
Adaptable Representation in GP

Cezary Z Janikow
Department of Math and CS

UMSL
St Louis, MO 63121

janikow@umsl.edu

ABSTRACT
Genetic Programming uses trees to represent chromosomes. The
user defines the representation space by defining the set of
functions and terminals to label the nodes in the trees. The
sufficiency principle requires that the set be sufficient to label the
desired solution trees, often forcing the user to enlarge the set,
thus also enlarging the search space. Structure-preserving
crossover, STGP, CGP, and CFG-based GP give the user the
power to reduce the space by specifying rules for valid tree
construction, based on types, syntax, and heuristics. These rules
in effect change the representation. However, in general the user
may not be aware of the best representation, including heuristics,
to solve a particular problem. Last year, ACGP methodology was
introduced for extracting local problem-specific heuristics, that is
for learning a local model of the problem domain. ACGP
discovers representation, in the space of probabilistic
representations, one that improves the search itself and that
provides the user with heuristics about the domain. This paper
discusses and illustrates the probabilistic representation.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

I.2.6 [Artificial Intelligence]: Learning

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Design, Experimentation.

Keywords
Genetic Programming, Heuristics, Representation

1. INTRODUCTION
Evolutionary computation techniques solve a problem by utilizing
a population of solutions evolving under limited resources. The
solution chromosomes are evaluated by a problem-specific user-

defined evaluation method. They compete for survival based on
this fitness, and they undergo simulated evolution by means of
crossover and mutation operators.

Genetic Programming (GP), introduced by Koza [12] differs from
other evolutionary methods by mainly using trees to represent
potential solutions. Trees provide rich representation that is
sufficient to represent computer programs, analytical functions,
variable length structures, even computer hardware [1][12]. The
user defines the representation space by defining the set of
functions and terminals labeling the nodes of the trees. One of the
foremost principles is that of sufficiency [12], which states that the
function and terminal sets must be sufficient to express a solution
to a problem. The reason is obvious: every solution will be in the
form of a tree, labeled only with the user-defined elements.
Sufficiency usually forces the user to enlarge the sets of functions
and terminals, to ensure the inclusion of the necessary atomic
labels. This unfortunately bloats the representation and increases
the search space.

GP representation does not place any preferences on any specific
tree that can be instantiated. Selection forces the search to diverge
into better payoff regions. Then, GP searches the space in
genotype neighborhoods of these regions. However, some regions
are better than others. McPhee with Hopper [14], and Burke [3]
analyzed the effect of the root node selection on GP, which in fact
amounts to selection of specific subspace. Hall and Soule [5] have
studied the phenomenon more extensively and have concluded
that the choice of the root node has a very significant impact on
the solutions generated, and that fixing the root node properly
amounts to limiting the search space needed to be searched. Daida
has shown that later GP generations introduce little variation into
the structure of the generated trees [4], indicating that these later
generations search a smaller subspace of the search space.
Langdon has shown that GP typically searches only a well
defined region of the potential search space [13]. Thus, GP itself
selects better genotype regions, or can be forced to do so.
However, very little research has been devoted to such design
issues beyond the root node. Heuristics can be used for the
purpose. Global heuristics, such as the choice of the root, provide
for coarse level subspace preference, while local heuristics
provide to finer preferences. There are two kinds of heuristics that
can be available in a problem domain: weak and strong. Strong
heuristics are in fact constraints, that is they impose specific rules.
Weak constraints are, on the other hand, stochastic preferences.
Using such heuristics amounts to changing the otherwise uniform
GP representation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006…$5.00.

Processing arbitrary heuristics is a very complex issue. Some
methods have been developed over the years. Structure-
preserving crossover was introduced as the first attempt [12], with

the primary initial intention to preserve structural constraints
imposed by automatic modules ADFs. It was capable of
processing very limited forms of strong constraints. In the
nineties, three independent more generic methodologies have
been developed to allow problem-independent constraints on the
tree construction. Strongly Typed GP (STGP) [15] processes
strong constraints based on data types, along with overloaded
functions. Context-free based GP (CFG-GP) [17] allows
processing strong context-free constraints, that is syntax rules.
Some more recent research allows processing and even
generating weak constraints [2].
Constrained GP (CGP) allows the same, that is processing both
strong and weak constraints, on arbitrary trees rather than syntax
trees, along with overloaded functions [6][11]. In 2003, a new
methodology, Adaptable CGP (ACGP) was introduced, which
allows automatic extraction of problem-specific heuristics. At
present ACGP works only with local-level heuristics, so called
first-order [8][9]. However, even these limited heuristics have
been shown to improve GP search properties quite substantially
[8][9][10].
In section 2 we discuss the GP representation, and in section 3 we
discuss how weak and strong constraints affect it. In section 4 we
present some illustrations of ACGP heuristics and their effect on
GP problem solving.

2. GP REPRESENTATION AND SEARCH
SPACE
The search space of GP is a 2-dimensional space, theoretically
unbounded but practically bounded in both dimensions. First,
there is the space of unlabeled (uninstantiated) tree structures.
Placing the structures into equivalence classes by size, and
ordering them by the number of nodes, gives the first unbounded
dimension. However, GP usually imposes some restriction on the
number of nodes (directly, or indirectly by depth limits). This
creates a bound. Second, a particular unlabeled tree structure can
be instantiated in a number of ways. This is again unbounded if
terminals include ephemeral constants. However, given computer
representation, even this dimension is bounded. This is illustrated
in figure 1. The bounded area is the search space, spanned by the
given representation (functions and terminals).

In GAs, where the choice of genetic operators is much richer, the
question of representation cannot be discussed without reference
to operators, because two representations, given some specific
properties, can produce equivalent search given some relationship

between the operators [7]. However, most GP systems use the
same operators of reproduction, crossover, and mutation/uniform
mutation. Therefore, the question of representation becomes much
more important.
The representation space spanned as in figure 1 is uniform. That
is, a given node can be labeled with any arity-consistent function
or terminal. This is not always desirable, beneficial, or even valid.
During evolution GP “learns” to adjust the uniform space, by
searching more profitable regions due to selection. However,
mutation always labels its subtree using the same label set as used
in the initial random population, thus disregards this information
completely. Crossover does better as it only selects subtrees from
the more profitable regions, but because it takes the subtrees out
of context it often leads to subspaces already disregarded by
selection. Thus, both operators can take a tree from the better
payoff region and produce a tree outside the region.
Figure 2 illustrates the behavior of GP – the mutation and
crossover do not use nor learn any information (crossover only
partially utilizes selection information).

Figure 2. GP in action.

3. RESTRICTING THE
REPRESENTATION WITH STRONG AND
WEAK CONSTRAINTS

In
st

an
tia

tio
ns

Regions pruned out

Si
ze

 li
m

it

As mentioned in section 1, some techniques have been developed
to impose strong constraints on GP, including STGP, CFG-based
GP, and CGP. They all use different means for imposing the
constraints, but the end result is the same – they impose local or
global constraint on possible instantiations of GP trees (indirectly
they may also limit the number of uninstantiated tree structures).
Therefore, the representation changes. For example, assume that
functions and terminals are F={f1,f2} (both unary) and
T={t1,t2}. Suppose we want to prevent f1 from using t1 as its
child, a strong constraint. We may ensure that no initial trees
invalidate this constraint. Or selection can discover this
constraint, if indeed beneficial, by removing trees which use f1-

Figure 1. GP 2-D search space spanned by given functions
and terminals.

Figure 3. GP 2-D search space pruned by some strong
constraints.

Uninstantiated structures

In
st

an
tia

tio
ns

Si
ze

 li
m

it

Some uninstantiated tree

All instantiations of
this tree

Better payoff
region due to
selection

Uninstantiated structures

>t1 subtrees. However, as stated before, mutation can easily
produce a tree with the f1->t1 subtree. Moreover even in the
absence of mutation, and the absence of trees with f1->t1
subtrees, crossover can move a t1 leaf to become a child of a node
labeled f1, again generating the undesired f1->t1 subtree. The
above mentioned methodologies prevent this from happening,
thus effectively removing chunks of the search space of figure 1.
The resulting GP search space as illustrated in figure 3.
CGP provides the same potentials with strong constraints, by
types or by explicit listings. However, it also allows the weak
local constraints (plus weak root constraints). CGP can change the
genotype representation space by stating that the root node can be
labeled with f1 or f2 with probability of 80% and 20%,
respectively. Or it can also state that f2 cannot use f1 (strong
constraint) and it can use t1 or t2 with probability of 70% and
30%. This probabilistic representation changes the white search
space, of figure 3, to non-uniform density space (some trees more
likely than others). These weak heuristics, in the first-order form
(on the root and between any parent-child), are used to initialize
the population, and to drive mutation and crossover.
However, both these operators still disregard what GP “learns”
from selection, but instead they use user preferences. The weak
heuristics cause probabilistic differentiation between GP
representations spanned over its function and terminal set. This is
illustrated in figure 4.

Figure 4. CGP in action.

CGP allows the representations to take probabilistic nature [11].
Using such heuristics to change the effective representation has
been shown effective [6][10]. CGP can also use data types as the
basis for its heuristics, and it supports type-overloaded functions
[9]. Its processing power is illustrated in figure 5, which compares
its solving capabilities against those of GP, using the multiplexer
function [10][12]. The figure shows the average (out of 10
independent runs) learning curve for GP, and for two cases of
CGP when fed with two kinds of heuristics. CGP1 uses the
simple heuristic that the if function should only test addresses,
straight or negated. CGP2 extends this heuristic by dropping all
functions except not and if, and by allowing only data or recursive
if in the action parts of if. For more examples of useful heuristics
for the multiplexer, see [6][7][8].

One of may ask about the complexity of processing the heuristics.
It turns out that due to minimal overhead [6], smaller trees, and
the reduction in the search space, CGP1 and CGP2 actually
complete the 50 generations (no stopping on termination) much
faster, as illustrated in figure 4 (Total time for the 10 runs). When
we measure only the time needed for the best of the 10 runs to
find the solution, when executed concurrently (Until solved), the
difference is much more pronounced (none of the 10 GP runs

solved the problem). For illustration of the effects of strong
constraints on GP while solving the Santa Fe trail problem, see
[10].

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

Generat ions

GP
CGP1
CGP2

Figure 5. GP and CGP on the multiplexer: quality.

0

200

400

600

800

1000

1200

1400

1600

GP CGP1 CGP2

Ti
m

e[
s]

Total

Until solved

Figure 6. GP and CGP on the multiplexer: timing.

4. LEARNING THE REPRESENTATION
THROUGH HEURISTICS
In CGP, the user must specify the representation to solve a
problem, either uniform or probabilistic. However, what is the
user doesn’t know? ACGP was developed to extract first-order
heuristics. ACGP works as CGP for a number of generations,
after which it analyzes the distribution of the first-order heuristics
in the population, uses this information to update the heuristics,
reinitializes the population if needed, and starts all over. Thus, the
information learned by selection is fed back into initialization,
mutation, and crossover [8][9]. This is illustrated in figure 7.
We have demonstrated the capacity of the system using the
multiplexer problem in [6][8][9], and we have illustrated it on the
Santa Fe trail [10]. Figure 8 compares the average learning curve
for GP (base) and ACGP runs. The dips in ACGP’s performance
correspond to reinitialization the population from scratch after
learning new problem representation.

Figure 7. Off-line ACGP in action.

Figure 8. Learning curves on the Santa Fe trail.

5. CONCLUSIONS
We have discussed the effect of strong and weak heuristics on GP
representation, and we illustrated the effect of such modified
representation on problem solving capability and efficiency.
Strong constraints reduce the search space, while additional weak
constraints make the remaining search space non-uniform. We
have also demonstrated the ACGP system, which learns the
probabilistic representation most suitable for solving a problem,
by analyzing the genotype subspace identified by selection, and
feeding this information into CGP. All discussed constraints are
of local and global first-order form, that is only on local parent-
child relationship and globally on the root node. ACGP is
presently being extended to deal with richer local heuristics as
well as more extensive global heuristics.

6. REFERENCES
[1] Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and

Francone, Frank D. Genetic Programming. Morgan
Kaufmann 1998.

[2] Bosman, P.A.N. and E.D. de Jong (2004). Learning
Probabilistic Tree Grammars for Genetic Programming.

[3] Burke, Edmund, Gustafson, Steven, and Kendall, Graham. A
survey and analysis of diversity measures in genetic
programming. In Langdon, W., Cantu-Paz, E. Mathias, K.,
Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V.,
Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A.,

Miller, J., Burke, E. and Jonoska, N., editors. GECCO2002:
Proceedings of the Genetic and Evolutionary Computation
Conference, 716-723, New York. Morgan Kaufmann.

[4] Daida, Jason, Hills, Adam, Ward, David, and Long, Stephen.
Visualizing tree structures in genetic programming. In
Cantu-Paz, E., Foster, J., Deb, K., Davis, D., Roy, R.,
O’Reilly, U., Beyer, H., Standish, R., Kendall, G., Wilson,
S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.,
Schultz, A., Dowsland, K., Jonoska, N., and Miller, J.,
editors, Genetic and Evolutionary Computation – GECCO-
2003, volume 2724 of LNCS, 1652-1664, Chicago. Springer
Verlag.

[5] Hall, John M. and Soule, Terence. Does Genetic
Programming Inherently Adopt Structured Design
Techniques? In O’Reilly, Una-May, Yu, Tina, and Riolo,
Rick L., editors. Genetic Programming Theory and Practice
(II). Springer, New York, NY, 2005, 159-174.

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500

Generations

ACGP Learning Curve

baseA
ve

ra
ge

 F
itn

es
s

[6] Janikow, Cezary Z. A Methodology for Processing Problem
Constraints in Genetic Programming. Computers and
Mathematics with Applications, 32(8):97-113, 1996.

[7] Dasgupta, Dipankar, Janikow, Cezary Z and Chakraborty,
Uday. Representations and operators in genetic algorithms”.
Proc. 4th International Conf. on Pattern Recognition and
Digital Techniques, Calcutta, India, 1999.

[8] Janikow, Cezary Z. Adapting Representation in Genetic
Programming. In K. Deb et al. editors. Proceedings of
Genetic and Evolutionary Computation Conference:
GECCO 2004, 507-518.

[9] Janikow, Cezary Z. ACGP: Adaptable Constrained Genetic
Programming. In O’Reilly, Una-May, Yu, Tina, and Riolo,
Rick L., editors. Genetic Programming Theory and Practice
(II). Springer, New York, NY, 2005, 191-206.

[10] Janikow, Cezary and Mann, Christopher. CGP visits the
Santa Fe Trail: the Effects of Heuristics on GP. Proceedings
of Genetic and Evolutionary Computation Conference:
GECCO 2005. To appear.

[11] Janikow, Cezary Z. CGP and ACGP User’s Manuals.
http://www.cs.umsl.edu/CGP.

[12] Koza, John R. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press, Cambridge
Massachusetts, May 1994.

[13] Langdon, William. Quadratic bloat in genetic programming.
In Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L.,
Parmee, I., and Beyer, H-G., editors, Proceedings of the
Genetic and Evolutionary Conference GECCO 2000, 451-
458, Las Vegas. Morgan Kaufmann.

[14] McPhee, Nicholas F. and Hopper, Nicholas J. Analysis of
genetic diversity through population history. In Banzhaf, W.,
Daida, J., Eiben, A. Garzon, M. Honavar, V., Jakiela, M. and
Smith, R., editors Proceedings of the Genetic and
Evolutionary Computation Conference, volume 2, pages
1112-1120, Orlando, Florida, USA. Morgan Kaufmann.

[15] Montana, David J. Strongly Typed Genetic Programming.
Evolutionary Computation, 3(2):199-230, 1995.

[16] Pelikan, Martin and Goldberg, David. Boa: The Bayesian
Optimization Algorithm. In Banzhaf, Wolfgang, Daida,

Jason, Eiben, Agoston E., Garzon, Max H., Honavar, Vasant,
Jakiela, Mark, and Smith, Robert E., editors, Proceedings of
the Genetic and Evolutionary Computation Conference,
volume 1, pages 525-532, Orlando, Florida, USA, 13-17 July
1999. Morgan Kaufmann.

[17] Whigham, P. A. Grammatically-based Genetic
Programming. In Rosca, Justinian P., editor, Proceedings of
the Workshop on Genetic Programming: From Theory to
Real-World Applications, pages 33-41, Tahoe City,
California, 9 July 1995.

	INTRODUCTION
	GP REPRESENTATION AND SEARCH SPACE
	RESTRICTING THE REPRESENTATION WITH STRONG AND WEAK CONSTRAINTS
	LEARNING THE REPRESENTATION THROUGH HEURISTICS
	CONCLUSIONS
	REFERENCES

