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There are three genetic operators: crossover, mutation and reproduction in Genetic Pro-
gramming (GP). Among these genetic operators, the crossover operator mainly contributes
to searching for a solution program. Therefore, we aim at improving the program gener-
ation by extending the crossover operator. The normal crossover selects crossover points
randomly and destroys building blocks. We think that building blocks can be protected
by swapping larger substructures. In our former work, we proposed a depth-dependent
crossover. The depth-dependent crossover protected building blocks and constructed
larger building blocks easily by swapping shallower nodes. However, there was problem-
dependent characteristics on the depth-dependent crossover, because the depth selection
probability was fixed for all nodes in a tree. To solve this difficulty, we propose a self-tuning
mechanism for the depth selection probability. We call this type of crossover a “self-tuning
depth-dependent crossover”. We compare GP performances of the self-tuning depth-
dependent crossover with performances of the original depth-dependent crossover. Our
experimental results clarify the superiority of the self-tuning depth-dependent crossover.

16.1 Introduction

Recently Genetic Programming (GP) has been applied to various applications, e.g.,
a robot program [Koza, 1992a], a multi-agent task [Iba, 1997] and an image recogni-
tion [Iba et al., 1995]. In case of standard GP, it requires huge computational time
to search for a solution program of a large scale problem. This is a critical problem
when GP is applied to the large scale problem, such as the automatic generation of
a practical program.

In many previous studies, it is shown that the crossover and the selection mech-
anism mainly contribute to generating a solution program in GP [Koza, 1992b, p.
599]. In this paper, we focus on the crossover operator and aim at generating com-
puter programs efficiently by improving the crossover operator. “Efficient” means
that reduction of the number of generations required to generate target programs.

A program structure in GP is generally a tree structure !. The normal crossover
operator selects randomly a crossover point (node) regardless of its position within
the tree structure. Thus, if the normal crossover operator destroys building blocks 2,
it will result in the degradation of the search for a solution program.

Swapping a larger structure is one way to solve this difficulty. Because build-
ing blocks are larger protected by swapping structures. In our previous paper[Ito

I There are also a linear and a graph structure besides the tree structure[Banzhaf et al., 1998,
Pp.239-276]

2A “building block” is a pattern of genes in a contiguous section of a chromosome which, if
present, confers a high fitness to the individual [Langdon, 1998, p. 238]
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et al., 1998a), we proposed a “depth-dependent crossover”, in which a crossover
point is determined by a depth selection probability. The depth selection probabil-
ity is the probability of selecting a depth to which is applied the crossover operator.
The depth selection probability is higher for a node closer to a root node. The
depth-dependent crossover protected building blocks and constructed larger build-
ing blocks easily by swapping higher nodes frequently. Through the use of the
depth-dependent crossover, the computational time for the evolution was decreased
for the boolean concept formation problems. However, there is a problem-dependent
characteristic for the depth-dependent crossover, because the depth selection prob-
ability was fixed and given as a user-defined parameter. This explains why we could
not show any advantage for the fitness performance for the ANT problem [Ito et al.,
1998a].

We propose a self-tuning mechanism for the depth selection probability to avoid
the difficulty mentioned above. We call this type of crossover a “self-tuning depth-
dependent crossover”. In case of the self-tuning depth-dependent crossover, each
individual has a different depth selection probability. The depth selection probabil-
ity of a selected individual is copied to the next generation. By using the self-tuning
depth-dependent crossover, it is not required to set up beforehand the depth selec-
tion probability for a particular GP task.

The self-tuning is not necessarily the best strategy. If an optimal depth selection
probability was known for one GP problem in advance, setting the optimal depth
selection probability would be better than using the self-tuning mechanism. How-
ever, we do not know the optimal depth selection probability for each GP problem
in general. Thus, it is required to design the self-tuning mechanism for the depth
selection probability.

This paper is organized as follows. Section 16.2 explains the self-tuning mech-
anism for the depth-dependent crossover. Section 16.3 describes experiments in
several tasks and compares GP performances of the self-tuning depth-dependent
crossover with performances of the original depth-dependent crossover. Discussion
is given in Section 16.4, followed by a conclusion and future work in Section 16.5.

16.2 A Self-Tuning Mechanism for Depth-Dependent Crossover

In case of the depth-dependent crossover3, the depth selection probability is fixed
(half of its parent node’s probability). It is a user-defined parameter. If the depth
selection probability is not set correctly, the crossover operator may not work well.

3Detailed description of the depth-dependent crossover is given in [Ito et al., 1998a]
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Figure 16.1
Self Tuning without Parameter Crossover. This method copies the depth selection probability of
each parent to each child.

To solve this difficulty, we propose a self-tuning mechanism, in which each tree
has a different depth selection probability. Then, each crossover point is determined
by its depth selection probability. If an individual has a high depth selection prob-
ability, it is more likely that the crossover operator will select a shallower node.
Therefore, on average, the selected subtrees will be bigger. On the contrary, if an
individual has a low depth selection probability, the crossover will select a deeper
node. So that, the selected subtrees will be smaller.

It 1s difficult to evaluate directly whether each depth selection probability is
suitable for each tree structure or not. We do not have any evaluation criteria
about the depth selection probability for each GP task. A high depth selection
probability may be a good setting on one tree structure, whereas, a low depth
selection probability may work well for another tree. In this self-tuning mechanism,
we hypothesize that if the depth selection probability is effectively assigned to a tree
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Figure 16.2
Self Tuning with Parameter Crossover. This method also swaps the depth selection probability of
each parent when the selected subtrees are swapped.

structure suitably, the fitness of the tree structure is improved. According to this
hypothesis, the depth selection probability of a desirable tree will be copied to the
next generation. That is, the depth selection probability of the tree structure, which
is selected by fitness selection, is also selected and inherited to the next generation.
The advantage is that both the depth selection probability and the program fitness
(i.e., program performance) are evaluated by means of fitness selection alone.

We introduce two methods for the above purpose. One is to copy the depth
selection probability of each parent to each child (Fig. 16.1). Another method
is to swap the depth selection probability (Fig. 16.2). In Fig. 16.1, black nodes
means building blocks. The crossover point of each tree is determined by each depth
selection probability. As a result of the crossover operator, two children with the
same depth selection probability as their parents are generated. In case of child 2, if
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the depth selection probability is not swapped, it is easy to select a node of building
blocks (i.e., black nodes) and to break building blocks. Because the depth selection
probability of nodes within building blocks are higher (i.e., the probabilities of the
depth 3, 4 and 5 are 29.6%, 19.8% and 13.2, respectively). The same is true of child
1 (i.e., the probability of the depth 2 is 25.0%).

In case of Fig. 16.2, the depth selection probability of each parent is also swapped
when the selected subtrees are swapped. This method may work effectively for large
building blocks. However, it may not be a good strategy for small building blocks.
For instance, in case of Fig. 16.2, it is easy to protect building blocks of child 2 by
swapping the depth selection probability. Because the depth selection probability
of nodes within building blocks are low (i.e., the probabilities of the depth 3, 4 and
5 are 12.5%, 6.3% and 3.1%, respectively). However, in case of child 1, the depth
selection probability of the node within a building block is high (i.e., the probability
of depth 2 is 44.4%). Large building blocks of child 2 are protected, whereas small
building blocks of child 1 are broken. Therefore, the method shown in Fig. 16.2 is
a greedy method. We clarify differences of these methods (i.e, Fig. 16.1 and 16.2)
in next section.

The above self-tuning mechanism for the depth-dependent crossover is realized
as the following algorithm.

Pre-processing Assign a random depth selection probability between min-probability
and maz-probability for the tree initialization.

Crossover When applying the crossover operator, the following process is exe-
cuted:

STEP 1. For parentl, determine the depth d for a selected tree using the
depth selection probability of parentl.

STEP 2. For parentl, select randomly a node whose depth is equal to d in
STEPI.

STEP 3. For parent2, determine the depth d for a selected tree using the
depth selection probability of parent2.

STEP 4. For parent2, select randomly a node whose depth is equal to d in
STEP3.

STEP 5. Swap the nodes chosen in STEP2 and STEP4.

STEP 6. Swap the depth selection probability (if the self tuning mechanism
conducts parameter crossover, i.e., Fig. 16.2)
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Table 16.1
Experimental Set Up

Setting Crossover Mutation

NORMAL Random Random

DD Depth-Dependent Random

SDD Self-Tuning Depth-Dependent without Parameter Crossover ~Random
(Fig. 16.1)

SDD-XO Self-Tuning Depth-Dependent with Parameter Crossover Random
(Fig. 16.2)

Mutation When applying the mutation operator, the following process is executed:

STEP 1. Mutate a selected tree randomly.

STEP 2. Mutate the depth selection probability of the selected tree between
man-probability and max-probability.

We assign min-probability to 1.5 and maxz-probability to 2.0 in this paper (i.e.,
the depth selection probability of each tree ranges from 1.5 to 2.0). The self-
tuning mechanism searches better depth selection probability for each tree between
min-probability and mazx-probability. The mutation of the depth selection proba-
bility is to escape from a local minimum for the depth selection probability.

The probability of the crossover (and the mutation) of the depth selection is the
same as the probability of the crossover (and the mutation) of the tree structure.
This means that the depth selection probability is also swapped when tree struc-
tures are swapped with the same probability (the depth selection probability is also
mutated when the tree structure is mutated).

16.3 Experimental Results

We have investigated the effectiveness of the self-tuning depth-dependent crossover
for four GP problems. These problems are Boolean concept formation problems
(i.e., the 11MX and the 4EVEN) the ANT and a robot problem. This section briefly
explains the results of the 11MX, the ANT and the robot problem. Complete and
detailed experimental results are described in [Ito, 1999]) Table 16.1 shows the ex-
perimental set up. For the sake of comparison, all experiments were conducted until
a final generation, even if a solution was found during the evolution. Experimental
results are shown on the average over twenty runs.
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16.3.1 The 11MX problem

The task of the 11MX (11-multiplexor) problem is to generate a boolean function
which decodes an address encoded in binary and returns the binary data value of
the register at that address. The 11-multiplexor function has three binary-valued
address lines (ag,a1,a2) and eight data registers of binary values (dp,dy,---,d7)
[Koza, 1992b, p. 170]. The fitness of the 11MX is an error rate for total inputs.
The used parameters are the same as [Ito et al., 1998a].

Fig. 16.3 shows the best and the average fitness. Note that the smaller, the better
the fitness is. According to the best fitness performance curve, the DD shows an
ability of which it searches a solution program quickly. The SDD-XO is slower than
the DD, however, the SDD-XO shows the same fitness performance to the DD at
the final generation. There was no difference between the NORMAL and the SDD
on the best fitness. As for the average fitness, the DD gives the best performance
among all crossover settings. Other three crossover settings show almost the same
ability. We statistically examined the best and the average fitness performances
at the final generation with the paired t-test [Freund and Wilson, 1992]. Table
16.2 shows the result of t-test. According to this test, we have confirmed that the
DD was superior to the NORMAL, and that the SDD-XO was superior to the
NORMAL in terms of the best and the average fitness values. However, we have
not verified that the SDD was superior to the NORMAL in terms of the best
and the average fitness values. Table 16.3 shows average numbers of hits and its
standard deviation at the final generations over twenty runs. Note, if the solution
program was acquired over twenty runs, the hits value is 1.0. On the contrary, if
the solution program was not acquired over twenty runs at all, the value is 0.0.
According to this table, both of the DD and the SDD-XO gave best performance
among all crossover settings.

There was no difference between the SDD-XO and the DD in terms of the best
fitness value as mentioned above. An advantage of the SDD-XO against the DD
is to suppress the size of generated programs (i.e. trees). Fig. 16.4, 16.5 and 16.6
plot the depth of the tree, the number of function nodes and the number of terminal
nodes with generations for the 11MX problem, respectively. The growth pattern of
the tree depth of the DD shows the deepest trees among all crossover settings. On
the contrary, the pattern of the SDD-XO shows the shallower trees than that of
the DD (Fig. 16.4). The number of function nodes (and terminal nodes) was much
larger with DD than that with SDD-XO (Fig. 16.5 and 16.6). By using the DD,
a shallower node of the tree structure was selected more frequently. It frequently
occurred that a small subtree in the shallower node of the tree structure was replaced
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Figure 16.3

Experimental Results, means of twenty runs (11MX). The fitness of the 11MX is an error rate for
total inputs. The “Best” means the fitness of the best individual and the “average” indicates the
average fitness of the population.

with a large subtree. In that case, the fitness of an individual which received a large
subtree (individual 1) was improved because there were large building blocks in the
received subtree. On the contrary, the fitness of an individual which received a small
subtree (individual 2) was not improved because the size of building blocks in the
received subtree was small. As a result, the size of the tree structure became large
because individual 1 prospered in the population and individual 2 became extinct.
Thus, the selection pressure which enlarged the tree size occurred in case of the DD.
This phenomenon is called bloat [Langdon and Poli, 1997]. Angeline clarified that
the crossover operator promoted unnecessary bloat by several experimental results
[Angeline, 1998]. The DD induced the bloating phenomenon easily by means of the
above reason.

There was a difference between the SDD and the SDD-XO in terms of the
size of the tree structure. This difference was derived from difference of the depth
selection probability of each individual. Fig. 16.7 and 16.8 show transitions of the
depth selection probability during the evolution. The numbers of individuals (z
axis) are accumulated values over twenty runs. For both cases, i.e., the SDD and
the SDD-XO, the total depth selection probability at the initial generation (i.e.,
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Table 16.2
Statistic ¢ for the Best and the Average Fitness Values at the Final Generation (11MX).

Setting Best Average
DD (against NORMAL) 12.01 10.27
SDD (against NORMAL) 0.91 0.77
SDD-XO (against NORMAL) 9.91 3.21
SDD (against DD) -11.74  -10.36
SDD-XO (against DD) -0.42 -6.42
SDD-XO (against SDD) 12.22 2.62
Table 16.3

Average Numbers of Hits and Its Standard Deviation at the Final Generations over Twenty Runs
(11MX). If the solution program was acquired over twenty runs, the hits value is 1.0. On the
contrary, if the solution program was not acquired over twenty runs at all, the value is 0.0. Rank
indicates a ranking of four crossover operators.

Setting Hits  Standard Deviation Rank
NORMAL 0.00 0.00 3
DD 0.70 0.46 1
SDD 0.00 0.00 3

1

SDD-XO 0.70 0.46

generation 0) was nearly same value (approximately 4000). This was because the
depth selection probability of each individual was generated randomly. However,
the number of individuals of lower depth selection probability was increased during
the evolution in case of the SDD (Fig. 16.7). This means that crossover points
were selected at deeper nodes more often. On the contrary, the depth selection
probability became higher during the evolution by the SDD-XO (Fig. 16.8). This
means that crossover points are often selected at shallower nodes. These phenomena
were occurred on the other GP problems, i.e., the 4AEVEN, the ANT and the robot
problem [Ito, 1999].

The original depth-dependent and the self-tuning depth-dependent crossover have
an effect that deep subtrees are swapped more often. This will result in the pro-
tection of building blocks. We can consider that the fitness performance may be
improved because of this effect on the 11MX problem. Fig. 16.9 shows average ab-
solute depth of swapped tree structures for the 11MX problem. According to this
figure, average absolute depth of swapped subtrees for all crossover settings was
shallow in the early generations. However, the DD swaps deeper subtrees as the
evolution proceeds. The SDD-XO swapped shallower subtrees than the DD. On
the contrary, there was no difference between the SDD and the NORMAL. These
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Number of Function Nodes (11MX)
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Transitions of the Depth Selection Probability (11MX, SDD) during the Evolution. DSP means
depth selection probability. The numbers of individuals (z axis) are accumulated values over
twenty runs.
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over twenty runs.
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Average Absolute Depth of Swapped Tree Structure (11MX)
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phenomena are also observed in the numbers of nodes of the swapped subtrees (see
[Tto, 1999]). In case of the DD, this phenomenon was related to the tree growth
and the fixed depth selection probability. In case of the DD, the depth selection
probability of the crossover operator depended on an absolute tree depth, not a
relative tree depth. Besides, the depth selection probability did not changed during
the evolution. Due to these two factors, the depth of swapped subtrees became
deeper gradually with the growth of the tree structure on the DD. A node of which
was closer to the root node was selected frequently.

When we compare two particular crossover operators, we have to consider two
factors, i.e., the fitness performance and the number of nodes. Even if the fitness
is a good performance, we cannot insist that one crossover operator is better if
tree structures become large. A large structure requires huge computer memory
and computational time [Ito et al., 1998b]. The DD gave good performance in
terms of the fitness performance, however, it induced the bloat and enlarged the
tree structures. On the other hand, the SDD-XO did not only improve the fitness
performance, but also suppressed the bloat. Thus, we can claim that the SDD-XO
is superior than the DD on the 11MX problem.

16.3.2 The ANT problem

Next, we show experimental results on the ANT problem. The ANT problem is
to generate a program to each as much food as possible given a limited amount of
energy (400 units) [Koza, 1992b, p. 54]. The ANT can move forward, turn to the
right and left. It consumes one unit of energy when it moves. The fitness of the
ANT is the fraction of all available food that the ant could not eat. In other words,
1.0 means that the ant could not eat any of the 89 units of foods and 0.0 means
that the ant could eat all the food within the limited energy. The used parameters
were the same as [Ito et al., 1998a).

It is reported that this problem appears to be difficult because of the large number
of sub-optimal peaks in the fitness landscape [Langdon and Poli, 1998] and the
depth-dependent crossover was not effective on this problem [Ito et al., 1998a).

We conducted two types of experiments. In the first experiment, the maximum
depth for a new tree is 10. In the second experiment, it is 5. We investigated how
these different maximum depth values affect the performance of the DD, the SDD
and the SDD-XO.

Fig. 16.10 plots the best and the average fitness values for the ANT problem
of experiment 1 (i.e., the maximum depth for a new tree was 10). According to
this figure, the SDD-XO gave the best performance on the best and the average
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Figure 16.10

Experimental Results, means of twenty runs (ANT, Experiment 1, i.e., the maximum depth for a
new tree is 10). The fitness of the ANT is a probability for which the ant could not eat 89 foods.
The “Best” means the fitness of the best individual and the “average” indicates the average fitness
of the population.

fitness values. On the contrary, there was no difference among the NORMAL,
the DD and the SDD on the best fitness value. On the average fitness, there was
no difference among all crossover settings. We examined these results using paired
t-test and we have confirmed that the SDD-XO 1is superior to the DD and the
SDD on the best value (Table. 16.4). On the hits measure, the SDD-XO give the
best performance among all crossover settings (Table 16.5).

Fig. 16.11 plots the best and the average fitness values for the ANT problem of
experiment 2 (i.e., the maximum depth for a new tree was 5). According to this
figure, the SDD-XO also gave the best performance on the best fitness values.
There was no difference between the NORMAL and the DD on the best fitness
value. On the average fitness, the SDD gave the best performance among all
crossover settings. We examined these results using paired t-test, and confirmed
that the SDD-XO was better than the DD (Table. 16.4). On the hits measure,
the SDD-XO gave the best performance among all crossover settings (Table 16.5).

As mentioned above, in case of the NORMAL, the number of the hits in experi-
ment 2 (i.e., the maximum depth for a new tree is 5) was improved over experiment
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Table 16.4
Statistic ¢ for the Best and the Average Fitness Values at the Final Generation (ANT).

Setii Experiment 1 Experiment 2
etting Best Average Best Average
DD (against NORMAL) -0.96  1.14 0.29 1.56
SDD (against NORMAL) -0.82  -0.63 1.35 2.6l
SDD-XO (against NORMAL) 1.34 0.06 1.69 1.26
SDD (against DD) -0.03  -0.16 1.15 1.55
SDD-XO (against DD) 253 -0.89 1.78  0.09
SDD-XO (against SDD) 2.47 -0.90 0.59 -2.46
Table 16.5

Average Numbers of Hits and Its Standard Deviation at the Final Generations over Twenty Runs
(ANT). If the solution program was acquired over twenty runs, the hits value is 1.0. On the
contrary, if the solution program was not acquired over twenty runs at all, the value is 0.0. Rank
indicates a ranking of four crossover operators.

Experiment 1 Experiment 2
Setting . .. . -
Hits Standard Deviation Rank Hits Standard Deviation Rank
NORMAL 0.15 0.36 2 0.20 0.40 4
DD 0.10 0.30 3 0.25 0.43 3
SDD 0.10 0.30 3 0.45 0.50 2
SDD-XO 0.35 0.48 1 0.60 0.49 1

1 (i.e., the maximum depth for a new tree is 10). However, these differences were
small. In case of the other crossover settings (i.e., the DD, the SDD and the SDD-
XO0), the number of the hits in experiment 2 was superior to that in experiment 1
(Table 16.5).

These phenomena are related to the growth of the depth of the tree. Fig. 16.12
shows the depth of the tree of experiment 1 and that of experiment 2, respectively.
According to this figure, the depth of the tree of experiment 1 was shallower than
that of experiment 2 in the early generations. In case of experiment 1, the depth
of the tree grows quickly as the evolution proceeds. On the contrary, in case of
experiment 2, the depth of the tree became deep slowly during the evolution. At
the last generation, the depth of the tree was almost same value (about 15) for both
experiments. In case of experiment 2, the crossover operator generated building
blocks effectively because the depth of the tree was shallow at early generations.
On the contrary, the crossover operator was not so effective for experiment 1 because
the initial tree depth was deep. This is a reason that the performances of the DD,
the SDD and the SDD-XO are better for experiment 2 than for experiment 1.
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Figure 16.11

Experimental Results, means of twenty runs (ANT, Experiment 2, i.e., the maximum depth for a
new tree is 5). The fitness of the ANT is a probability for which the ant could not eat 89 foods.
The “Best” means the fitness of the best individual and the “average” indicates the average fitness
of the population.

16.3.3 The robot problem

We verified the effectiveness of our proposed crossover operators on a robot problem.
This is to show the feasibility of the depth-dependent crossover operators for a real-
world task. An autonomous robot simulator was constructed (Fig. 16.13). The
model is a behavior-based robot [Maes, 1993]. In this simulator, there are only five
types of objects, i.e., the robot, a target object, a station, a wall and obstacles.
(Fig. 16.14). The simulated robot has three types of sensors. They are eight bump
sensors, an eye sensor and a beacon sensor (Table 16.6).

The robot task is to collect a target object (see [Ito, 1999] for the details). The
robot can discriminate between the target object and obstacles by their colors.

As commonly used in most GP applications[Ito et al., 1996], the robot commands
were considered as terminals, i.e., O-argument function (Table 16.7). When each
robot command is evaluated, one time-step is consumed and each command 1is
evaluated until the total number of time-steps reaches a certain limitation, or the
robot brings a target object to the station correctly. The maximum number of
time-steps is set to be 300.
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Figure 16.13
The Simulated Robot. The model is a behavior-based robot.
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Table 16.6
Sensors of the Simulated Robot

Type

Number

Function

Bumped Sensor 8

Reports whether the robot bumps an object or not.

Eye Sensor 1 Reports the IDs of objects within the eye-sensor area.
Beacon Sensor 1 Reports the distance between the robot and the station when
the station is within the robot’s sensor range.
Table 16.7

Terminal Set (Robot)

D Type Function
0~ 5 GF Moves forward with the robot speed in its robot’s direction.
The robot speed is assumed to be constant.

6 TR Makes the robot’s body turn 10° to the right.

7 TL Makes the robot’s body turn 10° to the left.

8 MCR. Makes the eye sensor turn 10° to the right.

9 MCL Makes the eye sensor turn 10° to the left.

10 GP Grasps the target object within the robot’s eye sensor area.

Table 16.8
Function Set (Robot)

D Type Function

0~7 (BSID p0 pl) Evaluates pO if the bumped ID-sensor reports collision,
pl otherwise.

8 (AS po pl p2) Evaluates p0 if the robot approaches the station, pl if the robot
goes away from the station, and p2 if the station is not within
the beacon sensor range.

9 (EWL po p1) Evaluates pO if an wall within the eye-sensor area, pl otherwise.

10 (EBC po0 p1) Evaluates p0 if the obstacle is within the eye-sensor area, pl
otherwise.

11 (ERC p0 p1) Evaluates pO if the target object within the eye-sensor area, pl
otherwise.

12 (ESN po p1) Evaluates p0 if an station is within the eye-sensor area, p1
otherwise.

13 (PROG2 p0 pl) Evaluates sequentially two argument forms and returns the

value of the second argument (p1).
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Figure 16.14
The Workspace of the Robot. There are only five types of objects, i.e., the robot, a target object,
a station, a wall and obstacles on this workspace.

The robot does not move when TR, TL, MCR, MCL and GP commands are
evaluated. If there is only one GF command in the terminal set, the robot will come
to a stop too soon (this situation is called deadlock). To prevent this deadlock, the
terminal set includes five GF commands.

In order to make the robot respond to its sensor inputs, the 14 functional nodes
were introduced (Table 16.8).

The following fitness function is used for this robot task:

dist(S, Ry) if the robot has the
Fitness = target object in hand (16.1)
dist(S, RCy) + dist(R:, RCy) otherwise

where S is the position of the station, R; is the the position of the robot at ¢ time
step, RCY is the the position of the target object at ¢ time step, dist(z,y) is the
Euclidean distance between x and y.

Fig. 16.15 plots the best and the average fitness values for the robot problem
(the used parameters were the same as [Ito, 1999]). According to this figure, the
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Experimental Results, means of twenty runs (Robot). The fitness of the Robot is derived from
equation 16.1. The “Best” means the fitness of the best individual and the “average” indicates
the average fitness of the population.

DD and the SDD-XO gave the best performance on the best fitness value. As for
the average fitness value, the DD gave the best performance.

Table 16.9 shows the result of t-test. We have confirmed that DD and SDD-XO
were superior to the NORMAL in terms of the best fitness value. On the average
fitness, the DD and the SDD were better than the NORMAL. However, we have
not verified that the SDD-XO was superior to the NORMAL.

Table 16.10 shows the averaged numbers of hits and its standard deviation at the
final generations over twenty runs. By using the SDD-XO, the solution program
was acquired for all twenty runs.

16.4 Discussion

We have hypothesized that, via a self tuning mechanism, if the depth selection
selection probability which is suitable for a tree structure is assigned to the tree
structure, a fitness of the tree structure is improved. We designed our self-tuning
mechanism in accordance with this hypothesis.

Our experimental results have shown that the SDD-XO gave good performance
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Table 16.9
Statistic ¢ for the Best and the Average Fitness Values at the Final Generation (Robot).

Setting Best  Average
DD (against NORMAL) 3.34  2.40
SDD (against NORMAL) 0.28 3.15
SDD-XO (against NORMAL) 2.50 -0.09
SDD (against DD) 3.26  1.31
SDD-XO (against DD) 0.87 -2.44
SDD-XO (against SDD) 2.57 -3.43
Table 16.10

Average Numbers of Hits and Its Standard Deviation at the Final Generations over Twenty Runs
(Robot). If the solution program was acquired over twenty runs, the hits value is 1.0. On the
contrary, if the solution program was not acquired over twenty runs at all, the value is 0.0. Rank
indicates a ranking of four crossover operators.

Setting Hits  Standard Deviation Rank
NORMAL 0.80 0.40 4
DD 0.95 0.22 2
SDD 0.95 0.22 2
SDD-XO 1.00 0.00 1

for all the four GP problems. For these problems, each individual has various kinds
of depth selection probabilities in early generations because the probability was
assigned randomly. However, the number of individuals with high depth selection
probability increased gradually as the evolution proceeded (Fig. 16.8). As a result,
the fitness performance was improved. According to Fig. 16.8, the self-tuning
mechanism worked so as to search for building blocks during early generations and
to protect completed building blocks in later generations. We believe that the
SDD-XO will work for various GP problems due to this effect, i.e., adaptability.

16.5 Conclusion

The goal of this work was to consider an effective search method for applying GP to
large scale problems. For this purpose, we proposed the self-tuning depth-dependent
crossover. We verified experimentally the effectiveness of the crossover operation.
As a result of experiments, the following points have been made clear:

1. The self-tuning depth-dependent crossover worked effectively for various GP
problems; i.e., the 11MX, the 4EVEN, the ANT and the robot problem.
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2. The self-tuning depth-dependent crossover suppressed the growth of the tree
structure.

In this work, a gene structure of GP was a tree. Besides the tree structure,
there are a linear and a graph structure [Banzhaf et al., 1998, pp.239-276]. These
structures are quite different from the tree structure. The effectiveness of the depth-
dependent crossover operations is not clear for these structures. The future research
will evaluate depth-dependent crossover on these structures.
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