
Chapter 1

ACGP: ADAPTABLE CONSTRAINED
GENETIC PROGRAMMING

Cezary Z. Janikow
Department of Math and CS
UMSL
janikow@umsl.edu

Abstract GP requires that all functions/terminals (tree labels) be given apriori.
In the absence of specific information about the solution, the user is
often forced to provide a large set, thus enlarging the search space —
often resulting in reducing the search efficiency. Moreover, based on
heuristics, syntactic constraints, or data typing, a given subtree may
be undesired or invalid in a given context. Typed GP methods give
users the power to specify some rules for valid tree construction, and
thus to prune the otherwise unconstrained representation in which GP
operates. However, in general, the user may not be aware of the best
representation space to solve a particular problem. Moreover, some
information may be in the form of weak heuristics. In this work, we
present a methodology, which automatically adapts the representation
for solving a particular problem, by extracting and utilizing such heuris-
tics. Even though many specific techniques can be implemented in the
methodology, in this paper we utilize information on local first–order
(parent–child) distributions of the functions and terminals. The heuris-
tics are extracted from the population by observing their distribution
in ”better” individuals. The methodology is illustrated and validated
using a number of experiments with the 11-multiplexer. Moreover, some
preliminary empirical results linking population size and the sampling
rate are also given.

Keywords: Genetic Programming, representation, learning, adaptation, heuristics

1. Introduction
Genetic Programming (GP), proposed by Koza [4], is an evolution-

ary algorithm, and thus it solves a problem by utilizing a population of

2

solutions evolving under limited resources. The solutions, called chro-
mosomes, are evaluated by a problem–specific, user–defined evaluation
method. They compete for survival based on this fitness, and they un-
dergo simulated evolution by means of crossover and mutation operators.

GP differs from other evolutionary methods by using different repre-
sentation, usually trees, to represent potential problem solutions. Trees
provide a rich representation that is sufficient to represent computer pro-
grams, analytical functions, and variable length structures, even com-
puter hardware [4, 1]. The user defines the representation space by
defining the set of functions and terminals labelling the nodes of the
trees. One of the foremost principles is that of sufficiency [4], which
states that the function and terminal sets must be sufficient to solve the
problem. The reasoning is obvious: every solution will be in the form
of a tree, labelled only with the user–defined elements. Sufficiency will
usually force the user to artificially enlarge the sets to ensure that no im-
portant elements are missing. This unfortunately dramatically increases
the search space. Even if the user is aware of the functions and termi-
nals needed in a solution, he/she may not be aware of the best subset
to solve a subproblem (that is, used locally in the tree). Moreover, even
if such subsets are identified, questions about the specific distribution of
the elements of the subsets may arise — should all applicable functions
and terminals have the same uniform probability in a /inxxprobability
distribution given context? For example, a terminal t may be required,
but never as an argument to function f1, and maybe just rarely as an ar-
gument to function f2. All of the above are obvious reasons for designing
methodologies for:

processing such constraints and heuristics,

automatically extracting those constraints and heuristics.

Methodologies for processing user constraints (that is, strong heuris-
tics) have been proposed over the last few years: structure–preserving
crossover [4], type–based STGP [5]), type, label, and heuristic–based
CGP [2], and syntax–based CFG–GP [8].

This paper presents a methodology, called Adaptable Constrained GP
(ACGP), for extracting such heuristics. It is based on CGP, which allows
for processing syntax, semantic, and heuristic–based constraints in GP
[2]). In Section 2, we briefly describe CGP, paying special attention to
its role in GP problem solving as a technology for processing constraints
and heuristics. In Section 3, we introduce the ACGP methodology for
extracting heuristics, and then present the specific technique, distribu-
tion statistics, that was implemented for the methodology. In Section 4,

ACGP: Adaptable CGP 3

we define the 11-multiplexer problem that we use to validate the tech-
nique, illustrate the distribution of functions/terminals during evolution,
and present some selected results in terms of fitness curves and extracted
heuristics. Moreover, we also present some interesting empirical results
linking population size, ACGP, and sampling rate for the distribution.
Finally, in concluding Section 5, we elaborate on current limitations and
future work needed to extend the technique and the methodology.

2. CGP Technology
Even in early GP applications, it became apparent that functions and

terminals should not be allowed to mix in an arbitrary way. For example,
a 3–argument if function should use, on its condition argument, a sub-
tree that computes a Boolean and not a temperature or angle. Because
of the difficulties in enforcing these constraints, Koza has proposed the
principle of closure [4]), which allows any arity–consistent labelling, often
accomplished through elaborate semantic interpretations. The working
environment for such a GP system is illustrated in Figure 1.1a — ini-
tialization, and then mutation and crossover choose from the complete
set of functions and terminals, with uniform distribution.

Reproduction

Mutation/Crossover

Pi
Pi+1

Un-pruned uniform

distribution

Initialization
Functions

Terminals

Figure 1.1a. Working environment
for a standard GP.

Reproduction

Mutation/Crossover

Pi
Pi+1

Pruned uniform

distribution

Initialization

Functions

Terminals

Constraints

Figure 1.1b. Working environment
for a typed GP.

Structure–preserving crossover was introduced as the first attempt to
handle some strong constraints [4] (the initial primary initial intention
was to preserve structural constraints imposed by automatic modules
— ADFs). In the nineties, three independent generic methodologies
were developed to allow problem–independent strong constraints on tree
construction. Montana proposed STGP [5], which uses types to control
the way functions and terminals can label local tree structures. For
example, if the function if requires a Boolean as its first argument, only
Boolean–producing functions and terminals would be allowed to label the

4

root of that subtree. Janikow proposed CGP, which originally required
the user to explicitly specify allowed and/or disallowed labels in different
contexts [2]. These local constraints could be based on types, but also
on some problem specific semantics. In v2.1, CGP also added explicit
type–based constraints, along with polymorphic functions. Finally, those
interested more directly in program induction following specific syntax
structure, have used similar ideas in CFG–based GP [8].

CGP relies on closing the search space to the subspace satisfying the
desired constraints. That is, only trees valid with respect to the con-
straints are ever processed. This is helped by the guarantee that all oper-
ators produce constraints–valid offspring from constraints–valid parents
[2]. The allowed constraints, type–based, or explicitly provided, are only
those that can be expressed in terms of first–order constraints (that is,
constraints expressed locally between a parent and one of its children).
These constraints are processed with only minimal overhead (constant
for mutations, one additional traversal per crossover parent) [2].

The working environment for a typed–based system such as the ones
mentioned above is illustrated in Figure 1.1b — the representation space
is locally pruned; however, the remaining elements are still subject to
the same uniform application distribution.

CGP has one additional unique feature. It allows constraints to be
weighted, in effect changing hard constraints into soft heuristics. For
example, it allows the user to declare that some function f , even though
it can use either f1 or f2 for its child, it should use f1 more likely.
Accordingly, the CGP working application environment becomes that of
Figure 1.2a — with the final distribution of functions/terminals/subtrees
for initialization, mutation, and crossover becoming non-uniform. This
efficient technology is utilized in ACGP to express, process, and update
the heuristics during evolution.

Previous experiments with CGP have demonstrated that proper con-
straints/heuristics can indeed greatly enhance the evolution, and thus
improve problem–solving capabilities. However, in many applications,
the user may not be aware of those proper constraints or heuristics.
For example, as illustrated with the 11-multiplexer problem, improper
constraints can actually reduce GPs search capabilities, while proper
constraints can increase them greatly [2]. ACGP is a new methodology
allowing automatic updates of the weighted constraints, or heuristics,
to enhance the search characteristics with respect to some user–defined
objectives (currently tree quality and size).

ACGP: Adaptable CGP 5

Reproduction

Mutation/Crossover

Pi
Pi+1

Pruned non-uniform

distribution

Initialization

Functions

Terminals

Constraints

Heuristics

Figure 1.2a. Working environment
for CGP.

Reproduction

Mutation/Crossover

Pi
Pi+1

Pruned non-uniform

distribution

Initialization

Functions

Terminals

Constraints

Heuristics

Heuristics

Figure 1.2b. Working environment
for ACGP.

3. ACGP Methodology and the Local
Distribution Technique

CGP preprocesses its input constraints into weighted mutation sets:
the mutation set for a function f is the set of functions and terminals
that can label the children of f (separately for all children). CGP v2.1
uses more elaborate mechanisms to process types and polymorphic func-
tions. However, because the current ACGP methodology has not been
extended to utilize those features, in what follows we will not be con-
cerned with types and polymorphic functions (just plain constraints and
heuristics).

ACGP v1 is a methodology to automatically modify the weights on
typed mutation sets in CGP v1, thus to modify the heuristics during
the evolution. Its working environment is presented in Figure 1.2b —
the user many still provide initial constraints and heuristics, but these
will be modified during the run. Of course, the obvious question is what
technique to follow to do so. We have already investigated two ACGP
techniques that allow such modifications. One technique is based on ob-
serving the fitness relationship between a parent and its offspring created
by following specific heuristics. The heuristics are strengthened when the
offspring improves upon the parent. A very simple implementation of
this technique was shown to increase GP problem solving capabilities.
However, mutation was much more problematic and not performing as
well as crossover, due to the obvious bucket-brigade problem — in mu-
tation, one offspring tree is produced by a number of mutations before
being evaluated [3].

The second technique explores the distribution statistics of the first–
order contexts (that is, one parent — one child) in the population. Ex-
amples of such distributions are presented in Section 4. This idea is

6

somehow similar to that used for CFG–based GP as recently reported
[7], as well as to those applied in Bayesian Optimization Network [6],
but used in the context of GP and functions/terminals and not binary
alleles.

ACGP Flowchart and Algorithm
ACGP basic flowchart is illustrated in Figure 1.3a. ACGP works in

iterations — iteration is a number of generations ending with extract-
ing the distribution and updating the heuristics. During a generation on
which iteration does not terminate, ACGP runs just like GP (or CGP).
However, when an iteration terminates, ACGP extracts the distribution
information and updates the heuristics. Moreover, afterwards, the new
population can be regrown from scratch (but utilizing the new heuris-
tics) if the regrow option is set. The regrowing option seems beneficial
with longer iterations, where likely some material gets lost before being
accounted for in the distributions, and thus needs to be reintroduced by
regrowing the population (as will be shown in Section 4).

The distribution information is collected from just the best samples.
This information is subsequently used to modify the actual mutation
set weights (the heuristics). The modification can be gradual (slope
parameter on) or a complete replacement (slope off).

Initialize P

Evaluate P

Iteration

complete?

selection
mutation

crossover

Extract

distribution

Update

heuristics

Regrow? Regrow P

N Y

N Y

Figure 1.3a. ACGP basic flowchart
loop.

P0

P1

P2

PK

Generation

Iteration

0 1 2 3 4 ...

0 1 2 ...

U
p

d
a

te
 h

e
u

ri
s
ti
c
s

Heuristics

Figure 1.3b. ACGP1.1 iterations.

To improve the statistics, ACGP can use simultaneous multiple in-
dependent populations. However, only one set of heuristics is currently
maintained, as seen in Figure 1.3b. ACGP can in fact correlate the pop-
ulations by exchanging chromosomes. We have not experimented with
this option, nor we did with populations maintaining separate heuristics

ACGP: Adaptable CGP 7

— which likely would result in solving the problem in different subspaces
(via different constraints and heuristics) by different populations.

All trees are ordered with 2-key sorting, which compares sizes (ascend-
ing) if two fitness values are relatively similar, and otherwise compares
fitness (descending). The more relaxed the definition of relative similar-
ity, the more importance is placed on sizes. The best trees (according
to a percentage parameter) from individual populations are collected,
resorted, and the final set is finally selected. This set is examined to
extract the distribution and update the heuristics.

Distribution Statistics

f1

f2 f1

f1 t1

f2 t1

Figure 1.4. Sample partial GP tree.

The distribution is a 2-dim matrix counting the frequency of parent-
child appearances. For example, if the tree fragment of Figure 1.4 is in
the selected pool, its partial distribution matrix would be as illustrated
in Table 1.1. If these were the only extracted statistics, and the slope
was off, at the end of an iteration heuristics would be updated so that
if there is a node labelled f1, and its right child needs a new subtree
from mutation (initialization in regrow) or crossover, the tree brought
by crossover (or the node generated by mutation) would be 1/3 likely to
be labelled with f1 and 2/3 with t1.

Table 1.1. Examples of extracted distributions

f1 f2 t1 t2

Function f1 arg1 1 2 0 0
Function f1 arg2 1 0 2 0

8

Off–line vs. On–line Environment
ACGP methodology can be used in two different settings. If our goal

is to extract some knowledge about a particular problem or domain,
to collect domain heuristics into a library , or to learn some heuristics
for a simpler version of a problem in order to improve problem–solving
capabilities when solving a more complex instance of the problem —
we may run the system in off–line manner, meaning the heuristics are
not extracted until the evolution converges. Iterations spanning over
multiple generations are examples of these approaches.

On the other hand, if our goal is to solve a particular problem with the
minimum effort and maximum speed, we would extract the heuristics as
often as possible, possibly every generation — thus shortening iteration
length to just one generation. This is the on–line environment.

Most of the experiments reported in Section 4 were conducted off-line,
with just a few on-line results.

4. Illustrative Experiments
To illustrate the methodology and the distribution technique, we use

the 11-multiplexer problem. Unless otherwise noted, all reported experi-
ments used 1000 trees per population, the standard mutation, crossover,
and reproduction operators at the rate of 0.10, 0.85, and 0.05, tourna-
ment (7) selection, and for the sake of sorting, trees with fitness values
differing by no more than 2% of the fitness range in the population were
considered the same on fitness (and thus ordered ascending by size).
Moreover, unless otherwise noted, all results are averages of the best of
five independent populations while executed with a single set of heuris-
tics.

Illustrative Problem: 11-multiplexer
To illustrate the behavior of ACGP, we selected the well–known 11-

multiplexer problem first introduced to GP in [4]. This problem is not
only well known and studied, but we also know from [2] which specific
constraints improve the search efficiency — thus allowing us to qualita-
tively and quantitatively evaluate the learned here heuristics.

The 11-multiplexer problem is to discover a function that passes the
correct data bit (out of eight d0−d7) when fed three addresses (a0−a2).
There are 2048 possible combinations. Koza (1994) has proposed a set of
four atomic functions to solve the problem: 3-argument if , 2-argument
and, or, and 1-argument not, in addition to the data and address bits.
This set is not only sufficient but also redundant. In [2] it was shown

ACGP: Adaptable CGP 9

that operating under a sufficient set, such as not with and, degrades
the performance, while operating with only if (sufficient by itself) and
possibly not improves the performance. Moreover, it was shown that
the performance is further enhanced when we restrict the if condition
argument to choose only addresses, straight or negated (through not),
while restricting the two action arguments to select only data or recursive
if [2]. Again, this information is beneficial as we can compare ACGP–
discovered heuristics with these previously identified and tested.

First, we trace a specific off–line run, observing the population distri-
bution dynamics, the change in fitness, and the evolved heuristics. Then,
we empirically test the relationship between iteration length, regrowing
option, and fitness. Finally, we empirically test the relationship between
population size, sampling rate, and the resulting fitness, for an on–line
case.

Off-line Experiment
In this section we experiment with regrow on, iteration=25 genera-

tions, 10 sequential iterations, gradual update of heuristics (slope on),
and 4% effective rate for selecting sorted trees for distribution statistics.

Distribution. We trace the distribution changes separately for
the entire population (average of 5 populations is shown) and the se-
lected best samples. Figure 1.5a illustrates the distribution change in
a population when compared with the initial population. As seen, the
distribution difference grows rapidly (each population diverges from the
initial one), but eventually saturates.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250

Generations

D
is

tr
ib

u
ti
o
n

whole population

best of populations

Figure 1.5a. Distribution of the if
function as a parent, with the initial
population as the reference.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250

Generations

D
is

tr
ib

u
ti
o

n

whole population

best of populations

Figure 1.5b. Distribution of the if
function as a parent, with the previ-
ous generation as the reference.

Even though the distribution diverges from that of the initial pop-
ulation, does it converge to a single set of heuristics? The answer is

10

provided in Figure 1.5b — it illustrates the same distribution differ-
ence when compared to the previous population. As seen, the changes
diminish over subsequent iterations, except of narrow spikes when the
populations are regrown. Therefore, the heuristics do converge.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25

Generations

A
v
a

ra
g
e

 F
it
n

e
s
s

Iteration #0

Iteration #1

Iteration #2

Iteration #3

Iteration #4

Iteration #5

Iteration #9

Figure 1.6. Fitness growth, shown separately for each iteration (slope on).

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25

Generations

A
v
e
ra

g
e
 f

it
n

e
s
s

Iteration #0

Iteration #1

Iteration #2

Iteration #3

Iteration #4

Iteration #5

Iteration #9

Figure 1.7. Fitness growth, shown separately for each iteration (slope off).

Fitness. The next two figures illustrate the resulting fitness (average
of the best of each of the five populations) over sequential iterations:
slope on (Figure 1.6), resulting in gradual changes in the heuristics, and
slope off (Figure 1.7), resulting in a greedy instantaneous replacement
of heuristics on every iteration. In both cases, subsequent iterations
both start with better initially regrown populations (according to the

ACGP: Adaptable CGP 11

newly acquired heuristics) and offer faster learning curves. However, the
more greedy approach (Figure 1.7) offers better initializations but also
saturates below 100% - one of the five populations would consistently
get stuck in a local minimum.

Altogether, we may see that off–line learning does improve subsequent
runs. Thus, ACGP can learn meaningful heuristics (as also illustrated
in the next section), and improve on subsequent runs. Later on we will
see that ACGP can improve with on–line learning as well.

Heuristics. Recall that [2] has empirically determined that the best
fitness curves were obtained when restricting the function set to use only
if and not, with the test argument of if using only a0 − a2 straight or
negated, and with the other two arguments of if using recursive if and
the data bits only.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250

Generations

H
e
u

r
is

ti
c
s

not

a0

a1

a2

others

Figure 1.8. Direct heuristics on the test argument of if .

Figure 1.8 traces the evolving heuristics on the test argument over
the course of the ten iterations. As illustrated, if has discovered to test
addresses. However, only a1 is highly represented, with a2 and a0 lower,
respectively. This does not seem like the most effective heuristic. How-
ever, the puzzle is solved when we consider that not is also allowed as
an argument. When considering indirect heuristics (the evolved heuris-
tics for not, Figure 1.9), we can see that a0 and a2 are supported, with
reversed proportions, and with a1 virtually absent - since it was already
highly supported directly.

Figure 1.10 illustrates the evolved heuristics for the action arguments
of if . As seen, recursion is highly evolved (to build deeper trees with

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250

Generations

H
e

u
r
is

ti
c

s

not

a0

a1

a2

others

Figure 1.9. Indirect heuristics on the test argument of if (via not).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250

Generations

H
e

u
r
is

ti
c

s

if

d0 - d7

others

Figure 1.10. Combined heuristics on the two action arguments of if .

multiple ifs), and all data bits are supported with the other labels all
virtually disappeared.

Varying Iteration Length and Regrow
All the results shown so far were obtained with regrow and off-line

(iteration=25). The next question we set to assess is the impact of the
iteration length and the regrow option on the problem solving capabil-
ities.

We set four separate experiments, with iteration=1, 5, 10, and 25
generations, respectively. In all cases we used slope on and off without
noticeable differences. We used both regrow (what = 2) and no regrow
(what = 1), and compared against a baseline plain GP (what = 0).

ACGP: Adaptable CGP 13

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

Generations

A
v
e

ra
g
e

 f
it
n
e

s
s

what=2, slope=1

what=1, slope=1

what=2, slope=0

what=1, slope=0

what=0

Figure 1.11. Fitness growth for iteration = 1 generation.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

Generations

A
v
e
ra

g
e
 f

it
n

e
s
s

what=2, slope=1

what=1, slope=1

what=2, slope=0

what=1, slope=0

what=0

Figure 1.12. Fitness growth for iteration = 5 generations.

The results are shown in Figure 1.11, 1.12, 1.13 and Figure 1.14. On–
line runs, as seen in the top figures, suffer from the regrow option, but
those without regrow beat the standard GP. In fact, the lengthened iter-
ation to 5 generations does provide quality solutions even with regrow,
but in one case it takes longer to obtain those solutions.

Off-line runs, as seen in the second figure, clearly benefit from regrow,
especially for the longer iterations. Again, this may be justified by al-
lowing sufficient time to converge to meaningful heuristics, but with this
convergence it is advantageous to restart with a new population to avoid
clear saturation.

As the iteration length decreases, regrowing causes more and more
harm. This is apparent - there is no time for the GP to explore the
space, and the run becomes a heuristics-guided random walk.

14

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

Generations

A
v
e
ra

g
e
 f

it
n

e
s
s

what=1, slope=0

what=2, slope=0

what=1, slope=1

what=2, slope=1

what=0

Figure 1.13. Fitness growth for iteration = 10 generations.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

Generations

A
v
e

ra
g
e

 f
it
n
e

s
s

what=1, slope=0

what=2, slope=0

what=1, slope=1

what=2, slope=1

what=0

Figure 1.14. Fitness growth for iteration = 25 generations.

Varying Population and Sampling Sizes
All the previous runs were conducted with the assumed population

size 1000 and effective sampling rate 4% for the trees contributing to
the heuristics.

In this section, we empirically study the relationship between popu-
lation size, sampling rate, and the resulting fitness. All results in this
section were obtained with on–line runs (iteration=1 generation).

Figure 1.15 illustrates the average fitness of the best individuals from
the 5 populations, after 50 generations, as a function of the population
size. The top curve is that of a plain GP. As expected, the 50 genera-
tions lead to better fitness with increasing population size, due to more
trees sampled. ACGP under–performs, but this was expected — Figure
1.11 already illustrated that regrow in combination with iteration=1 is

ACGP: Adaptable CGP 15

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

75 125 250 500 1000 2000 5000 10000

Population size

A
v
e

ra
g
e

 b
e
s
t
fi
tn

e
s
s

0.0049%

0.16%

4%

9%

25%

what=0

Figure 1.15. Average fitness after 50 generations with regrow.

0.7

0.75

0.8

0.85

0.9

0.95

1

75 125 250 500 1000 2000 5000 10000

Population size

A
v
e
ra

g
e
 b

e
s
t

fi
tn

e
s
s

0.0049%

0.16%

4%

9%

25%

what=0

Figure 1.16. Average fitness after 50 generations no regrow.

destructive. One other observation is that decreasing effective sampling
rate does improve the performance, which was observed especially for
the larger populations.

Figure 1.16 presents the same fitness curves but for no regrow. As
seen, ACGP does beat GP, especially for the lower sampling rates. An-
other important observation is that ACGP clearly beats GP for very low
population sizes.

The same can be seen in Figure 1.17, which presents the same fitness
learning for no regrow, but presented differently. The figure illustrates
the average number of generations needed to solve the problem with
at least 80% fitness. As seen, the baseline GP fails to do so for the
smallest population of 75, while ACGP accomplishes that, especially
with the small–sampling runs. These results, along with the others,
indicate that ACGP can outperform GP especially when working with

16

0

50

100

150

200

250

75 125 250 500 1000 2000 5000 10000

Population size

A
v
e

ra
g
e

 n
u
m

b
e
r

o
f

g
e

n
e

ra
ti
o

n
s

0.0049%

0.16%

4%

9%

25%

what=0

Figure 1.17. The number of generations needed to solve for 80% for varying popu-
lation sizes.

smaller populations. One may speculate that ACGP is less dependent
on population size — to be studied further in the future.

5. Summary
We have presented the ACGP methodology for automatic extraction

of heuristics in Genetic Programming. It is based on the CGP technol-
ogy, which allows processing such constraints and heuristics with mini-
mal overhead. The ACGP algorithm implements a technique based on
distribution of local first–order (parent–child) heuristics in the popula-
tion.

As illustrated, ACGP is able to extract such heuristics to an advan-
tage, and thus it performs domain learning while solving a problem at
hand. Moreover, the extracted heuristics match those previously identi-
fied for this problem by empirical studies.

With the extracted heuristics, ACGP clearly outperforms a standard
GP on subsequent runs (subsequent iterations) in the off–line settings,
sometime solving the problem in the initial population. Moreover, with
the proper setting, ACGP can also outperform GP even with the on–line
settings, and it seems to be more robust with smaller population sizes.

ACGP v1 does rely exclusively on the first–order heuristics. By evalu-
ating the resulting heuristics, one may say that the 11–multiplexer prob-
lem does possess such simple heuristics. For more complex problems, we
may need to look at higher–order heuristics, such as those taking the
siblings into account, or extending the dependency to lower levels. Such
extensions can be accomplished by extending the distribution mecha-
nism to compute deeper–level distributions, or by employing a Bayesian
network or decision trees to the first-order heuristics.

ACGP: Adaptable CGP 17

Topics for further researched and explored include:

Extending the technique to deeper-level heuristics.

Using the same first–order heuristics, combined with the Bayesian
network or a set of decision trees, to allow deeper-level reasoning.

Linking population size with ACGP performance and problem
complexity.

Scalability of ACGP.

Varying the effect of distribution and the heuristics at deeper tree
levels, or taking only expressed genes into account while extracting
the heuristics.

The resulting trade–off between added capabilities and additional
complexity when using deeper heuristics (CGP guarantees its low
overhead only for the first–order constraints/heuristics).

Other techniques for the heuristics, such as co–evolution between
the heuristics and the solutions.

Building and maintaining/combining libraries of heuristics with
off–line processing, to be used in on–line problem solving.

References

[1] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D.
Francone. Genetic Programming – An Introduction; On the Auto-
matic Evolution of Computer Programs and its Applications. Morgan
Kaufmann, dpunkt.verlag, January 1998.

[2] Cezary Z. Janikow. A methodology for processing problem con-
straints in genetic programming. Computers and Mathematics with
Applications, 32(8):97–113, 1996.

[3] Cezary Z. Janikow and Rahul A Deshpande. Adaptation of represen-
tation in genetic programming. In Cihan H. Dagli, Anna L. Buczak,
Joydeep Ghosh, Mark J. Embrechts, and Okan Ersoy, editors, Smart
Engineering System Design: Neural Networks, Fuzzy Logic, Evolu-
tionary Programming, Complex Systems, and Artificial Life (AN-
NIE’2003), pages 45–50. ASME Press, 2-5 November 2003.

[4] John R. Koza. Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge Massachusetts, May
1994.

18

[5] David J. Montana. Strongly typed genetic programming. Evolution-
ary Computation, 3(2):199–230, 1995.

[6] Martin Pelikan and David Goldberg. Boa: the bayesian optimiza-
tion algorithm. In Wolfgang Banzhaf, Jason Daida, Agoston E.
Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E.
Smith, editors, Proceedings of the Genetic and Evolutionary Compu-
tation Conference, volume 1, pages 525–532, Orlando, Florida, USA,
13-17 July 1999. Morgan Kaufmann.

[7] Y. Shan, R. McKay, H. Abbass, and D. Essam. Program evolution
with explicit learning: a new framekwork for program automatic syn-
thesis. Technical report, School of Computer Science, University of
New Wales, 2003.

[8] P. A. Whigham. Grammatically-based genetic programming. In
Justinian P. Rosca, editor, Proceedings of the Workshop on Genetic
Programming: From Theory to Real-World Applications, pages 33–
41, Tahoe City, California, USA, 9 July 1995.

