
Adaptive Hierarchical Fair Competition (AHFC) Model for

Parallel Evolutionary Algorithms

Jianjun Hu*
hujianju@cse.msu.edu

Erik D. Goodman*
goodman@egr.msu.edu

Kisung Seo*
ksseo@egr.msu.edu

Min Pei*
pei@egr.msu.edu

Department of Computer Science and
Engineering

Michigan State University
East Lansing, MI 48824

*Genetic Algorithms Research and Applications Group
Michigan State University

2857 W. Jolly Rd., Okemos, MI 48864

Abstract

The HFC model for parallel evolutionary
computation is inspired by the stratified
competition often seen in society and biology.
Subpopulations are stratified by fitness.
Individuals move from low-fitness to
higher-fitness subpopulations if and only if they
exceed the fitness-based admission threshold of
the receiving subpopulation, but not of a higher
one. The HFC model implements several critical
features of a competent parallel evolutionary
computation model, simultaneously and
naturally, allowing rapid exploitation while
impeding premature convergence. The AHFC
model is an adaptive version of HFC, extending it
by allowing the admission thresholds of fitness
levels to be determined dynamically by the
evolution process itself. The effectiveness of the
Adaptive HFC model is compared with the HFC
model on a genetic programming-based
evolutionary synthesis example.

1 INTRODUCTION
Parallel evolutionary algorithms (PEA’s) have gained
increasing attention in many large-scale application
problems including graph-partitioning problems, set
partitioning problems, and many commercial efforts in
analog circuit synthesis at Analog Design Automation Co.
(Liang, 2001), Neolinear Inc (Ochotta, 1996; Krasnicki,
1999) and Genetic Programming Inc. (Andre, 1996).
Parallel evolutionary computation models can be largely
categorized into three classes (Cantu-Paz, 1998;
Nowostawski, 1999): (1) global single- population
master-slave models (2) single-population fine grained
models, and (3) multi-population coarse-grained (or
island) models. As cluster computing and networked PC's

have become available in many companies,
multi-population parallel models (sometimes combined
with master-slave models) have become increasingly
popular. Parallel evolutionary algorithms have major
advantages over single-population models, including
parallel evaluation and rapid exploration with decreased
risk of premature convergence. However, current parallel
EA's are still not competent vis-a-vis scalability, either
with respect to increasing degree of difficulty of the
problem or to speedup with an increasing number of
processors. It is clear that a competent parallel
evolutionary algorithm should have the capability to:

(1) quickly exploit high-fitness individuals as they
are discovered. One of these mechanisms is
Elitism, which is effective in preserving good
individuals, as has been demonstrated in several
of the most successful evolutionary
multi-objective optimization algorithms, such as
NSGAII and SPEAII (Zitzler, 2000).

(2) keep multiple high-fitness individuals
simultaneously to facilitate exploration in
multiple search areas or directions

(3) maintain diversity of the population to avoid
premature convergence

(4) be scalable with respect to increasing number of
processors

(5) adapt its parameters for autonomous
evolutionary computation.

Multi-population PEA’s can be classified into
homogeneous models and heterogeneous models. Sprave
(1999) proposed a unified model of population structures
in PEAs, but his model doesn’t concern with the
heterogeneity of the sub-populations. In homogeneous
parallel EA models, each subpopulation is regarded as
playing the same role in evolution. Homogeneous PEA’s
often lack efficient mechanisms to exploit the newly
discovered high-fitness individuals. Although they may
keep several high fitness individuals in different demes,

they suffer from the fact that high-fitness individuals may
easily dominate all subpopulations by means of the
exchange (“migration”) process. Heterogeneous parallel
EA’s are typically more resistant to this phenomenon. For
example, the injection island GA (iiGA) (Lin, 1994; Eby,
1999) uses a hierarchical structure, typically stratifying
subpopulations according to the level of resolution of the
representation, allowing control of the tradeoff between
low-resolution exploration and high-resolution
exploitation. The iiGA has also been used with different
fitness functions in various subpopulations, even if they
used the same problem representation. Aickelin (1999)
also proposed such a PEA, which he called a pyramidal
EA, in which the hierarchical structure of the
subpopulations is defined by a hierarchy of fitness
functions.

In a recent paper (Hu and Goodman, 2002), we proposed
the Hierarchical Fair Competition (HFC) model for
parallel evolutionary computation. The HFC model is
inspired by the observation of a strategy employed in
some societal and biological systems to maintain different
high-fitness individuals in a whole population. HFC turns
out to have the features of a competent PEA cited above
except the adaptability of (6). In this paper, we introduce
an adaptive version of the HFC model, in which the
admission thresholds are automatically determined and
adjusted in the evolutionary process. In Section 2, the
metaphor and the HFC model are described relative to the
above features. In Section 3, an adaptive mechanism for
determining the parameters of the HFC model is
presented, along with the algorithm. We apply the AHFC
model to a genetic programming problem and compare it
with the static HFC model in Section 4. The conclusions
and discussion are provided in Section 5.

2 THE HIERARCHICAL FAIR
COMPETION MODEL (HFC) FOR
PARALLEL EVOLUTION

2.1 MOTIVATION AND BACKGROUND OF
HFC

The HFC model originates from an effort to combat the
premature convergence phenomenon in traditional genetic
algorithms and genetic programming. In a traditional GA,
as the evolutionary process goes on, the average fitness of
the population gets higher and higher, so that new
individuals tend to survive only if they have similarly
high fitness. New “explorer” individuals in fairly
different regions of the search space usually have low
fitness, until some local exploration and exploitation of
their beneficial characteristics has occurred. So a
standard EA tends to concentrate more and more of its
search effort near one or more early-discovered peaks,
and to get “stuck” near these attractors (or local optima).
It is clear that in a standard EA, there exists a severely
unfair competition. That is, selection pressure makes
high-fitness individuals reproduce quickly and thus

supplant other individuals with lower fitness, some of
which may lie in the vicinity of the global optimum, when
if their neighborhood were explored more thoroughly,
much higher-fitness individuals would be found. This fact
holds true even when we find search points near a global
optimum, as long as they are not close enough to have
high fitness relative to those near other, earlier-explored
local optima. This “unfair” competition contributes a lot
to the slow search progress of many EA’s when
confronted with difficult, high- dimensionality,
multi-modal problems. To address this unfair competition
problem, we need allow young but promising individuals
(i.e., those in relatively newly-found regions, which may
ultimately give rise to high-fitness offspring, but which
are currently not of high fitness) to “grow up” and, at an
appropriate time, join in the cruel competition process and
be kept for further exploitation or be killed (as appropriate)
when they are demonstrated with some confidence to be
bad. At the same time, we hope to maintain the
already-discovered high-fitness individuals and select
from them even more promising individuals for
exploitation without killing younger individuals.
Following the tradition of getting inspiration from biology,
we find that in some societal and biological systems, there
exists an efficient mechanism that can maintain and foster
potentially-high-fitness individuals (or, more accurately,
potential progenitors of high-fitness individuals)
efficiently. This is the hierarchical fair competition (HFC)
principle as discussed below.

2.2 THE METAPHOR OF HFC:
HIERARCHICAL FAIR COMPETITION IN
SOCIETAL AND BIOLOGICAL SYSTEMS

Competition is widespread in societal and biological
systems, but diversity remains large. After close
examination, we find there is a fundamental principle
underlying many types of competition in both societal and
biological systems: the Fair Competition Principle.

2.2.1 The Fair Competition Principle in Societal
Systems

In human society, competitions are often organized into a
hierarchy of levels. None of them will allow unfair
competition – for example, a young child will not
normally compete with college students in a math
competition. We use the educational system to illustrate
this principle in more detail.

In the education system of China and many other
developing countries, primary school students compete to
get admission to middle schools and middle school
students compete for spots in high schools. High school
students compete to go to college and college students
compete to go to graduate school (Fig. 1) (in many
Western countries, this competition starts at a later level,
but is eventually present, nonetheless). In this
hierarchically structured competition, at each level, only
individuals of roughly equivalent ability will participate

in any competition; i.e., in such societal systems, only fair
competition is allowed. This hierarchical competition
system is an efficient mechanism to protect young,
potentially promising individuals from unfair competition,
by allowing them to survive, learn, and grow before
joining more intense levels of competition. Individuals
that “lose” in these fair competitions were selected against
while competing fairly only against their peers. Students
compete fairly against others in their grade level because
they are usually of similar absolute fitness levels, having
been exposed to similar amounts of education and
experience.

An interesting phenomenon sometimes found in societal
competitions is the “child prodigy.” A ten-year-old child
may have some extraordinary academic ability. These
prodigies may skip across several educational levels and
begin to take college classes at a young age. An
individual with sufficient ability (fitness) is allowed to
join any level of competition. This also suggests that in
subpopulation migration, we should migrate individuals
according to their fitness levels, rather than according to
“time in grade.”

With such a fair competition mechanism that exports
high-fitness individuals to higher-level competitions,
societal systems reduce the prevalence of unfair
competition and the unhealthy dominance or disruption
that might otherwise be caused by “early-achieving”
individuals.

2.2.2 The Fair Competition Principle in Biological
Systems

It is somewhat surprising that in “cruel” biological/
ecological systems, the fair competition principle also
holds in many cases. For example, there are mechanisms
that reduce unmatched or unfair competition between
young animals and mature ones. Among mammals, young
individuals often compete with their siblings under the
supervision of parents, but not directly with other mature
individuals, since their parents protect them against other

adults. When the young grow up enough, they leave their
parents and join the competition with other mature
individuals. Evolution has found the mechanisms of
parental care and sibling competition to be useful in
protecting the young and allowing them to grow up and
develop their full potentials. Fair competition seems to be
beneficial to the evolution of many species.

2.3 THE HFC MODEL

Inspired by the fair competition principle and the
hierarchical organization of competition within
subpopulations in societal systems, we propose the
Hierarchical Fair Competition parallel model (HFC), for
genetic algorithms, genetic programming, and other forms
of evolutionary computation.

A cadem ic
level

Figure 1: In education system s, low
level students com pete to get

adm ission to higher level schools.

prim ary
school

middle
school

high
school

college

graduate
school

Figure 2: HFC model extends the search horizontally in
search space and vertically in fitness dimension and kills

bad individuals at appropriate times while allowing
promising young individuals grow up continuously

level 0

level 1

level 2

level 3

level 4

fitness

Figure 3: In HFC model, subpopulations are organized in
a hierarchy with ascending fitness levels. Each level (with

one or more subpopulations) accomodates individuals
within a certain fitness range determined by the admission

thresholds

fitness

fmin

fmaxsubpop9

subpop8

subpop7

subpop5,6

subpop3,4

subpop0,1,2

ADT5

Admission
Buffers

random
individuals

ADT:
Admission
Threshold

ADT4

ADT3

ADT2

ADT1

In this model (Fig 3), multiple subpopulations are
organized in a hierarchy, in which each subpopulation can
only accommodate individuals within a specified range of
fitness. The entire range of possible fitnesses is spanned
by the union of the subpopulations’ ranges. Conceptually,
each subpopulation has an admission buffer that has an
admission threshold determined either initially (fixed) or
adaptively. The admission buffer is used to collect
qualified candidates, synchronously or asynchronously,
from other subpopulations. Each subpopulation also has
an export threshold (fitness level), defined by the
admission threshold of the next higher-level
subpopulation. Only individuals whose fitnesses are
between the subpopulation’s admission threshold and
export threshold are allowed to stay in that subpopulation.
Otherwise, they are exported to the appropriate
higher-level subpopulation. Exchange of individuals is
allowed only in one direction, from lower-fitness
subpopulations to higher-fitness subpopulations, but
migration is not confined to only the immediately higher
level.

Each subpopulation can have the same or different sizes,
operators, and other parameters. However, considering
that there are often more low-fitness peaks than
high-fitness peaks, we tend to allocate larger population
sizes or more subpopulations to lower fitness levels, to
provide extensive exploration; and we tend to use higher
selection pressures in higher-fitness-level subpopulations
to ensure efficient exploitation. As it is often easier to
make a big fitness jump in a lower level subpopulation,
we often end up using larger fitness ranges for low-level
subpopulations, and smaller ranges for high-level
subpopulations (Fig. 2), but, of course, that depends on
the properties of the fitness landscape being explored. The
critical point is that the whole range of possible fitnesses
must be spanned by the union of the ranges of all levels of
subpopulations. Of course, the highest-level
subpopulation(s) need no export threshold (unbounded
above) and the lowest-level subpopulation(s) need no
admission threshold (unbounded below).

Exchange of individuals can be conducted synchronously
after a certain interval, or asynchronously, as in many
parallel models. At each moment of exchange, each
individual in each subpopulation is examined, and if it is
outside the fitness range for its subpopulation, it is
exported to the admission buffer of a subpopulation with
an appropriate fitness range. When a new candidate is
inserted into an admission buffer, it can be inserted into a
random position or inserted by sorting (or a null buffer
may be used, inserting migrants directly into the receiving
subpopulation, using some replacement rule). After export,
each subpopulation imports the appropriate number of
qualified candidates from its admission buffer into its
pool. Subpopulations (especially at the base level) fill any
spaces still open after emptying their admission buffers by
generating new individuals at random to fill the spaces
left by the exported individuals.

The number of levels in the hierarchy or number of
subpopulations (if each level has only one subpopulation)
can be determined initially or adaptively. In the static
HFC model, we must manually decide into how many
levels the fitness range will be divided, the fitness
thresholds, and all other GA parameters. In a dynamic
HFC model, we can dynamically change the number of
levels, number of subpopulations, size of each
subpopulation, and admission and export fitness
thresholds. As will be seen below, a benefit of the
adaptive HFC model (an example of a dynamic HFC) is
that it can adaptively allocate search effort according to
the characteristics of the search space of the problem to be
solved, thereby searching more efficiently (initial research
on various methods for adaptation of thresholds is in
preparation for reporting elsewhere). However, even
“coarse” setting of the parameters in a static HFC model
has yielded major improvement in search efficiency over
current EA’s on example problems.

Another useful extension to HFC used here is to introduce
one or more sliding subpopulations, with dynamic
admission thresholds that are continually reset to the
admission threshold of the level in which the current best
individual has been found. Thus, these subpopulations
provide additional search in the vicinity of the advancing
frontier in the hierarchy.

2.3.1 HFC as a competent parallel model for
parallel evolutionary computation

(1) While low-fitness individuals can persist long enough
to allow thorough exploration, as soon as they
produce high-fitness offspring, the offspring can
advance to higher-fitness levels immediately for
further exploitation, to compete and be recombined
with other high-fitness individuals.

(2) The HFC model maintains a large number of
high-fitness individuals in high-fitness-level
subpopulations without threatening lower-fitness (but
perhaps promising) individuals. Thus possibly
promising new search locales can persist long enough
to be appropriately exploited.

(3) HFC provides another mechanism for maintaining
diversity. First, the diversity of the population is
ensured by the stratification in the fitness space.
Second, continuous introduction of random
individuals into the lowest-level subpopulations and
the promotion of their high-fitness offspring to
upper-level subpopulations can be regarded as the
introduction of entropy and randomness into the
overall evolutionary system. Actually, looking from
low-fitness levels to higher-fitness levels, we observe
increasing order in the population. The HFC
evolution is thus a self-organizing process in which
the highest order is achieved at the top fitness level.
This mechanism reduces the chance of HFC
becoming “stuck” at local optima and helps it explore
new search areas. HFC thus implements implicitly a

multi-start or re-initialization mechanism on a
continual basis.

(4) The HFC model quickly captures superior offspring
and moves them to a place where they are free to
compete with, and be recombined with, each other.
This produces an effect similar to the elitism often
used in multi-objective evolutionary computation,
such as NSGAII or SPEAII (Zitzler et al., 2000), in
which superior individuals are also kept separately.
At that level, we can control the intensity of selection
to determine the tradeoff between exploitation of
those high-fitness individuals and exploration in their
neighborhoods.

(5) HFC has a good scalability to more processing hosts.
As more processors are available, they can be
distributed to different fitness levels – either to
low-level subpopulations for more extensive
exploration, or to the higher-level ones for intensive
exploitation of high-fitness individuals.

One of the major difficulties in the HFC evolutionary
algorithm is the determination of the admission thresholds
for a given problem. As the fitness landscape is often
unknown before evolutionary search, it is hard to define
these admission thresholds initially. Considering that
admission thresholds in HFC are only used to segregate
the whole population to avoid unfair competition, the
behavior of the search is generally not extremely sensitive
to the values of these admission thresholds, so that it is
not necessary to set them to exactly optimal values. The
only requirement for these thresholds is that the union of
the fitness level ranges (which is determined by these
admission thresholds) span the entire range of possible
fitnesses. Based on this analysis, we propose an automatic
admission thresholds determination mechanism for HFC
model.

3 THE ADAPTIVE HFC MODEL
In the static HFC model, we need to determine the
number of subpopulations, the number of fitness levels,
the relationship of subpopulations to fitness levels and the
admission thresholds of each fitness level. All the
admission thresholds are determined based on some initial
exploration of the fitness landscape of the problem, such
as the range of the fitness or distribution of
early-discovered peaks. The threshold adaptation
mechanism proposed here enables us to be relieved from
this prerequisite expertise in the problem space. All we
must decide is the number of admission levels (lN).

Since in HFC, random individuals are continuously
inserted into subpopulations of the base fitness level, the
export threshold of the base fitness level can be set as the
average fitness of the whole population after several
(nCalibGen) generations. In AHFC, this is called the
calibration stage, which determines the level of the
fitness value of frequently encountered (“normal”)
individuals with respect to random individuals. So the
base level is used to export normal individuals to higher

levels for further exploitation. At the end of the
calibration process, the standard deviation fσ and the
max fitness maxf of individuals at the highest level, the
average fitness fµ of individuals at the base level are
calculated. Then the fitness range of each level can be
calculated by the following formula:

Admission threshold of base level= -∞ (1)

Admission threshold of the first level = fµ (2)

Admission threshold of the highest fitness level =

maxf fσ− (3)

Admission thresholds of other fitness levels iL , are

determined by:

 ()/(2) 1,..., 1maxf L f f N i Ni f l lσµ µ+ × − − − = − (4)

Table 1: Adaptive Heterogeneous HFC Algorithm for
Parallel EA’s

1. Initialization
Determine EAP : parameters for standard
multi-population EA. (We assume here using one set
of parameters for all subpopulations)

 lN :Number of levels of the hierarchy
nCalibGen: calibration generations
nUpdateGen: admission threshold update

interval
nExch: generations between admission process

exchanges
 gen = 1: current generation
2. Do

if gen < nCalibGen (in calibration stage)
 run EA without exchange
 else if gen = nCalibGen (calibration stage ends)

determine the admission thresholds for each
level by formulas (1) - (4)

 else if gen% nExch = 0
Do for each subpopulation from lowest level to
highest level {

Examine fitness of each individual and
export to corresponding subpopulation at
higher level for which fitness range
accommodates this exported individual
(replacing worst individual in target
subpopulation)}

end do
else if gen % nUpdateGen =0
update admission thresholds of all but the base
level by (3), (4)
gen ++

until the stopping criterion is satisfied.
return the highest-fitness individual(s) from the
highest-level subpopulation

End

However, it is clear that as the evolutionary search goes
on, higher-fitness individuals are continuously discovered
that ruin the segregation by the above admission
thresholds determined at the initial calibration stage. So a
dynamic admission threshold updating mechanism is
proposed here. After each nUpdateGen generations, the
maximal fitness, maxf , and the fitness standard deviation
of the top level sub-populations, fσ , are recomputed to
determine the admission threshold of all the fitness levels
except the base level and the first level, by (3) - (4).

To enable efficient search, the mapping relationship of
sub-populations to all levels also needs to be adapted
dynamically. It is obvious that at initial stage, as all
individuals are randomly generated, these individuals
usually have low fitness. So most of the subpopulations
should belong to the base level. As higher-level
individuals discovered, more subpopulations should be
allocated to higher levels to exploit high-fitness
individuals. The following scheme is used in this paper:
firstly, all subpopulations are allocated to base level. After
the calibration stage, subpopulations are then evenly
allocated to each level. Extra subpopulations can be
allocated to higher levels (if aggressive exploitation is
desired) or to lower level (if intensive exploration is
desired).

This AHFC algorithm works like a string. At the initial
stage, it is quite compressed, but gradually, the string
stretches to accommodate individuals with a larger range
of fitness. The whole algorithm of AHFC is given in Table
1. For simplicity, we give the pseudo code only for the
adaptive HFC model with synchronous exchanges (no
buffers).

4 EXPERIMENTS
The adaptive HFC model for Genetic Programming
(HFC-GP) has been applied to a real-world analog circuit
synthesis problem that was first pursued using GP with a
static HFC (Hu, 2002). In this problem, an analog circuit
is represented by a bond graph model (Seo, 2001; Fan,
2001) and is composed of inductors (I), resistors (R),
capacitors (C), transformers (TF), gyrators (GY), and
Sources of Effort (SE). Our task is to synthesize a circuit,
including its topology and sizing of components, to
achieve specified behavior. The objective is to evolve an
analog circuit with response properties characterized by a
pre-specified set of eigenvalues. By increasing the
number of eigenvalues specified, we can define a series of
synthesis problems of increasing difficulty, in which
premature convergence problems become more and more
significant when traditional GP methods are used.

Circuit synthesis by GP is a well-studied problem that
generally demands large computational power to achieve
good results. Since both topology and the parameters of a
circuit affect its performance, it is easy to get stuck in the
evolution process.

4.1.1 Experiments on an Analog Circuit Synthesis
Problem

Four circuits with increasing difficulty are to be
synthesized, with eigenvalue sets as specified in Table 2.
Circuits were evolved with single-population GP,
multiple-population GP, HFC-GP, and AHFC-GP. The GP
parameter for the single-population GP is shown in cell
(1,2) of Table 3. The GP parameters for the
multi-population GP were the same as for the
single-population GP, except that the total population is
divided into subpopulations with sizes shown in cell (2, 2)
of Table 3. A one-way ring migration topology was used.

The parameters for the HFC-GP were the same as for the
multi-population GP, except that the ring migration was

replaced by the HFC scheme. The fitness admission
thresholds were set based on our prior experience with
such eigenvalue problems. In this problem, we defined a
fitness admission threshold for each subpopulation (one
subpopulation per level, in this case) as shown in cell (2,
3) of Table 3. Subpopulation 15 was used as a “sliding”
subpopulation to aggressively explore the fitness frontier.

Table 3: Parameter Settings for GP

Parameters of

Single Population
GP

Popsize: 2000
init.method = half_and_half
init.depth = 3-6
max_nodes = 800
max_depth = 13
crossover rate = 0.9
mutation rate = 0.1
max_generation = 1000

Additional

Parameters of
Multi-Population

GP

Number of subpopulations = 15;
Size of subpop 2 to 14 = 100
size of subpop 1 = 300
size of subpop 15 = 400
migration interval = 10 generations
migration strategy: migrate (copy) 10
 best individuals to the next
 subpopulation in the ring to replace its
 10 worst individuals

Additional
Parameters
of HFC-GP

admission_fitnesses of:
 subpop 1 = -100000.0
 subpop 2 to 14: 0.65, 0.68, 0.72,
 0.75, 0.78, 0.80, 0.83,
 0.85, 0.87, 0.9, 0.92, 0.95
 subpop 15 = varying

Additional
Parameters of

AHFC-GP

nUpdateGen= nCalibGen = 10
nExch = 10
Nl =8

Table 2: Target Eigenvalues
Problem 1: 6-eigenvalue problem

2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0i i i+ + +
− − −− − −

Problem 2: 8-eigenvalue problem
2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0 , 3 .4 12 .0i i i i+ + + +
− − − −− − − −

Problem 3: 10-eigenvalue problem
2 3.3 , 7.5 4.5 , 3.5 12.0 , 3.4 12.0 , 10.0 8.0i i i i i+ + + + +

− − − − −
− − − − −
Problem 4: 12-eigenvalue problem

2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0 ,i i i+ + +
− − −− − −

3 .4 12 .0 , 10 .0 8 .0 , 1 .5 3 .0i i i+ + +
− − −− − −

The parameters of AHFC-GP were nearly identical to
those of the HFC, except that we don’t need to determine
the admission thresholds of each level.

The performances of the four approaches were assessed
on four problems with increasing difficulty. Each
experiment was run ten times, with the average of the
results reported in Fig.4, where the four GP methods are
indicated by
 OnePop: Single-population GP
 MulPop: multi-population GP (ring topology)
 HFC-GP: HFC model for GP
 AHFC-GP: Adaptive HFC model for GP

From Figure 4, it is impressive to see that in all four
problems, both AHFC and HFC performed dramatically
better than the other algorithms vis-à-vis best of run, and
the improvement was more dramatic on the more difficult

problems. The superior performance at the initial
generations may have resulted from the rapid exploitation
of superior individuals, in a single subpopulation, in
comparison to the ring parallel GA. Yet convergence in
the HFC and AHFC was much slower than in the single-
and multi-population GP runs. In fact, we observe
relatively steady improvement during the runs for this set
of problems. For the easier problems, the (dynamic)
AHFC actually out-performed the (static) HFC slightly, in
spite of the rich experience on this class of problems that
was used for setting the HFC thresholds. The fact that
the HFC ultimately surpassed the AHFC on the two
harder problems indicates that there is room for
improvement of the AHFC scheme used here. However,
the fact that it is competitive with human-determined

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generation

Standardized fitness of Best Individual of run

OnePop
MulPop
HFC-GP
AHFC-GP

a) 6-eigenvalue problem

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

generation

st
an

da
rd

 fi
tn

es
s

Standardized fitness of Best Individual of run

OnePop
MulPop
HFC-GP
AHFC-GP

b) 8-eigenvalue problem

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

generation

st
an

da
rd

 fi
tn

es
s

Standardized fitness of Best Individual of run

OnePop
MulPop
HFC-GP
AHFC-GP

c) 10-eigenvalue problem

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generation

st
an

da
rd

 fi
tn

es
s

Standardized fitness of Best Individual of run

OnePop
MulPop
HFC-GP
AHFC-GP

d) 12-eigenvalue problem

Figure 4. Fitness of Best Individual to Date vs. Generation:
dashdot (OnePop), solid (MulPop), dashed (HFC)

static values based on prior experience shows that it is a
step in a beneficial direction.

5 CONCLUSIONS AND FUTURE WORK
Based on our analysis of the role of admission thresholds
used in the HFC model and our experiments on a series of
difficult, highly epistatic real-world problems, it has been
demonstrated that the adaptive HFC model can work
nearly as well as the original HFC model, and even better
in some cases, without any prerequisite knowledge of the
fitness landscape of the problem. The dynamic allocation
of the subpopulations to fitness levels also improves the
search efficiency. These adaptation mechanisms make our
algorithm to be easily plugged into new problems without
much parameter tuning. Our experiments demonstrated
the effectiveness of the HFC and AHFC models in
improving significantly both the search speed and the
quality of the best solutions found compared with
standard EAs.

This paper represents a first step toward autonomous
parallel evolutionary computation based on the HFC
model. The second step is the automation of the adaptive
distribution of the computing resource among levels. We
expect that the number of subpopulations, the number of
fitness levels, the distribution of subpopulations to each
level, along with the admission thresholds, can all be
determined adaptively, in which case we would have an
autonomous parallel evolutionary computation model in
which the communication topology and migration scheme
are all decided by the evolutionary process itself,
according to the characteristics of the problem at hand.

In this paper, we implemented the synchronous version of
the AHFC model and simulated parallel genetic
programming on a single PC. More consideration about
the communication cost and asynchronous adaptation
mechanism of the AHFC model in the case of a large
population is needed. The scalability of the AHFC model
with respect to more processors also needs to be proved
with experiments on real parallel cluster computing
facilities, which is on the top of our task list.

Acknowledgment
The authors acknowledge the assistance of Prof. Ronald C.
Rosenberg and Zhun. Fan in defining and exploring the
example problem presented here. This work was
supported by the National Science Foundation under
contract DMI 0084934.

References
J.M. Liang; T. McConaghy; A. Kochlan; T. Pham; G.
Hertz. “Intelligent Systems for Analog Circuit Design
Automation: A Survey,” Proceedings World
Multiconference on Systemics, Cybernetics and
Informatics, Vol. IX. SCI 2001/ ISAS 2001, Orlando,
Florida (USA), 2001.

E. S. Ochotta, R. A. Rutenbar, L. R. Carley, “Synthesis of
High-Performance Analog Circuits in ASTRX/ OBLX,”

IEEE Trans. CAD, Vol. 15, pp. 273-294, Mar., 1996.

M. Krasnicki, R. Phelps, R. Rutenbar, and R. Carley.
“Maelstrom: Efficient simulation-based synthesis for
custom analog cells,” Proceedings of the 1999 ACM/IEEE
Design Automation Conference, 1999.

D. Andre and J. R. Koza. “Parallel genetic programming
on a network of transputers,” in Angeline, Peter J. and
Kinnear, Kenneth E., Jr. (eds.), Advances in Genetic
Programming, MIT Press, Cambridge, MA, 1996.

E. Cantu-Paz, “A survey of parallel genetic algorithms,”
Calculateurs Parallels, 10(2), Paris, Hermes. 1998.

J. Sprave. A unified model of non-panmictic population
structures in evolutionary algorithms. In P. J. Angeline
and V. W. Porto, editors, Proc. 1999 Congress on
Evolutionary Computation (CEC'99), vol 2, p. 1384-1391,
Washington D.C., 1999. IEEE Press, Piscataway NJ.

N. Mariusz. and R. Poli, “Review and Taxonomy of
Parallel Genetic Algorithms,” Technical Report,
University of Birmingham, School of Computer Science,
No. CSRP-99-11, May 1999.

S.C. Lin, E. Goodman, and W. Punch, “Coarse-Grain
Parallel Genetic Algorithms: Categorization and New
Approach,” IEEE Conf. on Parallel and Distrib.
Processing, Nov., 1994.

D. Eby, R. C. Averill, E. Goodman, and W. Punch,
“Optimal Design of Flywheels Using an Injection Island
Genetic Algorithm,” Artificial Intelligence in Engineering
Design, Analysis and Manufacturing, 13, p. 389-402,
1999.

U. Aickelin, “A Pyramidal Evolutionary Algorithm with
Different Inter-Agent Partnering Strategies for Scheduling
Problems,” Genetic and Evolutionary Computation
Conference Late-Breaking Papers, E. Goodman, ed.,
ISGEC Press, San Francisco, pp. 1-8. 2001.

J.J. Hu, E.D. Goodman, “The Hierarchical Fair
Competition (HFC) Model for Parallel Evolutionary
Algorithms,” Proceedings of the 2002 Congress on
Evolutionary Computation: CEC2002, (forthcoming),
IEEE, Honolulu, Hawaii, 2002.

K. Seo, E. Goodman, and R. Rosenberg, “First Steps
toward Automated Design of Mechatronic Systems Using
Bond Graphs and Genetic Programming,” Proc. Genetic
and Evolutionary Computation Conf. - 2001, July 7-11,
Morgan Kaufmann, San Francisco, p. 189, 2001.

Z. Fan, J.J. Hu, K. Seo, E. Goodman, R. Rosenberg, and
B. Zhang, “Bond Graph Representation and GP for
Automated Analog Filter Design,” Genetic and
Evolutionary Computation Conference Late Breaking
Papers, pp. 81-86, 2001.

E. Zitzler, K. Deb, and L. Thiele, “Comparison of
Multiobjective Evolution Algorithms: Empirical
Results,” Evolutionary Computation, 8(2), pp. 173-195,
2000.

