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ABSTRACT 
This paper discusses our initial work on automatically adapting Genetic 
Programming (GP) representation. We present here two independent 
techniques: AMS and ACE. Both techniques are based on Constrained GP 
(CGP), which uses mutation set methodology to prune the representation space 
according to some context-specific constraints. The ASM technique monitors 
the performance of local context heuristics when used in mutation/crossover, 
during GP evolution, and dynamically modifies the heuristics. The ACE 
technique iterates complete CGP runs and then uses the distribution 
information from the best solutions to adjust the heuristics for the next 
iteration. As the results indicate, GP is able to gain substantial performance 
improvements as well as learn qualitative heuristics.  

INTRODUCTION  
Genetic Programming (GP), proposed by Koza (1992), follows the 

evolutionary algorithms approach to problem solving by utilizing a population 
of solutions evolving under limited resources. The solutions, called 
chromosomes, are evaluated by a user-defined objective fitness evaluation. They 
compete for survival based on this fitness, and they undergo evolution by means 
of simulated crossover and mutation operators.  

GP differs from other evolutionary computation methods by using trees as 
the solution representation. Trees provide a rich representation, one that is 
sufficient to represent computer programs, analytical functions, variable length 
structures, even computer hardware.  The user defines the representation space 
by defining labels for the trees: functions of specific arities to label the internal 
nodes, and terminals (functions of no arguments and ephemeral constants) to 
label the leaves. The arities define the syntactic constraints of the trees. The 
fitness of a tree is evaluated by recursively applying function/terminal 
semantics, as defined by the user.  

Two important principles need to be satisfied for GP to be successful (Koza, 
1992). First, the principle of sufficency requires that the set of functions and 
terminals, along with their semantics, be rich enough to allow building solution 
trees of desired quality. Unfortunately, the user is often unaware of the minimal 
set and thus provides an enlarged set to be on the safe side. This enlarges the 
search space and thus often reduces search efficiency. Second, the principle of 
closure requires that no context constraints be imposed on labeling a tree except 
for labeling with proper arity. This was required in the absence of 
methodologies to enforce any such constraints. 

Because of the requirements of both sufficiency and closure, the actual 
representation space that is explored during a GP simulated evolution is much 
larger than the desired or the actual solution space for the problem in hand. In 
the late nineties, two similar generic methods for automatic processing of 
additional constraints were proposed: Strongly Typed GP (STGP) and 
Constrained GP (CGP) (Janikow, 1996). Both follow the idea of enclosing the 
search in the feasible (or desired) space. That is, the initial population is 
generated so that each chromosome satisfies all constraints. Subsequently, every 
operator (mutation and crossover) is guaranteed to produce constraint-valid 
offspring if constraint-valid parents are used. Similar ideas have been later 
incorporated in Context Free Grammar-based GP (CF-GP), where the 
constraints are in the form of BNF production rules for program construction.  
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These methodologies allow explicitly expressing a set of local context rules to 
prune the actual trees that are evolved – only those satisfying the rules will be 
evolved. For example, an if function may now require that the test subtree 
produce a valid condition. 

However, in either of the above methodologies, the user is still responsible 
for presenting the constraints to the system. Unfortunately, in many cases the 
user may not be aware of the best heuristics to solve a particular problem.  

This paper presents two different techniques, based on CGP, which allow 
GP to monitor its performance and adjust the heuristics. The heuristics are in the 
form of weak constraints, that is to say they do not prohibit a given local 
structure to evolve in GP, but rather they allow different local structures to have 
different probabilities of labeling the tree nodes. However, they can be used as 
hard constraints as well, e.g., when a given heuristic falls below certain 
probability threshold. The first technique, called AMS, is very simple and uses 
very limited information. It is based on comparing the fitness of parents to that 
of offpring in determing the utility of a given local heuristic when used in 
mutation/crossover. This is expected to work better for crossover, where one 
offspring is generated by one heuristic. The actual results validate this 
observation. The other technique, called automatic constraint extraction (ACE), 
is more complex in terms of run complexity. It iterates CGP runs, with fixed 
heuristics for each iteration. At the end of each complete CGP run (iteration), 
the best solutions are evaluated for distribution of local labeling contexts, and 
these contexts are then applied to modify the heuristics for the next  iteration.  

In the following, we describe both techniques and then present some 
experimental results using the 11-multiplexer problem. 

CGP – CONSTRAINED GENETIC PROGRAMMING 
CGP extends GP to allow mutation and crossover to generate only those 

offspring that are valid with respect to user provided constraints. The contsraints 
are in the form of local contexts (parent-child node relationship), and are 
precompiled into lookup tables - Mutations Sets (MS) (Janikow, 1996). CGP2.1 
uses Typed MS structures to accommodate different data types and hence 
overloaded function instances (Janikow, 1999). For  the experiments reported 
here, we used untyped MS. CGP also allows local heuristics, which are in the 
form of probabilities of labeling specific context structures. CGP allows the user 
to specify individual weights for different elements of every mutation set 
(Janikow, 1996). A weight twice as high as another weight indicates that the 
corresponding function or terminal should be twice as likely to be used in a 
given context. A weight set to zero in fact results in removing the corresponding 
function or terminal from consideration during evolution (only in the specific 
context, and not globally). For example, the user may specify that a given 
argument of a particular function be quite unlikely to use recursion on itself, 
without prohibiting recursion completely. It is this capability that is used in our 
techniques – both use some runtime information to adjust these probabilities. 

ASM - ADAPTATION OF MUTATION SETS BY JUDGING OFFSPRING 
The AMS algorithm, presented below, compares the fitness of a parent with 

its offspring.  It then either increases or decreases the probability of the local 
heuristic that was used to generate the offpring. 

1. Run CGP to solve a particular problem, while starting with the user 
provided constraints and heuristics (none if not given). 

2. If crossover is selected to create an offspring (we consider both 
offspring individually), perform the following: 

a. Select a subtree to be inserted according to the current 
heuristics for the local context where the subtree is being 
inserted.  This heuristic is denoted with hi. 

b. Compute Δfi, the difference in fitness values of the offspring 
with that of the receiving parent. Positive difference implies 
that a better offspring is generated. 
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c. Modify the specific heuristic hi, expressed as weight (before 
normalized as probability), according to: wi += Δwc. We use a 
reward technique such that if Δfi >0 then Δwc is a positive 
constant, otherwise Δwc is a negative constant (we have 
experimented with Δwc proportional to Δfi but the results were 
similar).  

3. If mutation is selected to create an offspring, perform the following: 
a. Select  a subtree to be removed. 
b. Grow the new subtree according to the current heuristics for 

the local contexts. Note each applied heuristic is denoted at hi 
(multiple heuristics are required and a given  heuristic can be 
used multiple times ci).  

c. Compute Δfi, the difference in fitness values of the offspring 
with that of the receiving parent. A positive difference implies 
that a better offspring is generated. 

d. Modify each used heuristic hi, expressed as weight (before 
normalized as probability) according to: wi += ciΔwm. Again, 
if Δfi >0 then Δwm is a positive constant, otherwise Δwm is a 
negative constant (again we experimented with Δwm 
proportional to  Δfi but the results were similar).  

e. Observe that we used Δwm  much smaller than Δwc  simply 
because single mutation involved using many heuristics at 
once and the reward is shared among all heuristics.  

ACE – AUTOMATIC CONSTRAINT EXTRACTION 
This technique runs on the top of CGP.  In other words, it utilizes complete 

runs of CGP.  To avoid statistical anomalies, ACE in fact can utilize a number 
of independent CGP runs simultanbeously . The algorithm has already been 
extended, but the results and descriptions will be presented separately. 

ACE takes input parameters which determine the number of indepedent 
runs, the number of CGP generations per run, and the number of iterations that 
ACE is to run.  The iterations are also stopped if no further significant 
distribution change is detected. Other parameters determine the number of best 
quality trees to be investigated from each CGP run, the total number of trees 
selected from all the independent runs, as according to user-specific objectives, 
and the objectives guiding the selection. At present, the selection can be based 
on quality or size in any combination. The selected trees are investigated for the 
distribution of functions and terminals, and the discovered distribution is fed 
back into CGP to adjust the constraint weights.  Weights falling below specific 
threshold can also be dropped to 0 (thus becoming hard constraints). 

For example, if ACE runs 10 independent runs, and it extracts the 15 best 
quality trees from each run, it ends up with 150 trees at the end of the iteration. 
If 20% of the trees are to be selected for investigation, and the objective is to 
minimize size, the 30 smallest trees from the 150 quality trees are selected. 
Distribution statistics from the 30 trees is computed, and it is fed back into the 
next ACE iteration in the form of CGP weights (or just adjustments of the 
weights). 

ACE can start with no constraints or it can start with user-defined 
constraints and initial heuristics.  

EXPERIMENTS AND RESULTS 
To illustrate both techniques, we selected the well known and studied 11-

multiplexer problem [1][3].  The 11-multiplexer problem is to discover the 
boolean function that passes the correct data bit (out of eight bits d0…d7) when 
fed three addresses (a0… a2). There are 2048 (211) possible combinations. Koza 
[3] and others have used a set of four atomic functions to solve the problem: 
if/else, and, or, and not, in addition to the data and address bits. This set is not 
only sufficient but is also redundant. In (Janikow, 1996), we have shown that 
operating with only if (sufficient by itself) dramatically improves the 
performance by simply reducing the search space. Moreover, we have shown 
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that the performance is further enhanced when we restrict the if’s condition 
argument to test addresses only, while restricting the two action arguments to 
select only data bits or recursive if. 

 
Name Experiment Crossover/Reproduction/Mutation 

E1 No AMS w/all operators 85/10/5% 
E2 AMS w/crossover+rep 90/10/0 %  
E3 AMS w/mutation+rep 0/10/90% 
E4 AMS all operators 85/10/5% 

Table 1: AMS experiment setup. 
 

 

Figure 1: AMS experiments in practice. 
 

For AMS, our objective was to determine if CGP can improve its run by 
adjusting the heuristic weights. In addition, another objective was to evaluate the 
utility of mutation and crossover for the technique. We used Δwc = 0.01 and Δwm 
= 0.0005 for Δfi >0, and Δwc = –0.01 and Δwm = –0.0005 otherwise.  We 
performed two sets of different experiments. The first set, as defined in Table 1, 
started with no constraints or heuristics and different operators while running 
with and without AMS. The results are illustrated in Fig. 1. They indicate that 
AMS is able to adapt the heuristics while running CGP so that the overalll 
performance improves very significantly. The only case when AMS does not 
show significant improvement is when it is run with mutation only (reproduction 
accesses only global fitness as opposed to adapting local heuristics). This effect 
was expected – a single mutation requires many heuristics yet there is only one 
offspring. In crossover, on the other hand, one offspring is generated by one 
heuristic.  
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Figure 2: Effects of selecting different Δwc (a) and Δwm (b) in AMS. 
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The second set of experiments was  designed to determine the influence of 
some of the AMS parameters, namely Δwm and Δwc. The results are presented in 
Fig. 2. As seen, the magnitude of crossover adjustment has little impact on the 
resulting improvement in evolution speed. However, the magnitude of mutation 
adjustment proves to be very important. For some values, the adjustments 
produce no improvements over multiple generations, while for others, the effect 
is always positive (0.0001 in this case).  This verifies our previous intuition that 
in this case of very limited information, when only the parent-child relationship 
is observed, it is much more difficult to derive any heuristic information from 
mutation due to its necessity to apply multiple heuristics before any feedback is 
received. Some more sophisticated bucket brigade algorithms may prove more 
beneficial. 

To test the ACE technique, we conducted three different experiments with 
three different extraction objectives: quality, size, and a mix of the two. All 
experiments were conducted with  10 independent CGP runs, 10 iterations, and 
all remaining parameters being the dafult CGP parameters (Janikow 1996). 

Fig. 3 (left)  illustrates the best quality tree from among the trees selected 
for computing the distribution statistics at the end of every ACE iteration. As 
can be seen, we gain perfect performance just after two iterations. When 
optimizing for size or mix (size+quality), we may see a dip after iteration 6 – 
size optimization may comprimize quality. Except for the dip, there seem to be 
no apparent improvement after the saturation. However, this is not so. As 
illustrated in Fig. 3 (right), the number of required generations for an iteration to 
be successful keeps decreasing after that saturation (ieration 2).  
 

Figure 3: Improvements due to ACE: best of iteration (left) and the 
number of generations needed to solev the problem, per iteration (right). 

 
The next question is that of the interpretation of the evolve heuristics. Fig. 4 

illustrates the evolving distribution of the condition part of if . As stated before, 
the best prior results were obtained while testing only addresses. Fig. 4 left 
indicates that the evolved heuristics was to use address a1 and the function not 
in the condition part. However, the same figure on the right indicates that the 
remaining two addresses, a0 and a2, were discovered to be used indirectly 
through the argument of the  not function. Thus, all three addresses are tested by 
if either directly or indirectly. The remaining functions are terminals have been 
automatically degraded to zero total weight and thus removed from 
consideration. 

CONCLUSION AND FUTURE RESEARCH 
We have presented a new methodology for adapting the representation of 

solutions in GP. The methodology is based on CGP, which allows heuristics to 
be used for biasing the representation space. The heuristics are local, that is they 
differentiate function/terminals to be used in specific parent-child contexts. In 
the AMS technique, these heuristics are adapted by observing the utility of 
specific heuristics when used to create offspring in crossover and mutation and 
when judged by the relative fitness of the offspring as related to that of the 
parent. This particular technique is very simple yet still able to generate 
significant improvements on the speed of evolution of solutions. In the ACE 
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technique, the heuristics are adapted by evaluating the distribution of labels in 
the best trees selected from a pool of independent CGP runs. This technique uses 
more reliable information, and it seems to produce much better results yet at a 
higher computational cost. Further improvements and results will be presented 
separately. 

 

Figure 4: Direct (left) and indirect distribution on the condition part of if.  
 

REFERENCES 
Janikow, C.Z., 1996. "A Methodology for Processing Problem Constraints in Genetic 

Programming", Computers and Mathematics with Applications, Vol. 32, No. 8, pp. 97-113, 
1996. 

Janikow, C.Z., 1999. "CGP 2.1 User’s Manual”.   
Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by Natural Selection. 

The MIT Press, Cambridge, MA. 
Bonzaf, et al. 1998. Genetic Programming: an Introduction. Morgan Kaufmann. 

if test argument 

0

0.2

0.4

0.6

1 3 5 7 9
Iteration

W
ei

gh
ts

not
a1

not  argument

0

0.2

0.4

0.6

1 3 5 7 9

Iteration

W
ei

gh
ts

a0
a2


