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Abstract -The HFC model for evolutionary computation 

is inspired by the stratified competition often seen in society and 
biology.  Subpopulations are stratified by fitness.  Individuals 
move from low-fitness subpopulations to higher-fitness 
subpopulations if and only if they exceed the fitness-based 
admission threshold of the receiving subpopulation, but not of a 
higher one. HFC’s balanced exploration and exploitation, while 
avoiding premature convergence, is shown on a genetic 
programming example.   

 
I. INTRODUCTION 

One of the central problems in evolutionary computation 
is to combat premature convergence and to achieve balanced 
exploration and exploitation.  In a traditional GA, selection 
pressure must not overwhelm the diversity-increasing 
operators (mutation and, to some extent, crossover) or 
premature convergence is likely to occur.  As the 
evolutionary process goes on, the average fitness of the 
population gets higher and higher, and then only those new 
individuals with similarly high fitness tend to survive.  New 
“explorer” individuals in fairly different regions of the search 
space usually have low fitness, until some local exploration 
and exploitation of their beneficial characteristics has 
occurred.  So a standard EA tends to concentrate more and 
more of its search effort near several discovered peaks, and to 
get “stuck” in these local optima (we use here the language of 
continuous, real-valued function optimization, but more 
generally, the concept of “attractors” can instead be used). 
Many variations [1,2,3,4,5,6] on traditional GA’s and 
especially many of the efforts on parallel EA’s are aimed at 
addressing this problem, as described in the next section. In 
this paper, an observation about a strategy employed in some 
societal and biological systems to maintain different high 
fitness individuals in one population led to the discovery of 
the new approach presented in this paper, called the 
Hierarchical Fair Competition parallel model (HFC), which 
can efficiently combat the premature convergence of EA’s.  

A. Previous Work on the Premature Convergence Problem 
Crowding [1] is proposed as a diversity-maintaining 

offspring replacement strategy. Replacing similar individuals 
tends to prevent the population from aggregating around one 

peak, and thus extends the search area horizontally.  
However, genetic drift and sampling error often cause a GA 
to converge to one or two peaks of the search space, in spite 
of crowding [2]. 

 Fitness sharing – a modification of the fitness-based 
selection operation [3] -- permits the formation of stable 
subpopulations centered on different peaks, thereby 
permitting parallel search at many peaks in the search space. 
The problem is that as the number of local optima in the 
search space grows (especially for GP), it becomes 
increasingly probable that the limited size of the population 
cannot accommodate all of them. 

Typical multi-population models in EA explicitly 
maintain several subpopulations, each of which may hold 
individuals at or near one or more local optima. However, the 
feasible number of subpopulations may often be small 
compared to number of peaks that must be explored. 

The injection island GA (iiGA) [4, 5] is a hierarchical, 
parallel model in which subpopulations are organized in a 
hierarchy with different representations at each level (often 
representing different resolutions of problem representation). 
The iiGA is similar in some respects (its hierarchical 
organization of the subpopulations) to our HFC model.  The 
major difference is that the search space in iiGA is 
fundamentally divided into hierarchical levels according to 
the resolution (or type) of representation used at each level, in 
a predetermined way.  For each subpopulation, especially 
for the highest-level subpopulation(s), there is still the risk of 
being trapped in a local optimum.  The iiGA addresses the 
premature convergence problem primarily by using multiple 
subpopulations at each level, and by using mechanisms such 
as crowding within each subpopulation, rather than directly 
through the hierarchy.   

The basic source of premature convergence of EA’s 
comes from an explicit fact: selection pressure makes high 
fitness individuals reproduce quickly and thus supplant 
low-fitness individuals, some of which may, in fact, be more 
promising, but not yet fully exploited. This fact holds true 
even when we find search points near a global optimum, as 
long as they are not close enough to have high fitness relative 
to those near other, earlier-explored local optima. It is clear 
that in many cases, an EA doesn’t "appreciate" good genetic 
material until it is placed in the right context. This difficulty 



in appropriately rewarding good genes until they are 
assembled into a good genotype impedes search.  The 
“unfair” competition contributes to the slow search progress 
of many EA’s when confronted with difficult, 
high-dimensionality, multi-modal problems.  

It appears that current EA’s have not addressed this 
unfair competition directly enough.  What we need to do is 
to allow young but promising individuals (i.e., those in 
relatively new regions, which may ultimately give rise to 
high-fitness offspring, but which are currently not of high 
fitness) to “grow up” and, at an appropriate time, join in the 
cruel competition process and be kept for further exploitation 
or be killed (as appropriate) when they are demonstrated with 
some confidence to be bad. At the same time, we hope to 
maintain the already-discovered high fitness individuals and 
select from them even more promising individuals for 
exploitation without killing younger individuals.  Holland 
has recently explored a mechanism that provided some 
protection for “new” individuals, in a different way, in his 
Cohort Genetic Algorithm [6]. 

The Hierarchical Fair Competition parallel model (HFC) 
provides a mechanism satisfying these seemingly conflicting 
requirements.  It originated as a metaphor for the 
mechanism of hierarchical fair competition principles found 
in some societal and biological systems, which can maintain 
and foster potentially-high-fitness individuals (or, more 
accurately, progenitors of high fitness individuals) efficiently. 

II. HIERARCHICAL FAIR COMPETITION IN 
SOCIETAL AND BIOLOGICAL SYSTEMS 

Competition is widespread in societal and biological 
systems, but diversity remains large.  After close 
examination, we find there is a fundamental principle 
underlying many types of competition in both societal and 
biological systems: the Fair Competition Principle. 

A. The Fair Competition Principle in Societal Systems 
In human society, competitions are often organized into 

a hierarchy of levels. None of them will allow unfair 

competition – for example, a young child will not normally 
compete with college students in a math competition. We use 
the educational system to illustrate this principle in more 
detail. 

In the education system of China and many other 
developing countries, primary school students compete to get 
admission to middle schools and middle school students 
compete for spots in high schools. High school students 
compete to go to college and college students compete to go 
to graduate school [Fig. 1] (in most Western countries, this 
competition starts at a later level, but is eventually present, 
nonetheless). In this hierarchically structured competition, at 
each level, only individuals of roughly equivalent ability will 
participate in any competition; i.e., in such societal systems, 
only fair competition is allowed. This hierarchical 
competition system is an efficient mechanism to protect 
young, potentially promising individuals from unfair 
competition, by allowing them to survive, learn, and grow up 
before joining more intense levels of competition. If some 
individuals are “lost” in these fair competitions, they were 
selected against while competing fairly only against their 
peers.  If we take the academic level as a fitness level, it 
means that only individuals with similar fitness can compete. 

An interesting phenomenon sometimes found in societal 
competitions is the “child prodigy.” A ten-year-old child may 
have some extraordinary academic ability. These prodigies 
may skip across several educational levels and begin to take 
college classes at a young age.  An individual with sufficient 
ability (fitness) can join any level of competition.  This also 
suggests that in subpopulation migration, we should migrate 
individuals according to their fitness levels, rather than 
according to “time in grade.” 

With such a fair competition mechanism that exports 
high-fitness individuals to higher-level competitions, societal 
systems reduce the prevalence of unfair competition and the 

FIGURE 2: HFC model extends the search horizontally
in search space and vertically in fitness dimension
and kills bad individuals at appropriate times while
allowing promising young individuals grow up
continuously
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unhealthy dominance or disruption that might otherwise be 
caused by “over-achieving” individuals. 

B. The Fair Competition Principle in Biological Systems 
It is somewhat surprising that in “cruel” biological/ 

ecological systems, the fair competition principle also holds 
in many cases. For example, there are mechanisms that 
reduce unmatched or unfair competition between young 
individuals and mature ones. Among mammals, young 
individuals often compete with their siblings under the 
supervision of parents, but not directly with other mature 
individuals, since their parents protect them against them. 
When the young grow up enough, they leave their parents 
and join the competition with other mature individuals. 
Evolution has found the mechanism of parental care to be 
useful in protecting the young and allowing them to grow up 
and develop their full potentials. Fair competition seems to be 
beneficial to the evolution of many species.  

III. THE HIERARCHICAL FAIR COMPETITION 
PARALLEL MODEL 

Inspired by the fair competition principle and the 
hierarchical organization of competition within 
subpopulations in societal systems, we propose the 
Hierarchical Fair Competition parallel model (HFC), for 
genetic algorithms, genetic programming, and other forms of 
evolutionary computation.  

In this model [Fig 3], multiple subpopulations are 
organized in a hierarchy, in which each subpopulation can 
only accommodate individuals within a specified range of 
fitnesses. The entire range of possible fitnesses is spanned by 
the union of the subpopulations’ ranges. Conceptually, each 
subpopulation has an admission buffer that has an admission 
threshold determined either initially (fixed) or adaptively. 
The admission buffer is used to collect qualified candidates, 
synchronously or asynchronously, from other subpopulations. 
Each subpopulation also has an export threshold (fitness 
level), defined by the admission threshold of the next 
higher-level subpopulation. Only individuals whose fitnesses 
are between the subpopulation’s admission threshold and 
export threshold are allowed to stay in that subpopulation. 
Otherwise, they are exported to the appropriate higher-level 
subpopulation Exchange of individuals is allowed only in one 
direction, from lower-fitness subpopulations to higher-fitness 
subpopulations, but migration is not confined to only the 
immediately higher level.  

Each subpopulation can have the same or different size 
and running parameters. However, considering that there are 
often more low-fitness peaks than high-fitness peaks, we tend 
to allocate larger population sizes or more subpopulations to 
lower fitness levels, to provide extensive exploration; and we 
tend to use higher selection pressure in higher-fitness-level 
subpopulations to ensure efficient exploitation.  As it is 
often easier to make a big fitness jump in a lower level 
subpopulation, we often end up using larger fitness ranges for 

lower level subpopulations, and smaller ranges for high-level 
subpopulations [Fig. 2], but, of course, that depends on the 
properties of the fitness landscape being explored. The 
critical point is that the whole range of possible fitness must 
be spanned by the union of the ranges of all levels of 
subpopulations.  Of course, the highest-level 
subpopulation(s) need no export threshold (unbounded above) 
and the lowest-level subpopulation(s) need no admission 
threshold (unbounded below). 

Exchange of individuals can be conducted 
synchronously after a certain interval or asynchronously as in 

many parallel models. At each moment of exchange, each 
individual in each subpopulation is examined, and if it is 
outside the fitness range for its subpopulation, it is exported 
to the admission buffer of a subpopulation with an 
appropriate fitness range. When a new candidate is inserted 
into an admission buffer, it can be inserted into a random 
position or inserted by sorting. After export, each 
subpopulation imports the appropriate number of qualified 
candidates from its admission buffer into its pool. 
Subpopulations (especially at the base level) fill any spaces 
still open after emptying their admission buffers by 
generating new individuals at random to fill the spaces left by 
the exported individuals. 

The number of levels in the hierarchy or number of 
subpopulations (if each level has only one subpopulation) can 
be determined initially or adaptively. In the static HFC model, 
we can manually decide into how many levels the fitness 
range will be divided, the fitness thresholds, and all other GA 
parameters. In the dynamic HFC model, we can dynamically 
change the number of levels, number of subpopulations, size 
of each subpopulation, and admission and export fitness 
thresholds. The benefit of the dynamic HFC model is that it 
can adaptively allocate search effort according to the 
characteristics of the search space of the problem to be solved, 
thereby searching more efficiently (initial research on 

FIGURE 3: In HFC model, subpopulations are organized in a
hierarchy with ascending fitness level. Each subpopulation
accomodates individuals within a certaiin fitness range
determined by the admission thresholds
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adaptation of admission thresholds is in preparation for 
reporting elsewhere). However, even “coarse” setting of the 
parameters in a static HFC model has yielded major 
improvement in search efficiency over current EA’s on 
example problems.   

Another useful extension to HFC used here is to 
introduce one or more sliding subpopulations, with dynamic 
admission thresholds that are continually reset to the 
admission threshold of the level in which the current best 
individual has been found.  Thus, these subpopulations 
provide additional search in the vicinity of the advancing 
frontier in the hierarchy.   

A. Some Characteristics of the HFC Model 
1) Exchange of individuals is one-directional, in a 

hierarchical exchange structure permitting migration 
from lower-fitness subpopulations to higher-fitness 
ones. While at each fitness level, the low-fitness 
offspring of high-fitness parents (created by mutation 
or recombination) will be replaced by immigrants or 
eliminated by selection. 

2) The balance between exploration and exploitation is 
maintained by the use of subpopulations at different 
fitness levels. Low-fitness subpopulations tend to 
explore new search areas and send their promising 
offspring to higher-fitness subpopulations for 
exploitation.  

3) The HFC model maintains a large number of 
high-fitness individuals without threatening to 
eliminate lower-fitness (but perhaps promising) 
individuals. Thus possibly promising new search 
locales can persist long enough to be appropriately 
exploited. 

4) The HFC model quickly captures superior offspring 
and moves them to a place where they are free to 
compete with, and be recombined with, each other.  
This produces an effect similar to the elitism often used 
in multi-objective evolutionary computation, such as 
NSGAII or SPEAII (Zitzler et al., 2000), in which 
superior individuals are also kept separately. At that 
level, we can control the intensity of selection to 
determine the tradeoff between exploitation of those 
high-fitness individuals and exploration in their 
neighborhoods.   

5) With multiple subpopulations organized hierarchically 
according to fitness, the HFC model allows one to look 
across a multimodal fitness landscape and to see 
relatively stable regions at each of several fitness levels. 
Each level may include bands of individuals with 
similar fitness from many different peaks.  

6) HFC can be regarded as maintaining several niches in 
the vertical fitness dimension rather than in a horizontal 
dimension as in traditional niching techniques. It does 
not use genotype or phenotype distance to form niches; 
however, if desired, multiple niches at each level can 

also be maintained, through multiple subpopulations at 
each level or by using crowding, fitness sharing, or 
other such techniques.  The intensity of search at each 
fitness level can be independently controlled. 

IV. EXAMPLE PROBLEMS 
The HFC model with Genetic Programming (HFC-GP) 

has been applied to a real-world analog circuit synthesis 
problem that was first pursued using GP without HFC [8]. In 
this problem, an analog circuit is represented by a bond graph 
model [9] and is composed of inductors (I), resistors (R), 
capacitors (C), transformers (TF), gyrators (GY), and Sources 
of Effort (SE). Our task is to synthesize a circuit, including its 
topology and sizing of components, to achieve specified 
performance. The objective is to evolve an analog circuit with 
response properties characterized by a pre-specified set of 
eigenvalues. By increasing the number of eigenvalues 
specified, we can define a series of synthesis problems of 
increasing difficulty, in which premature convergence 
problems become more and more significant when traditional 
GP methods are used.  

Circuit synthesis by GP is a well-studied problem that 
generally demands large computational power to achieve 
good results. Since both topology and the parameters of a 
circuit affect its performance, it is easy to get stuck in the 
evolution process. Koza usually uses a population size from 
30,000 to 640,000 in his experiments [10]. 

A. Experiments on an Analog Circuit Synthesis Problem 
Four circuits with increasing difficulty are to be 

synthesized, with eigenvalue sets as specified in Table 1. 
Circuits were evolved with single-population GP, 

multiple-population GP and HFC-GP. The GP parameter for 
the single population GP is shown in cell (1, 2) of Table 2. 

Additional parameters for the multi-population GP were 
shown in cell (2, 2) of Table 2. A one-way ring migration 
topology was used.  

 The parameters for HFC-GP were the same with 
multi-population GP except that the ring migration is 
replaced with the HFC scheme.  For this problem, the range 
of raw fitness values was [0.5, 1.0], so we defined a fitness 
admission threshold for each subpopulation (one 
subpopulation per level, in this case) as shown in cell (3, 2) of 

TABLE 1 TARGET EIGENALUES 

Problem 1:  6-eigenvalue problem 
2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0i i i+ + +
− − −− − −  

Problem 2:  8-eigenvalue problem 
2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0 , 3 .4 12 .0i i i i+ + + +
− − − −− − − −  

Problem 3:  10-eigenvalue problem 
2 3.3 , 7.5 4.5 , 3.5 12.0 , 3.4 12.0 , 10.0 8.0i i i i i+ + + + +

− − − − −
− − − − −
Problem 4:  12-eigenvalue problem 

2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0 ,i i i+ + +
− − −− − −  

3 .4 12 .0 , 10 .0 8 .0 , 1 .5 3 .0i i i+ + +
− − −− − −  



Table 2.  Subpopulation 15 was used as a “sliding” 
subpopulation to aggressively explore the fitness frontier. 

First, it is important to notice that these problems exhibit 
a very high degree of epistasis, as a change in the placement 
of any pair of eigenvalues has a strong effect on the location 
of the remaining eigenvalues.  Eigenvalue placement is very 
different from “one-max” or additively decomposable 
optimization problems, and constitutes an increasingly 
difficult sequence of problems with the problem order.  The 
performance of each of the three GA approaches was 
assessed on four problems of increasing difficulty.  Each 
experiment was run ten times, and the average of the results 
is reported in Fig.4, where three GP methods are indicated by 
  HFC-GP: Hierarchical Fair Competition Model for GP 
  OnePop: Single population GP 
  MulPop: multi-population GP (ring topology) 
From Figure 4, it is impressive to see that in all four problems, 
HFC-GP achieves dramatically better performance vis-à-vis 
best of run, and that the improvement is more dramatic on the 
more difficult problems. The superior performance at the 
initial generations may result from the rapid combination of 
superior individuals, in a single subpopulation, relative to the 
ring parallel GA. Yet convergence in the HFC is much slower 
than in the single- and multi-population GP runs. In fact, we 
observe relatively steady improvement during the runs for 
this set of problems.  

V. HFC BEHAVIOR AND POTENTIAL EXTENSIONS 
A. Observation of HFC’s Behavior 

1) Takeover of subpopulations by high-fitness immigrants 

is largely avoided, since only immigrants of the 
appropriate fitness range are allowed to enter a 
subpopulation and continuously there are new 
immigrants coming from lower levels with competitive 
fitness. If a new immigrant’s offspring turn out to be 
extraordinarily fit, they immediately emigrate to a 
yet-higher level subpopulation, where they again 
compete fairly. 

2) HFC provides another mechanism for maintaining 
diversity. In a classical GA/GP, a balance must be 
maintained between the diversity-decreasing effect of 
selection and the diversity-increasing effects of 
mutation and some forms of crossover.  Addition of 
HFC can shift this balance to allow maintaining greater 
diversity with lower rates of mutation and/or crossover.  
Alternatively, greater selection pressure can be applied 
without leading to premature convergence, while 
speeding exploitation of high-fitness individuals.  

3) In HFC, the tendency of “standard” EA’s to narrow 
their search fairly rapidly to the earliest-discovered 
regions of relatively high fitness is countered. This 
allows more thorough exploration around new 
individuals (usually with low-fitness) that may contain 
ultimately valuable genetic material that might be 
discarded by standard EA’s. Because low-fitness 
individuals are not forced out of the lower levels by 
competition from higher-fitness individuals, they 
continue to explore the space widely, feeding promising 
new search regions to higher-fitness subpopulations as 
they are found. 

4) HFC often discovers new peaks by building a smooth 
“path” for potential progenitors of a potential global 
optimum solution to go up through low-fitness 
subpopulations to one or more subpopulations of the 
highest-fitness level. The continual insertion of new 
random individuals into the lower-level subpopulations 
reduces the chance that HFC search will get “stuck” at 
a local optimum and helps it explore new search areas.  
HFC thus employs a type of multi-start or 
reinitialization on a continual basis. 

5) While individuals that are only locally optimal 
eventually tend to disappear from any given 
subpopulation, they tend to be explored (and their 
better offspring to migrate upward) before being 
eliminated, since their competitors are of similar 
fitness.  

B Potential Extensions of HFC 
1) Asynchronous export and import of individuals in HFC 

allow for easy parallelization compared to other 
diversity maintaining techniques that require 
calculation of population-level similarity measures, 
such as fitness-sharing methods. 
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a) 6-eigenvalue problem 
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        b) 8-eigenvalue problem
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     c) 10-eigenvalue problem 
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      d) 12-eigenvalue problem 

FIGURE 4.  Fitness of Best Individual To Date vs. Generation: 
dashdot (OnePop), solid (MulPop), dashed (HFC)



2) The fitness range of each fitness level in the hierarchy 
can be evolved during the search process. Then we can 
utilize the problem characteristics to adaptively 
distribute the search effort (yielding an adaptive HFC 
model). 

3) This model is compatible with other existing techniques 
to improve the search ability of EA’s. Existing 
multi-population and parallel EA models can easily be 
adapted to the HFC model – only the migration rules 
and subpopulation topology need to be changed. 

VI. CONCLUSIONS AND FUTURE WORK 
Based on our analysis of the premature convergence 

problem in EAs, we believe that the premature convergence 
problem can to some extent be attributed to unfair (or 
unbalanced) competition in the selection process of evolution. 
While competition is essential to the evolutionary process, we 
observed that in many societal and biological systems, the 
negative effects of that competition are often modulated by 
structuring or stratifying it.  We therefore developed the 
Hierarchical Fair Competition parallel model (HFC) for 
evolutionary algorithms, based on the belief that fair or 
stratified competition is often beneficial in evolution.  

While allowing the sorts of “horizontal” extension of 
search typically provided by multiple subpopulations and 
niching methods within subpopulations, the HFC mandates a 
vertical stratification of search according to fitness, forcing 
high-fitness individuals generated in any subpopulation to 
migrate immediately (although asynchronously) to 
subpopulations containing only individuals of similar fitness 
levels.  This has several beneficial effects – quickly 
exploiting promising individuals via crossover and mutation 
while protecting low-fitness individuals from being 
eliminated before their traits are explored, and dramatically 
reducing takeover and convergence at all levels.   

The HFC model can thus successfully balance 
exploration and exploitation, while avoiding premature 
convergence.  Experiments on a series of difficult, highly 
epistatic real-world problems demonstrate the effectiveness 
of the HFC model in improving significantly both the search 
speed and the quality of the best solution found. 

The authors have already demonstrated (to be reported 
elsewhere) that the HFC model, with its fair competition 
principle, is also effective with genetic algorithms, and the 
extension to any other type of evolutionary algorithm that 
maintains a population of solutions at any time is clear.  It 
should be useful in any situations where premature 
convergence is an issue. 
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