f N i Ni f l lσµ µ+ × − − − = −        (4) 

Table 1: Adaptive Heterogeneous HFC Algorithm for 
Parallel EA’s 

1. Initialization 
Determine EAP : parameters for standard
multi-population EA. (We assume here using one set
of parameters for all subpopulations) 

    lN :Number of levels of the hierarchy 
nCalibGen: calibration generations 
nUpdateGen: admission threshold update 

interval 
nExch: generations between admission process 

exchanges 
     gen = 1: current generation 
2. Do 

if gen < nCalibGen (in calibration stage)  
      run EA without exchange 
 else if gen = nCalibGen (calibration stage ends) 

determine the admission thresholds for each 
level by formulas (1) - (4) 

     else if gen% nExch = 0 
Do for each subpopulation from lowest level to
highest level { 

Examine fitness of each individual and
export to corresponding subpopulation at
higher level for which fitness range
accommodates this exported individual
(replacing worst individual in target
subpopulation)} 

end do 
else if gen % nUpdateGen =0 
update admission thresholds of all but the base
level by (3), (4) 
gen ++ 

until the stopping criterion is satisfied. 
return the highest-fitness individual(s) from the
highest-level subpopulation 

End 



However, it is clear that as the evolutionary search goes 
on, higher-fitness individuals are continuously discovered 
that ruin the segregation by the above admission 
thresholds determined at the initial calibration stage. So a 
dynamic admission threshold updating mechanism is 
proposed here. After each nUpdateGen generations, the 
maximal fitness, maxf , and the fitness standard deviation 
of the top level sub-populations, fσ , are recomputed to 
determine the admission threshold of all the fitness levels 
except the base level and the first level, by (3) - (4).  

To enable efficient search, the mapping relationship of 
sub-populations to all levels also needs to be adapted 
dynamically. It is obvious that at initial stage, as all 
individuals are randomly generated, these individuals 
usually have low fitness. So most of the subpopulations 
should belong to the base level. As higher-level 
individuals discovered, more subpopulations should be 
allocated to higher levels to exploit high-fitness 
individuals. The following scheme is used in this paper: 
firstly, all subpopulations are allocated to base level. After 
the calibration stage, subpopulations are then evenly 
allocated to each level. Extra subpopulations can be 
allocated to higher levels (if aggressive exploitation is 
desired) or to lower level (if intensive exploration is 
desired).  

This AHFC algorithm works like a string. At the initial 
stage, it is quite compressed, but gradually, the string 
stretches to accommodate individuals with a larger range 
of fitness. The whole algorithm of AHFC is given in Table 
1. For simplicity, we give the pseudo code only for the 
adaptive HFC model with synchronous exchanges (no 
buffers).  

4 EXPERIMENTS 
The adaptive HFC model for Genetic Programming 
(HFC-GP) has been applied to a real-world analog circuit 
synthesis problem that was first pursued using GP with a 
static HFC (Hu, 2002). In this problem, an analog circuit 
is represented by a bond graph model (Seo, 2001; Fan, 
2001) and is composed of inductors (I), resistors (R), 
capacitors (C), transformers (TF), gyrators (GY), and 
Sources of Effort (SE). Our task is to synthesize a circuit, 
including its topology and sizing of components, to 
achieve specified behavior. The objective is to evolve an 
analog circuit with response properties characterized by a 
pre-specified set of eigenvalues. By increasing the 
number of eigenvalues specified, we can define a series of 
synthesis problems of increasing difficulty, in which 
premature convergence problems become more and more 
significant when traditional GP methods are used.  

Circuit synthesis by GP is a well-studied problem that 
generally demands large computational power to achieve 
good results. Since both topology and the parameters of a 
circuit affect its performance, it is easy to get stuck in the 
evolution process.  

4.1.1 Experiments on an Analog Circuit Synthesis 
Problem 

Four circuits with increasing difficulty are to be 
synthesized, with eigenvalue sets as specified in Table 2. 
Circuits were evolved with single-population GP, 
multiple-population GP, HFC-GP, and AHFC-GP. The GP 
parameter for the single-population GP is shown in cell 
(1,2) of Table 3. The GP parameters for the 
multi-population GP were the same as for the 
single-population GP, except that the total population is 
divided into subpopulations with sizes shown in cell (2, 2) 
of Table 3. A one-way ring migration topology was used.  

The parameters for the HFC-GP were the same as for the 
multi-population GP, except that the ring migration was 

replaced by the HFC scheme.  The fitness admission 
thresholds were set based on our prior experience with 
such eigenvalue problems. In this problem, we defined a 
fitness admission threshold for each subpopulation (one 
subpopulation per level, in this case) as shown in cell (2, 
3) of Table 3.  Subpopulation 15 was used as a “sliding” 
subpopulation to aggressively explore the fitness frontier. 

Table 3:  Parameter Settings for GP 

 
Parameters of 

Single Population 
GP 

Popsize: 2000 
init.method = half_and_half   
init.depth = 3-6    
max_nodes = 800 
max_depth = 13 
crossover rate = 0.9  
mutation rate = 0.1 
max_generation = 1000 

 
Additional 

Parameters of  
Multi-Population 

GP 

Number of subpopulations  = 15; 
Size of subpop 2 to 14 = 100  
size of subpop 1 = 300 
size of subpop 15 = 400 
migration interval = 10 generations 
migration strategy: migrate (copy) 10  
  best individuals to the next    
  subpopulation in the ring to replace its 
  10 worst individuals 

 
Additional 
Parameters
of HFC-GP 

admission_fitnesses of:  
  subpop 1 =  -100000.0 
  subpop 2 to 14: 0.65, 0.68, 0.72,  
     0.75, 0.78, 0.80, 0.83,  
     0.85, 0.87, 0.9, 0.92, 0.95  
  subpop 15 = varying 

Additional 
Parameters of 

AHFC-GP 

nUpdateGen= nCalibGen = 10 
nExch = 10 
Nl =8 

Table 2: Target Eigenvalues 
Problem 1:  6-eigenvalue problem 

2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0i i i+ + +
− − −− − −  

Problem 2:  8-eigenvalue problem 
2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0 , 3 .4 12 .0i i i i+ + + +
− − − −− − − −  

Problem 3:  10-eigenvalue problem 
2 3.3 , 7.5 4.5 , 3.5 12.0 , 3.4 12.0 , 10.0 8.0i i i i i+ + + + +

− − − − −
− − − − −
Problem 4:  12-eigenvalue problem 

2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0 ,i i i+ + +
− − −− − −  

3 .4 12 .0 , 10 .0 8 .0 , 1 .5 3 .0i i i+ + +
− − −− − −  



The parameters of AHFC-GP were nearly identical to 
those of the HFC, except that we don’t need to determine 
the admission thresholds of each level. 

The performances of the four approaches were assessed 
on four problems with increasing difficulty.  Each 
experiment was run ten times, with the average of the 
results reported in Fig.4, where the four GP methods are 
indicated by 
  OnePop: Single-population GP 
  MulPop: multi-population GP (ring topology) 
  HFC-GP: HFC model for GP 
  AHFC-GP: Adaptive HFC model for GP 

From Figure 4, it is impressive to see that in all four 
problems, both AHFC and HFC performed dramatically 
better than the other algorithms vis-à-vis best of run, and 
the improvement was more dramatic on the more difficult 

problems. The superior performance at the initial 
generations may have resulted from the rapid exploitation 
of superior individuals, in a single subpopulation, in 
comparison to the ring parallel GA. Yet convergence in 
the HFC and AHFC was much slower than in the single- 
and multi-population GP runs. In fact, we observe 
relatively steady improvement during the runs for this set 
of problems. For the easier problems, the (dynamic) 
AHFC actually out-performed the (static) HFC slightly, in 
spite of the rich experience on this class of problems that 
was used for setting the HFC thresholds.  The fact that 
the HFC ultimately surpassed the AHFC on the two 
harder problems indicates that there is room for 
improvement of the AHFC scheme used here.  However, 
the fact that it is competitive with human-determined 
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a) 6-eigenvalue problem 
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b) 8-eigenvalue problem 
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c) 10-eigenvalue problem 
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Figure 4. Fitness of Best Individual to Date vs. Generation: 
dashdot (OnePop), solid (MulPop), dashed (HFC) 



static values based on prior experience shows that it is a 
step in a beneficial direction. 

5 CONCLUSIONS AND FUTURE WORK 
Based on our analysis of the role of admission thresholds 
used in the HFC model and our experiments on a series of 
difficult, highly epistatic real-world problems, it has been 
demonstrated that the adaptive HFC model can work 
nearly as well as the original HFC model, and even better 
in some cases, without any prerequisite knowledge of the 
fitness landscape of the problem. The dynamic allocation 
of the subpopulations to fitness levels also improves the 
search efficiency. These adaptation mechanisms make our 
algorithm to be easily plugged into new problems without 
much parameter tuning. Our experiments demonstrated 
the effectiveness of the HFC and AHFC models in 
improving significantly both the search speed and the 
quality of the best solutions found compared with 
standard EAs.  

This paper represents a first step toward autonomous 
parallel evolutionary computation based on the HFC 
model. The second step is the automation of the adaptive 
distribution of the computing resource among levels. We 
expect that the number of subpopulations, the number of 
fitness levels, the distribution of subpopulations to each 
level, along with the admission thresholds, can all be 
determined adaptively, in which case we would have an 
autonomous parallel evolutionary computation model in 
which the communication topology and migration scheme 
are all decided by the evolutionary process itself, 
according to the characteristics of the problem at hand.  

In this paper, we implemented the synchronous version of 
the AHFC model and simulated parallel genetic 
programming on a single PC. More consideration about 
the communication cost and asynchronous adaptation 
mechanism of the AHFC model in the case of a large 
population is needed. The scalability of the AHFC model 
with respect to more processors also needs to be proved 
with experiments on real parallel cluster computing 
facilities, which is on the top of our task list.  
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