Skip to main content

Advertisement

Log in

Application of genetic programming for model-free identification of nonlinear multi-physics systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study provides a general methodology based on genetic programming (GP) to identify nonlinear multi-physics systems. The proposed GP-based method aims to discover governing equations for the systems, characterized by a set of ordinary differential equations (ODEs), solely from the measured data. The GP-based methodology employs expression trees, having mathematical components in their nodes, to randomly construct candidate models (i.e., ODEs) for the systems and fits them into the measured data set by applying evolutionary processes (e.g., crossover and mutation) over consecutive generations. To enhance the convergence of the identification process, the model fitness is evaluated by computing model outputs that are numerical solutions of the ODEs (i.e., candidate models) under the measured input, and comparing them to the measured output. The proposed generalization of the GP-based method leads to an additional computational burden which is resolved with parallel processing on high-performance computing systems. We demonstrate the applicability of the methodology to two distinct models originating from different physical systems: a Bouc–Wen model from mechanics and an environmental soil-moisture model from ecohydrology. For the Bouc–Wen model, governing equations that are close to the reference model were discovered. The GP-identified models yielded output errors less than 8%, regardless of errors embedded in training data, up to 5%. For the soil-moisture model, relatively simple models are identified with output errors similar to, or less than, 10%. It is shown that the method under discussion is useful in providing some physical insight into the equations that govern complex, nonlinear, multi-physics systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Banzhaf, W., Spector, L., Sheneman, L.: Genetic Programming Theory and Practice XVII. Springer, Berlin (2020)

    Book  Google Scholar 

  2. Bolourchi, A., Masri, S.F.: Evolutionary computational approaches for data-driven modeling of multi-dimensional memory-dependent systems. Smart Struct. Syst. 15(3), 897–911 (2015)

    Article  Google Scholar 

  3. Bolourchi, A., Masri, S.F., Aldraihem, O.J.: Development and application of computational intelligence approaches for the identification of complex nonlinear systems. Nonlinear Dyn. 79(2), 765–786 (2015)

    Article  Google Scholar 

  4. Bolourchi, A., Masri, S.F., Aldraihem, O.J.: Studies into computational intelligence and evolutionary approaches for model-free identification of hysteretic systems. Comput. Aided Civ. Infrastruct. Eng. 30(5), 330–346 (2015)

    Article  Google Scholar 

  5. Brewick, P.T., Masri, S.F.: An evaluation of data-driven identification strategies for complex nonlinear dynamic systems. Nonlinear Dyn. 85(2), 1297–1318 (2016)

    Article  MathSciNet  Google Scholar 

  6. Carboni, B., Lacarbonara, W., Brewick, P.T., Masri, S.F.: Dynamical response identification of a class of nonlinear hysteretic systems. J. Intell. Mater. Syst. Struct. 29(13), 2795–2810 (2018)

    Article  Google Scholar 

  7. Celia, M.A., Rajaram, H., Ferrand, L.A.: A multi-scale computational model for multiphase flow in porous media. Adv. Water Resour. 16(1), 81–92 (1993)

    Article  Google Scholar 

  8. Chatzi, E.N., Smyth, A.W., Masri, S.F.: Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty. Struct. Saf. 32(5), 326–337 (2010)

    Article  Google Scholar 

  9. Computation for the work described in this paper was supported by the University of Southern California’s Center for High-Performance Computing (hpcc.usc.edu)

  10. Council, N.R., et al.: Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification. National Academies Press, Washington (2012)

    Google Scholar 

  11. Fallah-Mehdipour, E., Haddad, O.B., Marino, M.A.: Genetic programming in groundwater modeling. J. Hydrol. Eng. 19(12), 04014031 (2014)

    Article  Google Scholar 

  12. Fiori, A., Bellin, A., Cvetkovic, V., de Barros, F.P.J., Dagan, G.: Stochastic modeling of solute transport in aquifers: from heterogeneity characterization to risk analysis. Water Resour. Res. 51(8), 6622–6648 (2015)

    Article  Google Scholar 

  13. Gandomi, A.H., Alavi, A.H., Ryan, C.: Handbook of Genetic Programming Applications. Springer, Berlin (2015)

    Book  Google Scholar 

  14. Geers, M.G., Kouznetsova, V.G., Brekelmans, W.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)

    Article  MATH  Google Scholar 

  15. Ghasemi, F., Mehridehnavi, A., Perez-Garrido, A., Perez-Sanchez, H.: Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discov. Today 23(10), 1784–1790 (2018)

    Article  Google Scholar 

  16. Gray, G.J., Li, Y., Murray-Smith, D., Sharman, K.: Structural system identification using genetic programming and a block diagram oriented simulation tool. Electron. Lett. 32(15), 1422–1424 (1996)

    Article  Google Scholar 

  17. Gray, G.J., Murray-Smith, D.J., Li, Y., Sharman, K.C., Weinbrenner, T.: Nonlinear model structure identification using genetic programming. Control. Eng. Pract. 6(11), 1341–1352 (1998)

    Article  Google Scholar 

  18. Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  19. Im, J., Rizzo, C.B., de Barros, F.P.J.: Resilience of groundwater systems in the presence of bisphenol a under uncertainty. Science of the Total Environment, p. 138363 (2020)

  20. Kadeethum, T., Jørgensen, T.M., Nick, H.M.: Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations. PLoS ONE 15(5), e0232683 (2020)

    Article  Google Scholar 

  21. Kocijan, J., Girard, A., Banko, B., Murray-Smith, R.: Dynamic systems identification with Gaussian processes. Math. Comput. Model. Dyn. Syst. 11(4), 411–424 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  23. La Cava, W., Danai, K., Spector, L., Fleming, P., Wright, A., Lackner, M.: Automatic identification of wind turbine models using evolutionary multiobjective optimization. Renew. Energy 87, 892–902 (2016)

    Article  Google Scholar 

  24. Lai, Z., Nagarajaiah, S.: Sparse structural system identification method for nonlinear dynamic systems with hysteresis/inelastic behavior. Mech. Syst. Signal Process. 117, 813–842 (2019)

    Article  Google Scholar 

  25. Laio, F., Porporato, A., Fernandez-Illescas, C., Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: IV. Discussion of real cases. Adv. Water Resour. 24(7), 745–762 (2001)

    Article  Google Scholar 

  26. Laio, F., Porporato, A., Ridolfi, L., Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics. Adv. Water Resour. 24(7), 707–723 (2001)

    Article  Google Scholar 

  27. Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., Shaman, J.: Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 368(6490), 489–493 (2020)

    Article  Google Scholar 

  28. Libera, A., de Barros, F.P.J., Faybishenko, B., Eddy-Dilek, C., Denham, M., Lipnikov, K., Moulton, D., Maco, B., Wainwright, H.: Climate change impact on residual contaminants under sustainable remediation. J. Contam. Hydrol. 226, 103518 (2019)

    Article  Google Scholar 

  29. Libera, A., de Barros, F.P.J., Guadagnini, A.: Influence of pumping operational schedule on solute concentrations at a well in randomly heterogeneous aquifers. J. Hydrol. 546, 490–502 (2017)

    Article  Google Scholar 

  30. Ljung, L., Glad, T.: Modeling of Dynamic Systems. PTR Prentice Hall, Upper Saddle River (1994)

    MATH  Google Scholar 

  31. Mari, L., Bertuzzo, E., Righetto, L., Casagrandi, R., Gatto, M., Rodriguez-Iturbe, I., Rinaldo, A.: Modelling cholera epidemics: the role of waterways, human mobility and sanitation. J. R. Soc. Interface 9(67), 376–388 (2012)

    Article  Google Scholar 

  32. Mehr, A.D., Nourani, V., Kahya, E., Hrnjica, B., Sattar, A.M., Yaseen, Z.M.: Genetic programming in water resources engineering: a state-of-the-art review. J. Hydrol. 566, 643–667 (2018)

    Article  Google Scholar 

  33. Miranda, M.J., Fackler, P.L.: Applied Computational Economics and Finance. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  34. Mohammad-Azari, S., Bozorg-Haddad, O., Loáiciga, H.A.: State-of-art of genetic programming applications in water-resources systems analysis. Environ. Monit. Assess. 192(2), 73 (2020)

    Article  Google Scholar 

  35. Murray-Smith, D.: System identification and parameter estimation techniques in the modelling of physiological systems: a review. In: Computing in Medicine, pp. 333–338. Springer (1982)

  36. Noël, J.P., Esfahani, A.F., Kerschen, G., Schoukens, J.: A nonlinear state-space approach to hysteresis identification. Mech. Syst. Signal Process. 84, 171–184 (2017)

    Article  Google Scholar 

  37. Noël, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)

    Article  Google Scholar 

  38. Oreskes, N., Shrader-Frechette, K., Belitz, K.: Verification, validation, and confirmation of numerical models in the earth sciences. Science 263(5147), 641–646 (1994)

    Article  Google Scholar 

  39. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic Programming. Lulu Enterprises, Morrisville (2008)

    Google Scholar 

  40. Porporato, A., D’odorico, P., Laio, F., Rodriguez-Iturbe, I.: Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme. Adv. Water Resour. 26(1), 45–58 (2003)

    Article  Google Scholar 

  41. Prieto, A., Prieto, B., Ortigosa, E.M., Ros, E., Pelayo, F., Ortega, J., Rojas, I.: Neural networks: an overview of early research, current frameworks and new challenges. Neurocomputing 214, 242–268 (2016)

    Article  Google Scholar 

  42. Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn., pp. 1–53 (2020)

  43. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rizzo, C.B., de Barros, F.P.J.: Minimum hydraulic resistance and least resistance path in heterogeneous porous media. Water Resour. Res. 53(10), 8596–8613 (2017)

    Article  Google Scholar 

  45. Rodríguez-Iturbe, I., Porporato, A.: Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  46. Rodriguez-Iturbe, I., Porporato, A., Laio, F., Ridolfi, L.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: I. Scope and general outline. Adv. Water Resour. 24(7), 695–705 (2001)

    Article  Google Scholar 

  47. Rodriguez-Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., Coxi, D.: Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455(1990), 3789–3805 (1999)

    Article  MATH  Google Scholar 

  48. Rodríguez-Iturbe, I., Rinaldo, A.: Fractal River Basins: Chance and Self-organization. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  49. Rodriguez-Vazquez, K., Fonseca, C.M., Fleming, P.J.: Identifying the structure of nonlinear dynamic systems using multiobjective genetic programming. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34(4), 531–545 (2004)

    Article  Google Scholar 

  50. Rubol, S., Manzoni, S., Bellin, A., Porporato, A.: Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (dnra). Adv. Water Resour. 62, 106–124 (2013)

    Article  Google Scholar 

  51. Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of partial differential equations. Sci. Adv. 3(4), e1602614 (2017)

    Article  Google Scholar 

  52. Sahoo, S.S., Lampert, C.H., Martius, G.: Learning equations for extrapolation and control. arXiv preprint arXiv:1806.07259 (2018)

  53. Smyth, A.W., Masri, S.F., Kosmatopoulos, E.B., Chassiakos, A.G., Caughey, T.K.: Development of adaptive modeling techniques for non-linear hysteretic systems. Int. J. Non Linear Mech. 37(8), 1435–1451 (2002)

    Article  MATH  Google Scholar 

  54. Tangirala, A.K.: Principles of System Identification: Theory and Practice. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  55. Tartakovsky, A., Marrero, C.O., Perdikaris, P., Tartakovsky, G., Barajas-Solano, D.: Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resources Research (2020)

  56. Tekin, E., Sabuncuoglu, I.: Simulation optimization: a comprehensive review on theory and applications. IIE Trans. 36(11), 1067–1081 (2004)

    Article  Google Scholar 

  57. Wang, L., Garnier, H.: System Identification, Environmental Modelling, and Control System Design. Springer, Berlin (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

All authors gratefully acknowledge the financial support by the National Science Foundation under Grant Number 1654009 and Jinwoo Im acknowledges the Kwanjeong Educational Foundation (17AmB25D) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe P. J. de Barros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, J., Rizzo, C.B., de Barros, F.P.J. et al. Application of genetic programming for model-free identification of nonlinear multi-physics systems. Nonlinear Dyn 104, 1781–1800 (2021). https://doi.org/10.1007/s11071-021-06335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06335-0

Keywords

Navigation