
Bagging, Boosting, and Bloating in Genetic Programming

Hitoshi Iba

Dept. of Information and Communication Engineering,
School of Engineering,
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
Tel: +81 3 3812-2111 ext.7424, Fax: +81 3 5689 7231,

email: iba@miv.t.u-tokyo.ac.jp

Abstract

We present an extension of GP (Genetic
Programming) by means of resampling tech-
niques, i.e., Bagging and Boosting. These
methods both manipulate the training data
in order to improve the learning algorithm.
In theory they can signi�cantly reduce the er-
ror of any weak learning algorithm by repeat-
edly running it. This paper extends GP by
dividing a whole population into a set of sub-
populations, each of which is evolvable by us-
ing the Bagging and Boosting methods. The
e�ectiveness of our approach is shown by ex-
periments. The performance is discussed by
the comparison with the traditional GP in
view of the bloating e�ect.

1 Introduction

This paper presents an extension of GP (Genetic Pro-
gramming) by means of resampling techniques. Our
motivation is to enhance the robustness of GP. The
robustness is an important feature of an evolved pro-
gram [Ito et al.96]. It is de�ned as the ability to cope
with noisy or unknown situations. For example, if we
make an attempt to evolve a robot problem, the ro-
bustness could be examined by testing it for a variety
of robot tasks. In pursuit of the robustness, we verify
the validness of an evolved program for testing data,
which are di�erent from the training data.

Boosting and bagging are general resampling methods
for improving the performance of any learning algo-
rithm [Freund and Schapire96]. Both methods work
by repeatedly running a given weak learning algorithm
on various distributions over the training data. They
rely on a resampling technique to obtain a di�erent

training set for each classi�er.1 Boosting can theoret-
ically be used to signi�cantly reduce the error of any
weak learning algorithm which need only be a little
bit better than random guessing. The resulting clas-
si�er has been shown to be more accurate than any
of the individual classi�ers making up the ensemble
[Maclin and Opitz97].

While previous work has demonstrated that the
Bagging and Boosting methods are very e�ective
for decision trees [Quinlan96] or neural networks
[Maclin and Opitz97], there has been little empirical
testing with other adaptive methods. In this paper
we extend GP by means of the Bagging and Boost-
ing methods and establish systems called BagGP and
BoostGP. The salient features of BagGP and BoostGP
are as follows:

1. The whole GP population is divided into a set of
subpopulations.

2. Each subpopulation is independently evolvable by
using the �tness values derived from the train-
ing data, which are given by the resampling tech-
niques.

3. The best individuals from each of the subpopula-
tions vote in order to form a composite tree output
for the test data.

We provide comparative experiments to show
how successfully Bagging and Boosting techniques
are applied to improve the robustness of GP.
[Bauer and Kohavi98] measured the sizes of trees
when Bagging was used for decision trees, and showed
an interesting positive correlation between the aver-
age tree size and its success in reducing the error. We

1 In this paper, we mean the pattern recognition by the
classi�er. For instance, it includes not only a classi�er
used in the classi�er system, but an acquired tree by GP,
a decision tree, and a neural network structure as well.



believe that controlling the bloating e�ect is closely
related to the performance improvement in the case of
GP. Thus, we compare the tree growth rates for the
traditional GP, BagGP, and BoostGP, which shows
that the resampling techniques are successful in re-
ducing the tree size.

The rest of this paper is structured as follows. Section
2 describes the principle of the Bagging and Boost-
ing techniques. Section 3 introduces a basic idea of
extending GP by means of these methods in order to
construct BagGP and BoostGP. Sections 4 and 5 show
the experimental results with Boolean function gener-
ation, chaotic time series prediction, symbolic regres-
sion, and �nancial data prediction. The performance
is compared with the traditional GP. Section 6 dis-
cusses our approach, followed by some conclusions in
Section 7.

2 Bagging and Boosting

Following [Quinlan96] and [Drucker97], this section ex-
plains the basic ideas of Bagging and Boosting. The
data for learning systems are supposed to consist of
attribute-value vectors or instances. Both Boosting
and Bagging manipulate the training data in order to
generate di�erent classi�ers.

2.1 Bagging

Bagging produces replicate training sets by sampling
with replacement from the training instances. For each
trial t = 1; 2; � � � ; T , a training set of size N is sampled
with replacement from the original instances. This
training set is the same size as the original data, but
some instances may not appear in it while others ap-
pear more than once. The learning system generates a
classi�er Ct from the sample and the �nal classi�er C�

is formed by aggregating the T classi�ers from these
trials. To classify an instance x, a vote for class k is
recorded by every classi�er for which Ct(x) = k and
C� is then the class with the most votes (ties being
resolved arbitrarily).

2.2 Boosting

Boosting uses all instances at each repetition, but
maintains a weight for each instance in the training
set that reects its importance Adjusting the weights
causes the learner to focus on di�erent instances and
leads to di�erent classi�ers. When voting to form a
composite classi�er, each component classi�er has the
same vote in Bagging, whereas Boosting assigns dif-
ferent voting strengths to component classi�ers on the

basis of their accuracy.

Let wt
x denote the weight of instance x at trial t.

Initially, w1
x = 1=N for every x. At each trial t =

1; 2; � � � ; T , a classi�er Ct is constructed from the given
instances under the distribution wt, as if the weight wt

x

of instance x reects its probability of occurrence. The
error �t of this classi�er is also measured with respect
to the weights and consists of the sum of the weights
of the instances that it misclassi�ed. If �t is greater
than 0.5, the trials are terminated, and T is altered
to t � 1. Conversely, if Ct correctly classi�es all in-
stances so that �t is zero, the trials terminate and T
becomes t. Otherwise, the weight vector wt+1 for the
next trial is generated by (1) multiplying the weights
of instances that Ct classi�es correctly by the factor
�t = �t=(1��t) and (2) renormalizing so that

P
x w

t+1
x

is 1. The boosted classi�er C� is obtained by summing
the votes of the classi�ers C1; C2; � � � ; CT , where the
vote for classi�er Ct is worth log(1=�t) units.

[Freund and Schapire96] introduced a new boosting al-
gorithm, called AdaBoost, which theoretically can sig-
ni�cantly reduce the error of any learning algorithm if
its performance is a little better than random guess-
ing. We use a version of AdaBoost, i.e., AdaBoost.R
[Drucker97], so as to extend GP in next section.

3 BagGP and BoostGP

We divide the whole GP population into a set of
subpopulations fP1; P2; � � � ; PT g, in order to use the
Boosting and Bagging techniques. When GP is applied
to evolving individuals in each subpopulation Pt, the
training set TRt is sampled by means of the sampling
method.

BagGP uses the Bagging method, in which a train-
ing set of size N is sampled with replacement from
the original instances for each subpopulation. Best
individuals from each of the subpopulations vote in
order to form a composite output for the testing data.
The output value associated with most votes is con-
sidered as the �nal output. More precisely, we use the
weighted median described below (Step 10) for this
derivation.

BoostGP uses the following sampling method based
on AdaBoost.R [Drucker97]. The following procedure
(Step 2�Step 8) is repeated from the �rst subpopu-
lation P1 to the last subpopulation PT .

Step 1 Let t be set to 1. Each training pattern
is assigned an equal weight, i.e., wi = 1 for
i = 1; � � � ; N , where N is the total number of the
training data.



Step 2 The probability that a training sample i is in-
cluded in the training set TRt is pi = wi=

P
wi,

where the summation is over all members of the
training set. Pick N samples with replacement to
form the training set.

Step 3 Apply GP to the individuals in the subpopula-
tion Pt with the above training set TRt. The best
evolved tree makes a hypothesis, i.e, ht : x! y.

Step 4 Pass every member of the training set TRt

through this tree ht to obtain a prediction y
(p)
i (xi)

for i = 1; � � � ; N .

Step 5 Calculate a loss Li = L( j y
(p)
i (xi) � yi j )

for each training sample. The loss function L is
de�ned later.

Step 6 Calculate the averaged loss, i.e., L =PN

i=1 Lipi.

Step 7 Calculate the measure of con�dence in the

predictor, i.e., � = L

1�L
.

Step 8 Update the weights by using wi := w1�Li

i .

Step 9 t := t+ 1. If t � T , then go to Step 2.

Step 10 For a particular input xi in the test data,
each of the T acquired trees, i.e., the best evolved
individuals from the subpopulations, makes a pre-
diction ht for t = 1; � � � ; T . Obtain the cumulative
prediction hf using the T predictors:

hf = minfy 2 Y :
X

t:ht�y

log(1=�t) �
X
t

log(1=�t)g:

(1)

In Step 5, the loss function L may be of any form as
long as L 2 [0; 1]. We use the following loss function,

Li =
j y(p)i (xi) � yi j

maxi=1;���;N j y
(p)
i (xi) � yi j

: (2)

� is a measure of con�dence in the predictor, i.e., the
lower the � value is, the higher the con�dence. In
Step 9, the smaller the loss is, the more the weight is
reduced, which makes the probability smaller that this
pattern will be chosen as a member of the training set
for the next subpopulation. Step 10 represents the
weighted median. Suppose that each best tree ht has

a prediction y
(t)
i on the i-th pattern and an associated

�t value, and that the predictions are relabeled for
pattern i as follows:

y
(1)
i < y

(2)
i < � � � < y

(T )
i : (3)

Then sum the log(1=�t) until the smallest t is reached
so that the inequality is satis�ed. The prediction from
that best tree t is taken to be the �nal prediction. If all
�t's are equal, it is the same as the median calculation.

4 Experimental Results

This section studies the performance of BagGP and
BoostGP empirically. Suppose that the total popula-
tion size is set to be Npsize. This is divided into 10
subpopulations of size Npsize=10 for running BagGP
and BoostGP. For the sake of comparison, we also ex-
periment in running the canonical GP, i.e., a standard
GP without any sampling method for the single popu-
lation of size Npsize. We have chosen sgpc1.1, a simple
GP in the C language, as the canonical GP. The pa-
rameters used for the experiments are shown in Table
1.

GP is applied to the following problems:

Experiment 1 Discovery of trigonometric identi-
ties.
Koza used GP to �nd a new mathematical expression,
in symbolic form, that equals a given mathematical
expression, for all values of its independent variables
[Koza92, ch.10.1]. In the following experiment, our
goal is to discover trigonometric identities, such as

cos 2x = 1� sin2 x: (4)

The training data consist of 100 pairs, i.e., f(x; cos 2x+
<)g, in which a random noise < between {0.01 and 0.01
is added to the precise value. The testing data consist
of 100 input-output pairs, i.e., f(x; cos 2x)g, where no
random noise is added to the output value.

Experiment 2 Predicting a chaotic time series.
The Mackey-Glass time series is generated by integrat-
ing the following delay di�erential equation and is used
as a standard benchmark for prediction algorithms:

dx(t)

dt
=

ax(t � �)

1 + x10(t� � )
� bx(t); (5)

with a = 0:2, b = 0:1 and � = 17. The trajectory is
chaotic and lies on an approximately 2.1-dimensional
strange attractor.

For the sake of comparison, all the parameters cho-
sen were the same as those used in the previous study



Parameters of sgpc1.1 Problem Name
cos(2x) (Exp.1) Chaos (Exp.2) 6-multiplexer (Exp.3)

Terminal Symbols fX,1.0g
fX(t � 1); X(t� 2);
� � � ; X(t� 10);<g

fa0; a1; d0; d1; d2; d3g

Nonterminal Symbols f+;�; �;%; sing
f+;�;�;%;
sin; cos; exp

10
g

fAND, OR,
NAND, NORg

no. of subpopulations 10 10 10
subpopulation size 200 1024 1024
max depth for new trees 6 6 6
max depth after crossover 17 17 17
max mutant depth 4 4 4
grow method GROW GROW GROW
selection method TOURNAMENT TOURNAMENT TOURNAMENT
tournament K 6 6 6
crossover func pt fraction 0.1 0.1 0.1
crossover any pt fraction 0.7 0.7 0.7
�tness prop repro fraction 0.1 0.1 0.1

Table 1: GP Parameters

[Oakley94, p.380, Table17.3], except that the termi-
nal set consisted of ten past data for the short-term
prediction (see Table 1). We use the �rst 100 time se-
quences for the training data, and the next 400 time
sequences for the testing data.

Experiment 3 Boolean concept formation (6-
multiplexer).
To show the e�ectiveness as a Boolean concept learner,
we conducted a simple experiment (6-multiplexer), in
which the goal function is the multiplexer function of
6 variables:

f(a0; a1; d0; d1; d2; d3) =

a0a1d0 _ a0a1d1 _ a0a1d2 _ a0a1d3 (6)

The inputs to the Boolean 6-multiplexer function con-
sists of 2 address bits ai and 22 data bits di. The
output is the Boolean value of the particular data bit
that is singled out by the address bits of the multi-
plexer. For example, if a0 = 1 and a1 = 0, then the
multiplexer singles out the data bit d2 because 102 = 2.

For both the training and testing data sets, we use
the whole set of 64 pairs of 6 binary input variables,
i.e., f(a0; a1; d0; d1; d2; d3) 2 f0; 1g

6g and their output
values derived by eq.(6).

Fig.1 shows the experimental results, which plots the
mean square errors (MSE) for the testing data with
generations, averaged over 20 runs. Fig.2 plots the
standard �tness values of BoostGP with generations.
As shown in the �gure, the BoostGP was able to
track the oscillation and adapt to a new training data
quickly. Table 2 summarizes the experimental results.
The table compares the MSE values for the test data at

0 200 400 600 800 1000
Gen

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Std . Fitness

Figure 2: Regression by BoostGP.

the �nal generation for Experiments 1 and 2. For Ex-
periment 3, the success generations to obtain the solu-
tion tree are listed. All these values are averaged over
20 runs. This comparison clearly shows the superiority
of BagGP and BoostGP over the standard GP. The ro-
bustness of evolved trees by BagGP and BoostGP was
enhanced in the sense that the validate �tness values,
i.e., the mean square errors for the testing data, were
reduced. The performance di�erence between BagGP
and BoostGP was not statistically signi�cant.

5 Application to a Financial Task

This section explains how BagGP and BoostGP are
applied to a harder real-world problem, i.e., the price
data prediction in Japanese stock market. The de-
tailed task description is given in [Iba and Sasaki99].
The target �nancial data is the stock price average of
Tokyo Stock Exchange, which is called Nikkei225. The
Nikkei225 average is reported every minute by the Ni-



0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

M
S

E

Generation

Regression by BagGP
Regression by GP

0

0.0005

0.001

0.0015

0.002

0 20 40 60 80 100

M
S

E

Generation

TSP by BagGP
TSP by GP

(a) Regression. (b) Time Series Prediction.

Figure 1: Experimental Results (Generation vs. MSE)

Problem Name cos(2x) (Exp.1) Chaos (Exp.2) 6-multiplexer (Exp.3)
MSE MSE Success Gen.

GP 0.056606 0.000375 5.15
BagGP 0.001051 0.000244 4.80
BoostGP 0.019296 0.000237 4.88

Table 2: Summary of Experimental Results

hon Keizai Shimbun-Sha, a well-known �nancial news-
paper publishing �rm. The derivation is based upon
the Dow formula. As of Feb.,10th,1999, the Nikkei
average stood at 13960 yen. The data we use in the
following experiments span over a period from April
1st 1993 to September 30th 1993. Fig.3 shows the ex-
ample tendency of the Nikkei225 average during the
above period. All data are normalized between 0.0
and 1.0 as the input value. The total number of data
is 33,177. We use the �rst 3,000 time steps for the
training data and the rest for the testing data.

16000

17000

18000

19000

20000

21000

22000

0 5000 10000 15000 20000 25000 30000 35000

nikkei225

Figure 3: Nikkei225 Data.

We chose the same GP parameters as those

for Exp.2 (see Table.1). The terminal set was
fv1; � � � ; v10; r1; � � � ; r10;<g, where the terminals vi
and ri were de�ned as follows:

vi = jx(t � i)� x(t� i � 1)j

ri =
x(t� i) � x(t� i � 1)

x(t� i� 1)
:

This terminal set is among the best ones given from the
previous comparative study (see [Iba and Sasaki99] for
details). The predicted value, i.e., the target output
of a GP tree, is the di�erence between the current
Nikkei225 price average and the price observed one
minute before. Thus, the �tness value is de�ned to be
the mean square error of the predicted value and the
target data. The smaller �tness value, the better.

In order to con�rm the validness of the predictor ac-
quired by GP, we examined the best evolved tree with
the stock market simulation during the testing period.
We use the following rule to choose the dealing, i.e., to
decide whether to buy or sell a stock based upon the
prediction. Let the predicted output and the observed
price data at time t be fPr(t) and Pr(t), respectively.
Remember that the output prediction of a GP tree
is the di�erence between the current Nikkei225 price
average and the price observed one minute before.



Step1 Initially, the total budget BG is set to be
1,000,000 yen. Let the time step t be 3000, i.e.,
the beginning of the testing period. The stock ag
ST is set to be 0.

Step2 Derive the output, i.e., the predicted Nikkei225
average, of the GP tree.

Step3 If 0 < fPr(t) and ST = 0, then buy the stock.
That is, set ST to be 1.

Step4 Else, if 0 > fPr(t) and ST = 1, then sell the
stock. That is, set ST to be 0.

Step5 If ST = 1, let BG := BG+ Pr(t)� Pr(t� 1).

Step6 If BG < 0, then return 0 and stop.

Step7 If t < 33; 177, i.e., the end of the testing period,
then t := t + 1 and go to Step2. Else return the
total pro�t, i.e., BG� 1; 000; 000 yen.

The stock ag ST indicates the state of holding stock,
i.e., if ST = 0, then no stock is shared at present,
whereas if ST = 1, then a stock is shared. In
Step5, the total property is derived according to the
newly observed stock price. The satisfaction of the
Step6 condition means that the system has gone into
bankruptcy.

The above dealing rules were used for the validation of
the acquired GP tree. For the sake of simplicity, we put
the following assumptions on the market simulation:

1. At most one stock is shared at any time.

2. The dealing stock is imaginary, in the sense that
its price behaves exactly the same way as the
Nikkei225 average price.

The optimal pro�t according to the above dealing rule
is 80,106.63 yen. This pro�t is ideally gained when
the prediction is perfectly accurate during the testing
period.

GP run was repeated under each condition, i.e.,
BagGP, BoostGP, and standard GP, over 10 times.
The validation performance is shown in Table 3. The
hit percentage means how accurately the GP tree made
an estimate of the qualitative behavior of the price.
That is, the hit percentage is calculated as follows:

hit =
N" " +N# #

N" " +N" # +N# " +N# #

=
N" " +N# #

30; 177
;

where N" " means the number of times when the tree
makes an upward tendency while the observed price
rises, and N# " means the number of times when the
tree makes a downward tendency while the observed
price falls, and so on. The total number of the pre-
dictions is 30,177, which equals the number of testing
data.

Fig.4 shows a typical prediction result of the normal-
ized Nikkei225 price with the best evolved tree. The
predicted di�erence between the current Nikkei225
price and the price one minute before is plotted. The
predicted di�erence corresponds to the observed qual-
itative behavior, i.e., the upward or downward ten-
dency, of the Nikkei225 price. This causes the high
pro�t gain shown in Table.3. As can be seen in the
table, the best performance by BagGP and BoostGP
seems to be slightly better or almost the same as the
standard GP. However, both BoostGP and BagGP are
clearly superior to the standard GP in terms of the av-
eraged performance. We believe that this is due to the
robustness of the proposed approach. Although the
performance di�erence between BoostGP and BagGP
is not necessarily clear, yet the BoostGP result is a lit-
tle disappointing to us. We have found that the simple
loss function such as eq.(2) could be improved to pick
up the training data more e�ectively. For instance,
this function can be adaptively changed as generations
proceed. We are working upon this extension as a fu-
ture research topic.

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

3000 3020 3040 3060 3080 3100
minutes

normalized nikkei225
prediction of difference

Figure 4: Prediction Result

6 Discussion

6.1 Related Works

[Gathercole and Ross97] investigated the use of small
populations in GP. They proposed a method called
DSS (Dynamic Subset Selection) to pick up a subset
of training cases from the full training set for each gen-
eration. Each GP generation is evaluated using only



Table 3: Experimental Results (Financial Data Prediction)

Hit(%) Pro�t gain(yen)
Condition Average Best Average Best

GP 0.619 0.625 29489.1 30765.6
BagGP 0.624 0.625 30749.5 30950.5
BoostGP 0.622 0.624 30410.5 30827.6

this subset. The cases are selected according to how
di�cult they are, i.e., how often they were misclassi�ed
by the population the last time they were selected and
how old they were, i.e., how many generations since
the last time they were selected. Older and more dif-
�cult cases have a greater likelihood of being selected
to be in the next subset. They showed that GP+DSS
with the small population size consistently produced a
better answer using fewer tree evaluations than other
runs using much large populations for two classi�ca-
tion problems. DSS is closely related to the training
set selection of Boosting method. However, the ag-
ing factor is not included in Boosting. Its e�ectiveness
remains to be seen as a future research topic.

[Teller and Veloso95] proposed a new technique for an
object recognition task. They established a system
called PADO (Parallel Algorithm Discovery and Or-
chestration), which used an evolutionary strategy to
solve the signal-to-symbol problem, i.e., the task of
converting raw sensor data into a set of symbols that
the data can be seen as representing. The object recog-
nition for C classes is accomplished in PADO by the
orchestration of C di�erent systems. Each of these sys-
tems is composed of the S �ttest programs from the
corresponding group, i.e., subpopulation, of the cur-
rent generation. Orchestration played a crucial role in
the PADO architecture. It is very similar to a vot-
ing method used in BagGP and BoostGP. PADO does
object recognition by orchestrating the responses of
some systems. The con�dence response of each sys-
tem is initially weighted equally and the maximum
con�dence wins. During the �rst few test images, the
weights are adjusted by telling PADO after its guess
whether it was right or wrong. Although the orches-
tration method is not clearly de�ned as a weight vector
tuning, their experimental results are very impressive
considering that PADO does not require any help from
users or domain speci�c information of any kind.

6.2 Bloating E�ect

Many researchers have suggested that GP runs stag-
nate as a result of the bloating, i.e., the exponential
growth of the introns or non-functional codes. This
means that limiting the code sizes is essential because

(1) smaller programs tend to show better generaliza-
tion performance, and (2) shorter programs require
less time and less space to run. Modifying the �t-
ness function to include a penalty term that incor-
porates the tree size is one of the promising ways
[Iba et al.94],[Zhang and M�uhlenbein95]. We believe
that BoostGP and BagGP provide another way to con-
trol the bloating e�ect by means of the resampling
techniques. To con�rm this, we plotted the number
of nodes of a best tree with generations for a typical
run of Experiment 1 (see Fig.5). This �gure clearly
shows that BoostGP and BagGP succeeded in limit-
ing the code size at later generations, which leads to
the improvement of GP search e�ciency.

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80 90 100

N
o.

 o
f N

od
es

Generation

BagGP
BoostGP

GP

Figure 5: Bloating E�ect (Generation vs. Number of
Nodes)

6.3 Boosting vs. Co-evolutionary Method

Boosting is related to the co-evolving technique in evo-
lutionary computation. For instance, [Hillis91] showed
the addition of co-evolving parasites could improve the
optimizing procedure by preventing the system from
sticking at local maxima. His target task was to evolve
a minimum sorting network, which is a parallel device
for sorting lists with a �xed number of elements. In
his experiment, the sorting networks were viewed as
hosts, and the test cases (i.e., lists of numbers) as par-
asites. The �tness of a network was the percentage of
test cases in the parasite that it sorted correctly. The
�tness of a parasite was the percentage of its test cases
that stumped the network. In his system, both pop-



ulations of networks and parasites were evolved, i.e.,
co-evolved, to beat each other, which resulted in the
improvement of the search e�ciency.

One key di�erence from co-evolution is that Boosting
is only a resampling technique and has no mechanism
to produce novel training data. The weight derivation
in Boosting is correspondent to the �tness calculation
in co-evolution method. However, there is no ensemble
process, i.e., voting, in the co-evolution. The e�ective-
ness of integrating these two methods remains to be
seen, which is our future research concern.

7 Conclusion

This paper presented an extension of GP by means of
resampling techniques, i.e., Bagging and Boosting, and
established the systems called BagGP and BoostGP.
In both systems, the whole population was divided into
a set of subpopulations, each of which was evolvable
by using Bagging and Boosting. The e�ectiveness of
our approach was shown by experiments.

One of the target tasks for GP is the classi�cation, such
as Boolean function generation, system identi�cation,
and pattern recognition, which has been intensively
studied in machine learning literatures as well. Al-
though many evolutionary or adaptive techniques were
proposed to solve this class of problems, there have
been very few studies to improve the search e�ciency
in view of the machine learning technique. Boosting
and Bagging are a general method to improve and an-
alyze the learning performance. We believe this paper
is a step toward the integration of GP and the theo-
retical �eld, i.e. machine learning.

Acknowledgments.

We are grateful to Institute of Investment Technology,

Nikko Securities Co., Ltd., for providing the Nikkei225

stock price data. We also thank anonymous reviewers for

helpful comments.

References

[Bauer and Kohavi98] Bauer,E., and Kohavi,R., An
Empirical Comparison of Voting Classi�cation Al-
gorithms: Bagging, Boosting, and Variants, in Ma-
chine Learning, vol.20, pp.1-33, 1998

[Drucker97] Drucker,H., Improving Regression using
Boosting Techniques, Proc. of International Conf.
on Machine Learning (ICML97), 1997

[Freund and Schapire96]
Freund,Y., and Schapire,R.E., Experiments with

a New Boosting Algorithm, Proc. of International
Conf. on Machine Learning (ICML96), 1996

[Gathercole and Ross97] Gathercole,C., and Ross,P.,
Small Populations over Many Generations Can Beat
Large Populations over Few Generations in Genetic
Programming, Proc. of Genetic Programming 1997
(GP97), 1997

[Hillis91] Hillis,W.D., Co-Evolving Parasites Improve
Simulated Evolution as an Optimization Proce-
dure, in em Arti�cial Life ll, SFI Studies in
the Sciences of Complexity,vol.X, Langton,C.G.,
Taylor,C., Farmer,J.D., and Rasmussen,S., (eds.),
Addison-Wesley,1991

[Iba et al.94] Iba, H., deGaris,H., and Sato,T., Ge-
netic Programming using a Minimum Description
Length Principle, in Advances in Genetic Program-
ming, (ed. Kenneth E. Kinnear, Jr.), pp.265{284,
MIT Press, 1994

[Iba and Sasaki99] Iba, H., Sasaki,T., Using Ge-
netic Programming to Predict Financial Data, in
Proc. 1999 Congress on Evolutionary Computation
(CEC99), 1999

[Ito et al.96] Ito,T., Iba,H. and Kimura,M., Robust-
ness of Robot Programs Generated by Genetic Pro-
gramming, in Genetic Programming 96, MIT Press,
1996

[Koza92] Koza,J.R., Genetic Programming, On the
Programming of Computers by means of Natural
Selection, MIT Press, 1992

[Maclin and Opitz97] Maclin,R., and Opitz,D., An
Empirical Evaluation of Bagging and Boosting,
Proc. of National Conf. on Arti�cial Intelligence
(AAAI97), 1997

[Oakley94] Oakley, H., Two Scienti�c Applications
of Genetic Programming: Stack Filters and Non-
Linear Equation Fitting to Chaotic Data, in Ad-
vances in Genetic Programming, (ed. Kenneth E.
Kinnear, Jr.), MIT Press, 1994

[Quinlan96] Quinlan,J.R., Bagging, Boosting, and
C4.5, Proc. of National Conf. on Arti�cial Intel-
ligence (AAAI96), 1996

[Teller and Veloso95] Teller,A., and
Veloso,M., PADO: Learning Tree Structured Algo-
rithms for Orchestration into an Object Recognition
System, CMU-CS-95-101, School of Computer Sci-
ence, Carnegie Mellon University, 1995

[Zhang and M�uhlenbein95]
Zhang,B. and M�uhlenbein,H., Balancing Accuracy
and Parsimony in Genetic Programming, Evolution-
ary Computation, vol.3, no.1, 1995


