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Abstract

A genetic programming method is investigated
for optimizing both the architecture and the con�
nection weights of multilayer feedforward neural
networks� The genotype of each network is rep�
resented as a tree whose depth and width are dy�
namically adapted to the particular application
by speci�cally de�ned genetic operators� The
weights are trained by a next�ascent hillclimb�
ing search� A new �tness function is proposed
that quanti�es the principle of Occam�s razor� It
makes an optimal trade�o� between the error �t�
ting ability and the parsimony of the network�
We discuss the results for two problems of di�er�
ing complexity and study the convergence and
scaling properties of the algorithm�

� INTRODUCTION

Optimization of neural network architectures for par�
ticular applications is important because the speed and
accuracy of learning and performance are dependent
on the network complexity� i�e� the type and num�
ber of units and connections� and the connectivity of
units� For example� a network having a large number
of adjustable connections tends to converge fast� but
it usually leads to over�tting of the training data� On
the other hand� a small network will achieve a good
generalization if it converges� it needs� however� gen�
erally a large amount of training time �Abu�Mostafa


�
�� Therefore� the size of the network should be as
small as possible� but su�ciently large to ensure a fast
convergence to the training set�

Genetic algorithms have been used to design network
architectures� The network design problem can be re�

�Proc� of the Fifth Int� Conf� on Genetic Algorithms

�ICGA��	
� Morgan Kaufmann� ���	� pp� 	
��	
��

garded as a search for an architecture which �ts best
to the speci�ed task according to some explicit �t�
ness criteria� M�uhlenbein and Kindermann �

�
� dis�
cuss general problems for evolving genetic neural net�
works� Harp et al� �

�
� and Miller et al� �

�
�
suggest representation schemes in which the anatomi�
cal properties of the network structure are encoded as
bit�strings� Similar representation has also been used
by Whitley et al� �


	� to prune unnecessary con�
nections� Kitano �


	� and Gruau �


�� describe
encoding schemes in which a network con�guration
is indirectly speci�ed by a graph generation grammar
which evolves by genetic algorithms� All these meth�
ods use the backpropagation algorithm �Rumelhart et

al� 

��� to train the weights of the network� Koza
�


	� provides an alternative approach to represent�
ing neural networks� under the framework of so�called
genetic programming� which enables modi�cation not
only of the weights but also of the architecture for a
neural network� However� this method does not �nd a
network of minimal complexity�

In this paper we describe a new genetic program�
ming method for constructing minimal neural net�
works� Using an Occam�s razor in the �tness function�
the method prefers a simple network architecture to
a complex one� The weights are trained not by back�
propagation� but by a next�ascent hillclimbing search�
The breeder genetic algorithm BGA �M�uhlenbein et

al� 


�� is used for evolving optimal networks�

The paper is organized as follows� In Section �� the
�tness function for the genetic search of minimal com�
plexity solutions is derived� The representation scheme
and genetic operators as well as the control algorithm
for adapting the architectures and the weights are de�
scribed in Section �� Section � shows the experimental
results� which is followed by an analysis of �tness land�
scapes in Section �� and discussions in Section ��



� QUANTIFYING OCCAM�S

RAZOR

Occam�s razor states that unnecessarily complex mod�
els should not be preferred to simpler ones� This sec�
tion gives a quantitative Occam�s razor for construct�
ing minimal complexity neural networks by genetic al�
gorithms�

In de�ning minimality� it is important that the net�
work be able to approximate at least the training set to
a speci�ed performance level� A small network should
be preferred to a large network only if both of them
achieve a comparable performance� Otherwise� the al�
gorithm would not reduce the approximation error�
preferring smaller networks which can not be powerful
enough to solve the task� So the �rst term of the �t�
ness function of an individual network should be the
error function� The error function commonly used for
the data set D � f�xi� yi� j i � 
� ���� Ng of N exam�
ples is the sum of squared errors between the desired
and actual outputs�

E�DjW�A� �
NX
i��

E�yijxi�W�A� �
�

with

E�yijxi�W�A� �
mX
j��

�yij � oj�xi�W�A��� � ���

Here yij denotes the jth component of the ith desired
output vector yi� and oj�xi�W�A� denotes the j�th ac�
tual output of the network with the architecture A and
the set of weights W for the i�th training input vector
xi�

The complexity of a neural network architecture is de�
pendent on the task to be learned and can be de�ned in
various ways� depending on the application� In general
the number of free parameters �or adjustable weights�
of the network should be minimal� since this is one of
the most important factors determining the speed and
accuracy of the learning� Additionally� large weights
should in general be penalized �regularization�� in the
hope of achieving a smoother or simpler mapping �Pog�
gio and Girosi 


	� MacKay 


��� We de�ne the
complexity� C� of a network as

C�W jA� �
KX
k��

w�

k ���

where K is the number of free parameters� Notice that
K can be arbitrarily large� because we �t the architec�
tures too� In the case of binary weights� C reduces to

the number of synaptic connections� This complexity
measure might be extended by additional cost terms�
such as the number of layers when the application re�
quires a fast execution of the trained network�

The combined �tness function which we try to mini�

mize is de�ned as

F �DjW�A� � �C�W jA� � �E�DjW�A� ���

where � and � are constants for the trade�o� between
error �tting and complexity reduction� This �tness
function has an elegant probabilistic interpretation for
the learning process� according to the Bayesian frame�
work� minimizing F is identical to �nding the most
probable network with architecture A and weights W
�Sorkin 

��� Tishby et al� 

�
��

To see this� let us de�ne the following� Let D be the
data set for the function � � X � Y � i�e�

D � f�xi� yi
 j xi � X� yi � Y� yi � ��xi
� i � ����Ng�

Then a modelM of the function � is an assignment to

each possible pair �x� y� of a number P �yjx� represent�
ing the hypothetical probability of y given x� That is�

a network with speci�ed architecture A and weights
W is viewed as a model M � fA�Wg predicting the

outputs yi as a function of input xi in accordance with
the probability distribution�

P �yijxi�W�A� �
exp���E�yijxi�W�A��

Z���
���

where � is a positive constant which determines
the sensitivity of the probability to the error value�
Z��� �

R
exp���E�yijxi�W�A��dy is a normalizing

constant� Under the assumption of the Gaussian error
model� i�e� if the true output is expected to include
additive Gaussian noise with standard deviation �� we
have

P �yijxi�W�A
 �
�p
���

exp

�
�E�yijxi�W�A


���

�
��


with � � �

���
and Z��� �

p
����

A prior probability is assigned to alternative network
model written in the form�

P �W jA� �
exp���C�W jA��

Z���
���

where Z��� �
R

exp���C�W jA��dKW is a measure

of the characteristic network complexty� The posterior
probability of the network model is then�

P �W jD�A� �
exp���C�W jA�� �E�DjW�A��

Z��� ��
���

with Z����
 �
R
exp���C�W jA
� �E�DjW�A

dKW�



Now let �I�M� be the log of the prior probability of
the model M� i�e�

I�M� � logP �W jA���� �
�

Let �I�DjM� be the log probability of D according
to M�

I�DjM� �
NX
i��

logP �yijxi�W�A���� �
	�

Then the probability that bothM is true andD occurs

is
p�M� � exp��I�D�M�� �

�

where
I�D�M� � I�M� � I�DjM�� �
��

As is well known this p results as the posterior prob�

ability of M and the model which maximizes p�M�
would be the best �t� For most real applications�

I�D�M � can not be computed exactly because the in�
volved probabilities are not known� But it is easily

seen that minimization of the �tness function ��� ap�
proximates maximization of p�M� under the assump�

tion ����

� GENETIC BREEDING OF

MINIMAL NEURAL NETS

��� BREEDER GENETIC ALGORITHM

For the evolution of minimal neural networks we use
the breeder genetic algorithm BGA of M�uhlenbein et

al� �


��� In contrast to the usual GA�s model of
natural evolution� the BGA models rational selection

performed by human breeders� The BGA maintains
a population P consisting of M individuals of neu�

ral networks� Each network of the initial population�
P�	�� is generated with a random number of layers�

The receptive �eld of each neural unit and its width
are also chosen randomly�

The t�th population� P�t�� is created from P�t� 
� in
three steps� selection� hillclimbing� and recombination�

In the selection step� 	� of the most �t individuals in
P�t� 
� are accepted into the mate set S� Then each

individual in S undergoes a hillclimbing search where
the weights of the network are adapted by mutation�

This results in the revised mate set S�� The recom�
bination phase repeatedly selects two random parent

individuals in S� to mate and generate two o�spring�
until the population size amounts to M �

A new population is generated repeatedly until an ac�
ceptable solution is found or the variance falls below a

speci�ed limit value Vmin� i�e�




M

MX
i��

�
F �i�� �F

�� � Vmin �
��

where �F is the average �tness of the individuals in
P�t�� If a solution is found� the algorithm stops� If a

solution is not found but the population has converged
to a local minimum� then the algorithm starts again

by initializing a new population�

��� REPRESENTATION

For the experiments we have used McCulloch�Pitts

neurons� The McCulloch�Pitts neuron is a binary de�
vice� i�e� it can be in only one of two possible states�

Each neuron has a threshold� The neuron can re�
ceive inputs from excitatory and�or from inhibitory

synapses� The neuron becomes active if the sum of
weighted inputs exceeds its threshold� If it does not�

the neuron is inactive� Formally� the neurons used in
this work has the threshold activation function�

yj �

�

 if

P
iwjixi 
 �j

	 otherwise
�
��

where wji is the connection weight from unit i to
unit j and �j denotes the threshold value for unit j�

Despite their simplicity� McCulloch�Pitts neurons are

very powerful� In fact� it can be shown that any �nite
logical expression can be realized by them �McCulloch

and Pitts 

����

Figure 
 describes the grammar for generating a feed�
forward network of n inputs andm outputs� A network

is represented as a set of m trees� each corresponding
to one output unit� In the grammar� the nonterminal

symbol Y is used to represent a neural unit having a

threshold of � and r weights� The integer r indicates
the receptive �eld width of the unit� Each connection

weight is represented as a nonterminal node W con�
sisting of a symbol �W�� a weight value w� followed by

a nonterminal symbol indicating recursively another
neural unit Y or an external input unit X� An exter�

nal input is described by a symbol �X� followed by an
integer i denoting the index of the input unit�

In the �rst experiments we used binary thresholds�
McCulloch�Pitts neurons allow integer thresholds�

Networks with binary thresholds can realize networks
with integer thresholds by using additional neurons�

Similarly� integer weights can also be realized by neu�
rons using binary weights� The number of weights and

units is usually reduced if the genotype is transformed
into a network of integer values� This is illustrated in



Figure �� Crossover operation

Unlike the mutation� the crossover operator adapts the

size and shape of the network architecture� A crossover
operation starts by choosing two parent individuals

which are chosen randomly from the mate set� Ac�
tual crossover of two individuals� i and j� is done on

their genotypical representations si and sj � The nodes
in the tree are numbered according to the depth��rst

search order and crossover sites ci and cj are chosen
at random with the following conditions�


 � ci � Size�si� and 
 � cj � Size�sj ��

Here� the length of an individual� Size�si�� is de�ned

as the total number of units and weights�

Given the crossover points� the subtrees of two parent

individuals� si and sj � are exchanged to form two o��
spring s�i and s�j �Figure ��� The label of the nodes

ci and cj must belong to the same class� i�e� either
both Y �type or both W �type nodes� The number of

arguments of each operator plays no role because the
syntactically correct subtree under the node ci and cj
is completely replaced by another syntactically correct
expression�

� EXPERIMENTAL RESULTS

The convergence and scaling properties of the method
were studied on two classes of problems with di�erent

di�culty� majority and parity� The majority function
of n inputs �n odd� returns a 
 if more than half of



Figure �� Solutions for ��parity problem �a� minimal
�b� discovered

growth and pruning is repeated to �t errors on one
hand and to minimize the complexity of the network

on the other hand� The corresponding evolution of
the �tness values of the best individuals in each gen�

eration is depicted in Figure �� It is interesting to

notice that the global behavior of this optimization
method is comparable with the group method of data

handling �GMDH� in which additional terms are in�
crementally added to the existing polynomial approx�

imator to achieve a minimal description length model
of a complex system �Ivakhnenko 

�
��

In general� the results are encouraging� For large size

problems of some class� however� the convergence was

very slow� A simple optimization method does not ex�
ist which performs better than any other optimization

method for a reasonable large class of binary functions
of size n� To be powerful� every sophisticated opti�

mization method has to be tuned to the application
�M�uhlenbein 


��� In order to speed up the genetic

search� an analysis of the �tness landscape has to be
made�
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Figure �� The evolution of network complexity in terms of

the number of weights� layers� and units for the best indi�

vidual in each generation� Growth and pruning is repeated

to �nd an optimal complexity which is parsimonious but
large enough to solve the problem�

� ANALYSIS OF FITNESS

LANDSCAPES

The number of local optima� their distribution and the

basins of attraction are some of the variables necessary
to describe a �tness landscape� For the evaluation of

search strategies more speci�c questions have to be
answered�

� How do local optima vary with the �tness�

� How many local optima are there with respect to


�mutant moves�

These questions have been studied on two problems�
XOR and OR function of two inputs� For each problem

we analysed two search spaces of di�erent dimension�

One was a feedforward network of ����
 architecture
which has 
 free parameters �� binary weights plus �

binary thresholds�� The other search space was a ��
��
 architecture having 
� free parameters �
 binary

weights plus � binary thresholds�� The ����
 architec�
ture is known as minimal for solving the XOR problem�

while the minimal architecture for the OR problem is a
��
 architecture �no hidden units�� So the OR network

has an excessive degree of freedom� In describing the
landscapes� we should focus on the statistical charac�

teristics of them because the spaces are too large to
list all the details� For the analysis� the �tness func�

tion consisted of the error term only� the coe�cient �
in ��� was set to zero�

The �tness distributions are shown in Table �� Notice
that each of the XOR and OR networks has two binary
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Figure �� The evolution of the network �tness F decom�

posed into the normalized error E� and the extended com�

plexity C �� In spite of a �xed Occam factor� the relative

importance of the complexity term increases as evolution
proceeds�

inputs� resulting in four input�output pairs� Hence a
speci�c network can have only one of �ve �tness values

�	�	 in case of all four examples are classi�ed correctly�
	��� if one example is classi�ed incorrectly� and so on���

ignoring the complexity term� The analysis shows that
the XOR�
 network has only two �	���� isolated global

optima� while the OR�
 net has �fteen ���
�� optima�
Growth of the dimension from 
 to 
� increases the

proportion of optima of XOR by 	���� but reduced
that of OR by 	���� The table shows also that the

�tness of OR�
 is more uniformly distributed than that
of XOR�
� suggesting that a search step in the OR

network space would get more information than a step
in the XOR space�

Table �� Fitness distribution

XOR OR

d � 
 d � 
� d � 
 d � 
�

F �i� � 	�		 	�		� 	�		� 	�	�
 	�	��

F �i� � 	��� 	�
�� 	�
�
 	��	
 	���

F �i� � 	��	 	��	� 	���� 	�
�	 	�
��

F �i� � 	��� 	�		� 	�	
� 	��
� 	��	

F �i� � 
�		 	�		� 	�		
 	�	
� 	�	��

To see how the local optima vary� we computed the

probability of an individual i �nding a better� same�
and worse �t neighbor n by a single mutation� respec�

tively �Table ��� Here� a better �t neighbor n of i
means F �n� is smaller than F �i�� since we attempt to

minimize the �tness function� The table shows� for
instance� that for XOR�
 the probability of �nding a



Table �� Fitness distribution of neighbors

XOR OR
d � 
 d � 
� d � 
 d � 
�

P  F �n� � 	�		! 	�			 	�			 	�			 	�			

P  F �n� � 	�		! 	�			 	�

� 	��
� 	���	
P  F �n� 
 	�		! 
�			 	��	� 	��	� 	���	

P  F �n� � 	���! 	�	�� 	�	�� 	�	�� 	�	��
P  F �n� � 	���! 	���
 	���� 	��
	 	��
�

P  F �n� 
 	���! 	���� 	���� 	���	 	����

P  F �n� � 	��	! 	�	�� 	�	�� 	���	 	����
P  F �n� � 	��	! 	���	 	���� 	��
	 	��	�

P  F �n� 
 	��	! 	�	�� 	�	�� 	���	 	��
�

P  F �n� � 	���! 	��	� 	���
 	�
�	 	�
��

P  F �n� � 	���! 	���� 	��
� 	��
� 	����
P  F �n� 
 	���! 	�	�� 	�	�� 	�	
� 	�	��

P  F �n� � 
�		! 
�			 	���	 	��	� 	���	

P  F �n� � 
�		! 	�			 	�
�	 	�

� 	���	
P  F �n� 
 
�		! 	�			 	�			 	�			 	�			

better neighbor is only ���� if the �tness of the indi�

vidual is 	��� For OR� the corresponding probability
is ���	�� It can also be seen in both tables that the

increase of the dimensionality of the search space from

 to 
� leads to a change in the �tness distributions

and landscapes� meaning the modi�cation of network
architecture can make it easier to train the weights�

We also computed the probability of a con�guration
�nding a better �t neighbor by steepest�descent hill�

climbing� i�e� by looking at all its neighbors at Ham�
ming distance 
� Not surprisingly for this kind of land�

scape� one has for XOR a less than �	� chance of �nd�
ing a better con�guration� For OR� the probability is

about �	�� This means steepest�descent hillclimbing
would be e�ective for OR� but not for XOR� This ex�

plains in part why our experiments showed a good scal�
ing property for the majority function �a kind of OR�

in comparison to the parity problem �whose smallest
size is XOR��

� FUTURE WORK

We have presented an evolutionary method for opti�

mizing both the network architecture and the weights
at the same time� The method uses trees to repre�

sent a feedforward network whose size and topology
are dynamically adapted by genetic operators� A new

�tness function has been proposed which proved to
work well in combination with the breeder genetic al�

gorithm� Experimental results have shown that� given
enough resources� the method �nds minimal complex�

ity networks with respect to the representation scheme
used� As opposed to conventional learning algorithms

for neural networks� the genetic programming method
makes relative few assumptions on the structure of

the search space� Thus� the same method described
above can also be used to breed networks of radial basis

functions� sigma�pi units� or any mixture of them� in�
stead of the threshold or sigmoid units� The potential

for evolving neural architectures that are customized
for speci�c applications is one of the most interesting

properties of genetic algorithms� The present work can
be extended in three directions�

First� the information about the �tness landscape can
be used to speed up convergence� As was shown� the

�tness landscapes are characterized by large plateaus�
The basin of attraction of the global optimum is fairly

small� We have also seen that the �tness landscapes
are changed by modifying the architectures� It is ex�

pected that �tness landscapes will generally have large
plateaus as the network complexity approaches to a

minimum� which makes it di�cult for a hillclimber to
reach the minimum� A possible method of accelerat�

ing the convergence speed would be to start with larger
networks �than are supposed to be minimal� and to let

the network be pruned by the Occam factor�

A second improvement involves the encoding of neu�

ral nets in chromosomes� Although the current strong
or direct representation scheme worked well for many

problems� a scaling problem was observed in cases that
the problem requires a large network or the magnitude

of weights grows large� An alternative representation
scheme might be a weak or indirect mapping� For ex�

ample� Gruau �


�� describes a method that uses a
graph grammar for generating connection matrices of

networks� This reduces the chromosome size and so
it can �nd more regular connectivity patterns relative

e�ciently� However� they necessarily involve severe
constraints on the network search space and cannot be

useful for �nding a minimal complexity network of ar�
bitrary topology� In addition� in the weak speci�cation

scheme the genotype must be converted to the pheno�
type every time the weights are trained and�or the �t�

ness of an individual is evaluated� what is not needed
in the strong speci�cation scheme� We are looking for

a more compact representation scheme which exploits
the advantages of both the direct and the indirect en�

coding�

A third future work concerns the study of other fac�



tors� for instance the e�ect of training set� on con�
vergence speed and generalization performance of the

algorithm� The genetic programming involves a time�
consuming process of evaluating training examples�

Although we have used in the experiments all possible
examples to ensure a 
		� accuracy� usual applica�

tions of neural networks do not require a perfect gen�
eralization� but a reasonable performance �e�g� 
����

In this case� the �tness evaluation time can be saved
enormously� if we have an e�cient method for selecting

examples critical to speci�c tasks �Zhang and Veenker




a� Zhang 


��� The integration of active data

selection to the genetic programming should improve
the e�ciency and scaling property of the method de�

scribed above�

Although we have focused in this paper on the appli�

cation aspect of genetic algorithms� neural net opti�
mization provides a very interesting problem worthy

of theoretical study from the genetic algorithm point
of view� For example� the problem we discussed had to

handle variable length of chromosomes by which the
�tness landscape is modi�ed during evolution� This

kind of problem is contrasted with usual applications
of genetic algorithms in which the search space is �xed�
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