
 1

ADAPTATION OF REPRESENTATION IN GP

CEZARY Z. JANIKOW
University of Missouri – St. Louis
Department of Mathematics and
Computer Science
St Louis, Missouri

RAHUL A DESHPANDE
University of Missouri – St. Louis
Department of Mathematics and
Computer Science
St Louis, Missouri

ABSTRACT
This paper discusses our initial work on automatically adapting Genetic
Programming (GP) representation. We present here two independent
techniques: AMS and ACE. Both techniques are based on Constrained GP
(CGP), which uses mutation set methodology to prune the representation space
according to some context-specific constraints. The ASM technique monitors
the performance of local context heuristics when used in mutation/crossover,
during GP evolution, and dynamically modifies the heuristics. The ACE
technique iterates complete CGP runs and then uses the distribution
information from the best solutions to adjust the heuristics for the next
iteration. As the results indicate, GP is able to gain substantial performance
improvements as well as learn qualitative heuristics.

INTRODUCTION
Genetic Programming (GP), proposed by Koza (1992), follows the

evolutionary algorithms approach to problem solving by utilizing a population
of solutions evolving under limited resources. The solutions, called
chromosomes, are evaluated by a user-defined objective fitness evaluation. They
compete for survival based on this fitness, and they undergo evolution by means
of simulated crossover and mutation operators.

GP differs from other evolutionary computation methods by using trees as
the solution representation. Trees provide a rich representation, one that is
sufficient to represent computer programs, analytical functions, variable length
structures, even computer hardware. The user defines the representation space
by defining labels for the trees: functions of specific arities to label the internal
nodes, and terminals (functions of no arguments and ephemeral constants) to
label the leaves. The arities define the syntactic constraints of the trees. The
fitness of a tree is evaluated by recursively applying function/terminal
semantics, as defined by the user.

Two important principles need to be satisfied for GP to be successful (Koza,
1992). First, the principle of sufficency requires that the set of functions and
terminals, along with their semantics, be rich enough to allow building solution
trees of desired quality. Unfortunately, the user is often unaware of the minimal
set and thus provides an enlarged set to be on the safe side. This enlarges the
search space and thus often reduces search efficiency. Second, the principle of
closure requires that no context constraints be imposed on labeling a tree except
for labeling with proper arity. This was required in the absence of
methodologies to enforce any such constraints.

Because of the requirements of both sufficiency and closure, the actual
representation space that is explored during a GP simulated evolution is much
larger than the desired or the actual solution space for the problem in hand. In
the late nineties, two similar generic methods for automatic processing of
additional constraints were proposed: Strongly Typed GP (STGP) and
Constrained GP (CGP) (Janikow, 1996). Both follow the idea of enclosing the
search in the feasible (or desired) space. That is, the initial population is
generated so that each chromosome satisfies all constraints. Subsequently, every
operator (mutation and crossover) is guaranteed to produce constraint-valid
offspring if constraint-valid parents are used. Similar ideas have been later
incorporated in Context Free Grammar-based GP (CF-GP), where the
constraints are in the form of BNF production rules for program construction.

 2

These methodologies allow explicitly expressing a set of local context rules to
prune the actual trees that are evolved – only those satisfying the rules will be
evolved. For example, an if function may now require that the test subtree
produce a valid condition.

However, in either of the above methodologies, the user is still responsible
for presenting the constraints to the system. Unfortunately, in many cases the
user may not be aware of the best heuristics to solve a particular problem.

This paper presents two different techniques, based on CGP, which allow
GP to monitor its performance and adjust the heuristics. The heuristics are in the
form of weak constraints, that is to say they do not prohibit a given local
structure to evolve in GP, but rather they allow different local structures to have
different probabilities of labeling the tree nodes. However, they can be used as
hard constraints as well, e.g., when a given heuristic falls below certain
probability threshold. The first technique, called AMS, is very simple and uses
very limited information. It is based on comparing the fitness of parents to that
of offpring in determing the utility of a given local heuristic when used in
mutation/crossover. This is expected to work better for crossover, where one
offspring is generated by one heuristic. The actual results validate this
observation. The other technique, called automatic constraint extraction (ACE),
is more complex in terms of run complexity. It iterates CGP runs, with fixed
heuristics for each iteration. At the end of each complete CGP run (iteration),
the best solutions are evaluated for distribution of local labeling contexts, and
these contexts are then applied to modify the heuristics for the next iteration.

In the following, we describe both techniques and then present some
experimental results using the 11-multiplexer problem.

CGP – CONSTRAINED GENETIC PROGRAMMING
CGP extends GP to allow mutation and crossover to generate only those

offspring that are valid with respect to user provided constraints. The contsraints
are in the form of local contexts (parent-child node relationship), and are
precompiled into lookup tables - Mutations Sets (MS) (Janikow, 1996). CGP2.1
uses Typed MS structures to accommodate different data types and hence
overloaded function instances (Janikow, 1999). For the experiments reported
here, we used untyped MS. CGP also allows local heuristics, which are in the
form of probabilities of labeling specific context structures. CGP allows the user
to specify individual weights for different elements of every mutation set
(Janikow, 1996). A weight twice as high as another weight indicates that the
corresponding function or terminal should be twice as likely to be used in a
given context. A weight set to zero in fact results in removing the corresponding
function or terminal from consideration during evolution (only in the specific
context, and not globally). For example, the user may specify that a given
argument of a particular function be quite unlikely to use recursion on itself,
without prohibiting recursion completely. It is this capability that is used in our
techniques – both use some runtime information to adjust these probabilities.

ASM - ADAPTATION OF MUTATION SETS BY JUDGING OFFSPRING
The AMS algorithm, presented below, compares the fitness of a parent with

its offspring. It then either increases or decreases the probability of the local
heuristic that was used to generate the offpring.

1. Run CGP to solve a particular problem, while starting with the user
provided constraints and heuristics (none if not given).

2. If crossover is selected to create an offspring (we consider both
offspring individually), perform the following:

a. Select a subtree to be inserted according to the current
heuristics for the local context where the subtree is being
inserted. This heuristic is denoted with hi.

b. Compute Δfi, the difference in fitness values of the offspring
with that of the receiving parent. Positive difference implies
that a better offspring is generated.

 3

c. Modify the specific heuristic hi, expressed as weight (before
normalized as probability), according to: wi += Δwc. We use a
reward technique such that if Δfi >0 then Δwc is a positive
constant, otherwise Δwc is a negative constant (we have
experimented with Δwc proportional to Δfi but the results were
similar).

3. If mutation is selected to create an offspring, perform the following:
a. Select a subtree to be removed.
b. Grow the new subtree according to the current heuristics for

the local contexts. Note each applied heuristic is denoted at hi
(multiple heuristics are required and a given heuristic can be
used multiple times ci).

c. Compute Δfi, the difference in fitness values of the offspring
with that of the receiving parent. A positive difference implies
that a better offspring is generated.

d. Modify each used heuristic hi, expressed as weight (before
normalized as probability) according to: wi += ciΔwm. Again,
if Δfi >0 then Δwm is a positive constant, otherwise Δwm is a
negative constant (again we experimented with Δwm
proportional to Δfi but the results were similar).

e. Observe that we used Δwm much smaller than Δwc simply
because single mutation involved using many heuristics at
once and the reward is shared among all heuristics.

ACE – AUTOMATIC CONSTRAINT EXTRACTION
This technique runs on the top of CGP. In other words, it utilizes complete

runs of CGP. To avoid statistical anomalies, ACE in fact can utilize a number
of independent CGP runs simultanbeously . The algorithm has already been
extended, but the results and descriptions will be presented separately.

ACE takes input parameters which determine the number of indepedent
runs, the number of CGP generations per run, and the number of iterations that
ACE is to run. The iterations are also stopped if no further significant
distribution change is detected. Other parameters determine the number of best
quality trees to be investigated from each CGP run, the total number of trees
selected from all the independent runs, as according to user-specific objectives,
and the objectives guiding the selection. At present, the selection can be based
on quality or size in any combination. The selected trees are investigated for the
distribution of functions and terminals, and the discovered distribution is fed
back into CGP to adjust the constraint weights. Weights falling below specific
threshold can also be dropped to 0 (thus becoming hard constraints).

For example, if ACE runs 10 independent runs, and it extracts the 15 best
quality trees from each run, it ends up with 150 trees at the end of the iteration.
If 20% of the trees are to be selected for investigation, and the objective is to
minimize size, the 30 smallest trees from the 150 quality trees are selected.
Distribution statistics from the 30 trees is computed, and it is fed back into the
next ACE iteration in the form of CGP weights (or just adjustments of the
weights).

ACE can start with no constraints or it can start with user-defined
constraints and initial heuristics.

EXPERIMENTS AND RESULTS
To illustrate both techniques, we selected the well known and studied 11-

multiplexer problem [1][3]. The 11-multiplexer problem is to discover the
boolean function that passes the correct data bit (out of eight bits d0…d7) when
fed three addresses (a0… a2). There are 2048 (211) possible combinations. Koza
[3] and others have used a set of four atomic functions to solve the problem:
if/else, and, or, and not, in addition to the data and address bits. This set is not
only sufficient but is also redundant. In (Janikow, 1996), we have shown that
operating with only if (sufficient by itself) dramatically improves the
performance by simply reducing the search space. Moreover, we have shown

 4

that the performance is further enhanced when we restrict the if’s condition
argument to test addresses only, while restricting the two action arguments to
select only data bits or recursive if.

Name Experiment Crossover/Reproduction/Mutation

E1 No AMS w/all operators 85/10/5%
E2 AMS w/crossover+rep 90/10/0 %
E3 AMS w/mutation+rep 0/10/90%
E4 AMS all operators 85/10/5%

Table 1: AMS experiment setup.

Figure 1: AMS experiments in practice.

For AMS, our objective was to determine if CGP can improve its run by
adjusting the heuristic weights. In addition, another objective was to evaluate the
utility of mutation and crossover for the technique. We used Δwc = 0.01 and Δwm
= 0.0005 for Δfi >0, and Δwc = –0.01 and Δwm = –0.0005 otherwise. We
performed two sets of different experiments. The first set, as defined in Table 1,
started with no constraints or heuristics and different operators while running
with and without AMS. The results are illustrated in Fig. 1. They indicate that
AMS is able to adapt the heuristics while running CGP so that the overalll
performance improves very significantly. The only case when AMS does not
show significant improvement is when it is run with mutation only (reproduction
accesses only global fitness as opposed to adapting local heuristics). This effect
was expected – a single mutation requires many heuristics yet there is only one
offspring. In crossover, on the other hand, one offspring is generated by one
heuristic.

1280

1408

1536

1664

1792

1920

2048

0 20 40 60 80 100
Generations

R
aw

 F
itn

es
s

0.005 0.02 0.01

(a)

1280

1408

1536

1664

1792

1920

2048

0 20 40 60 80 100
Generations

R
aw

 F
itn

es
s

0.0001 0.001 0.01

(b)
Figure 2: Effects of selecting different Δwc (a) and Δwm (b) in AMS.

1200
1400

1600

1800

2000

0 20 40 60 80 100

Generation

R
aw

 F
itn

es
s E1:Unconstrained

E2:AMS

E3:AMS

E4 : AMS

 5

The second set of experiments was designed to determine the influence of
some of the AMS parameters, namely Δwm and Δwc. The results are presented in
Fig. 2. As seen, the magnitude of crossover adjustment has little impact on the
resulting improvement in evolution speed. However, the magnitude of mutation
adjustment proves to be very important. For some values, the adjustments
produce no improvements over multiple generations, while for others, the effect
is always positive (0.0001 in this case). This verifies our previous intuition that
in this case of very limited information, when only the parent-child relationship
is observed, it is much more difficult to derive any heuristic information from
mutation due to its necessity to apply multiple heuristics before any feedback is
received. Some more sophisticated bucket brigade algorithms may prove more
beneficial.

To test the ACE technique, we conducted three different experiments with
three different extraction objectives: quality, size, and a mix of the two. All
experiments were conducted with 10 independent CGP runs, 10 iterations, and
all remaining parameters being the dafult CGP parameters (Janikow 1996).

Fig. 3 (left) illustrates the best quality tree from among the trees selected
for computing the distribution statistics at the end of every ACE iteration. As
can be seen, we gain perfect performance just after two iterations. When
optimizing for size or mix (size+quality), we may see a dip after iteration 6 –
size optimization may comprimize quality. Except for the dip, there seem to be
no apparent improvement after the saturation. However, this is not so. As
illustrated in Fig. 3 (right), the number of required generations for an iteration to
be successful keeps decreasing after that saturation (ieration 2).

Figure 3: Improvements due to ACE: best of iteration (left) and the
number of generations needed to solev the problem, per iteration (right).

The next question is that of the interpretation of the evolve heuristics. Fig. 4

illustrates the evolving distribution of the condition part of if . As stated before,
the best prior results were obtained while testing only addresses. Fig. 4 left
indicates that the evolved heuristics was to use address a1 and the function not
in the condition part. However, the same figure on the right indicates that the
remaining two addresses, a0 and a2, were discovered to be used indirectly
through the argument of the not function. Thus, all three addresses are tested by
if either directly or indirectly. The remaining functions are terminals have been
automatically degraded to zero total weight and thus removed from
consideration.

CONCLUSION AND FUTURE RESEARCH
We have presented a new methodology for adapting the representation of

solutions in GP. The methodology is based on CGP, which allows heuristics to
be used for biasing the representation space. The heuristics are local, that is they
differentiate function/terminals to be used in specific parent-child contexts. In
the AMS technique, these heuristics are adapted by observing the utility of
specific heuristics when used to create offspring in crossover and mutation and
when judged by the relative fitness of the offspring as related to that of the
parent. This particular technique is very simple yet still able to generate
significant improvements on the speed of evolution of solutions. In the ACE

1856
1920
1984
2048

1 3 5 7 9
Iteration

H
its

Optimize
d for
Quality

Optimize
d for Size

Optimize
d for Both

0

50

100

1 3 5 7 9

Iteration

B
es

t G
en

er
at

io
n

 6

technique, the heuristics are adapted by evaluating the distribution of labels in
the best trees selected from a pool of independent CGP runs. This technique uses
more reliable information, and it seems to produce much better results yet at a
higher computational cost. Further improvements and results will be presented
separately.

Figure 4: Direct (left) and indirect distribution on the condition part of if.

REFERENCES
Janikow, C.Z., 1996. "A Methodology for Processing Problem Constraints in Genetic

Programming", Computers and Mathematics with Applications, Vol. 32, No. 8, pp. 97-113,
1996.

Janikow, C.Z., 1999. "CGP 2.1 User’s Manual”.
Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by Natural Selection.

The MIT Press, Cambridge, MA.
Bonzaf, et al. 1998. Genetic Programming: an Introduction. Morgan Kaufmann.

if test argument

0

0.2

0.4

0.6

1 3 5 7 9
Iteration

W
ei

gh
ts

not
a1

not argument

0

0.2

0.4

0.6

1 3 5 7 9

Iteration

W
ei

gh
ts

a0
a2

