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ABSTRACT
In this paper we present the GP-Music
System, an interactive system which
allows users to evolve short musical
sequences using interactive genetic
programming.  We also present an
extension which uses a neural network to
model a users preferences, then stands in
for them during the evolutionary
process.  The use of this ‘automated
fitness rater’ allows the system to operate
both with and without user interaction.

1 Introduction
The GP-Music System is an interactive system which
allows users to evolve short musical sequences using
interactive genetic programming (GP).  Extensions to the
system allow it to work in a fully automated mode. The
basic GP-Music system works by using GP with a small set
of functions for creating musical sequences, and a user
interface which allows the user to rate individual
sequences.

In the past ten years some researchers have tried to
apply genetic algorithms, sometimes with neural networks
as automatic raters, to the task of composing and creating
music. Only one approach based on GP has been presented.
We describe previous work in this area in Section 2.

An important aspect of the GP-Music System is
that it is focused on creating short melodic sequences.  It
does not attempt to evolve polyphony or the actual wave
forms of the instruments.  Only a set of notes and pauses is
created by the system.  This narrow focus allows a
reasonable musical sequence to be generated by a user
serving as the fitness function during runs that last about
10 minutes and require a relatively small number of
evaluations.  The interactive GP-Music System is described
in Section 3.

One main problem with the system is that the user
must listen to and rate each musical sequence in every
generation during a run.  For long tunes this may be a long
and (at least initially) tedious process requiring hours to
complete even with small populations and short runs.  To
alleviate this problem, we extended GP-Music creating
automatic fitness raters which stand in for the user in rating
sequences.  The user rates a small number of sequences in a
short run on the GP-Music System, and the automatic rater
uses the resulting ratings to learn to rate sequences in a
similar fashion.  The automatic rater then stands in for the
user in longer runs of the system.  These automatic raters,
or auto-raters, are based on a neural network trained using
back propagation. Auto-raters are described in Section 4.

Experimental results with the GP-Music system with
and without auto-raters are described in Section 5. We draw
some conclusions in Section 6.

2 Related Work
Cope (1987) created an expert system which was attuned to
his own style of composition and was able to use it to create
perturbations of a theme for use throughout a larger
composition.  Todd (1989) worked on a neural network
which was trained to extract important features in music.
Using a feedback system, the network is able to continue a
composition based on previous notes.  Mozer (1994) used a
neural network system called CONCERT to predict note
transitions based on learned style types.

Spector and Alpern (1995) came up with a GP system
which evolved responses to call phrases in jazz pieces.  As
a fitness function they used a neural network trained on real
responses from known jazz pieces, and tried to get the
system to generate good responses.  Biles (1994) designed
the GenJam system which uses Genetic Algorithms.  It
evolves measures, and phrases simultaneously in a real time
fashion using an interactive GA.  Another system using
GAs is Neurogen by Gibson et. al. (1991).  It used a three
stage approach where rhythm is first created, and then
added in with melody, and finally combined with other
phrases to create a harmony.  Short GA strings are evolved
for each of these stages, and a neural net is trained on



existing musical pieces, then used to rate the strings for the
GA process.

3 The GP-Music System
This section outlines the main features of the GP-Music
System which allow users to interactively evolve music.
The system uses a modified version of the lil-gp GP system
by Zongker, et. al. (1996).

3.1 Music Sequences
For storing the melodies created by GP-Music we used the
XM, or extended module file format.  XM files store note
sequences synthesized at play time.

One of the features of Genetic Programming is that
it can achieve good results without the need to explicitly
specify a lot of domain knowledge for a problem.  We
therefore decided not to constrain the search of GP Music
using music theory, but instead used the basic note features
available in the XM format to determine the general
structure of what was being evolved.

Specifically, the XM file allows a basic pattern size
of up to 255 note events.  Each note event can contain
either a note to be played, or a rest command.  The notes
themselves come from the standard scale and include: C, C
Sharp, D, D Sharp, E, F, F Sharp, G, G Sharp, A, A Sharp
and B.  The notes fall over eight octaves.  A fourth octave
D Sharp is noted as D#4. A single channel of melodic
piano is used for all sequences, and all notes are currently
of constant duration.

3.2 Function and Terminal Sets Description
The terminal and function sets for the GP-Music System
are the notes which are used in the created melodies, and a
small collection of routines to modify note sequences.  They
are summarized in Table 1, and are subsequently explained
in more detail.

Table 1- The Terminal and Function Sets in the GP-
Music System

Function Set: play_two, add_space, play_twice,
shift_up, shift_down, mirror,
play_and_mirror

Terminal Set: Notes: C-4, C#4, D-4, D#4,
E-4, F-4, F#4, G-4,
G#4, A-5, A#5, B-5

Pseudo-
Chords:

C-Chord, D-Chord,
E-Chord, F-Chord,
G-Chord, A-Chord,
B-Chord

Other: RST

The Terminal Set
The terminal set used consists of notes in the 4th and 5th
octaves available in the XM file format.  The range of notes
used was limited to one or two octaves (depending on the
run) to prevent pieces with large pitch ranges from being

too prevalent.  In addition, the RST terminal is used which
indicates one beat without a note.

Finally, there is a set of seven pseudo-chord
terminals.  Each of these is a sequence of three notes that
follow the same pitch separation as a chord (an arpeggio).
They are denoted pseudo-chords since they are played
sequentially instead of simultaneously.  See [5] for more
details.
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Figure 1- Example Music Program Tree Evaluation

The Function Set
The routines in the function set all operate on one or more
note sequences which are passed to them.  They perform
some transformation on the note sequence (or sequences),
and then return a new sequence. They will now be
discussed individually.
• play_two (2 arguments)- This function takes two note

sequences and concatenates them together. Along with
the terminals, this function allows all note sequences
which fall in the octave of the terminal set to be
constructed.

• add_space (1 argument)-  The note sequence which is
passed to add_space has a rest inserted after each time
slot in the original sequence.  This has the effect of
slowing down the tempo.

• play_twice (1 argument)-  This routine plays the note
string which is passed to it twice in succession.

• shift_up (1 argument)- Every note in the argument
note sequence is shifted up to the next valid higher note.
Notes which shift out of the eight octave range are
clamped to the highest note value.



• shift_down (1 argument)- This function is identical to
the shift_up routine except that the notes are shifted
down.

• mirror (1 argument)- The argument sequence is
reversed.

• play_and_mirror (1 argument)- The argument
sequence is reversed and concatenated onto itself.

3.3 Interpreter
The item returned by the program tree in the GP-Music
System is not a simple value but a note sequence.  Each
node in the tree propagates up a musical note string, which
is then modified by the next higher node.  In this way a
complete sequence of notes is built up, and the final string
is returned by the root node.  Note also that there is no
input to the program; the tree itself specifies a complete
musical sequence.  Figure 1 shows how a note sequence is
built up.

It is worth noting that this representation provides
more flexibilit y than the GA approaches used by others in
previous research by allowing structure and variable length
sequences.

3.4 Fitness Selection and User Interface
Since the suitabilit y or qualit y of a musical piece is largely
subjective, a human using the system is asked to rate the
musical sequences that are created for each generation of
the GP process.  This is similar to Poli and Cagnoni’s
(1997) system for evolving pseudo-coloring algorithms.

The user rates the individual sequences using a
simple ‘ li st’ style X-Windows interface.  The principle of
the li st interface was to allow the user to change their mind
about a sequence' s rating after they have heard what the
` competing' sequences sound li ke.  The user rates each
musical sequence on a 1-100 scale. The user interface is
shown in Figure 2.

Figure 2- The GP-Music User Interface

3.5 Modifications to the Basic GP Algorithm
One of the problems with interactive GP applied to music is
that ratings are subjective.  The li st interface helps the user
to maintain a consistent rating scheme among sequences in
a given generation, but not between generations.  Since
each generation was rated as a separate group, a user might

always rate the best individual in a generation the same,
despite the fact that overall the sequences were improving.
One of the GP operators, however, is reproduction, where
an individual is copied directly from the previous
generation into the new one.  If the copied sequence is
presented to the user in a new generation it is quite li kely to
be rated differently from in the previous generation.  To fix
this problem, the system was changed so that an
individual's rating is locked in from generation to
generation.  The li st interface also allows the user to li sten
to the previously rated piece and see its rating before rating
the new generation.  This helps them to mentall y
recalibrate for the new set of sequences.  Note that this
locking in of fitness was added to assist the user in rating
consistently, and is not actuall y necessary for the GP
algorithm.

Another problem in early versions of the system was
the creation of melodies that were so short or so long that
they always garnered low ratings.  Since the generation size
is already small for user interactive genetic programming,
having these unsuitable individuals in the population
reduced the diversity and eff iciency of the evolution
process.  The user can now choose a certain note sequence
minimum and maximum length for a run, as well as a
minimum and maximum number of rests.  Individuals that
don't meet the criteria are automaticall y destroyed, and a
new individual is created until a satisfactory individual is
found.

4 Automated Raters
Our automatic fitness raters are based on neural networks
with shared weights trained with the back propagation
algorithm.  They give ratings on a 1-100 scale in a similar
fashion to a human using the li st interface.
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Figure 3- Basic Auto-Rater Network Layout

In normal back propagation networks, each
connection into a node has its own weight which is
modified by the back propagation training.  In a network
with shared weights, however, some of the connections use
the same weight, and the weight will therefore be modified
several times during the back propagation, once for each
connection with which it is associated.  The use of shared
weights allows the rating of sequences of variable length,



which would be a very hard problem using standard neural
network topologies.

The basic unit of topology for the network is
shown in Figure 3.  Level N is closest to the inputs (or
possibly is the input layer), while Level N+1 is closest to
the output node, or nodes (or possibly is the output layer).
Each node in the upper level receives input from the lower
level nodes.  The value of the parameter ‘Level Spread’ , in
this case 4, determines how many nodes feed into one of the
higher level nodes.  The first node on a level receives input
from the first ‘Level Spread’ nodes of the next lower level.
The second node receives input from subsequent nodes,
possibly receiving some of its inputs from lower level nodes
also feeding into the first node.

The ‘Level Delta’ determines the amount of
overlap between connections to adjacent nodes in the upper
level.  In the case of the diagram it is two, meaning that the
first node receives inputs starting with the first lower level
node, while the second node receives input starting with the
third lower level node.  Setting the ‘Level Delta’ to lower
values increases the overlap, along with the abilit y for the
higher level to correlate among nodes in the lower level,
while increasing it causes each upper level node to act in a
more autonomous fashion.

As mentioned earlier, each of the top level nodes
has ‘Level Spread’ connections to lower nodes.  The
weights on these connections are all shared, so the weight
on the first input to each upper level node is identical, and
during back propagation the weights are modified
according to the error coming back from each of the top
level nodes. Note that the weights are used in a consistent
sense with weight one always being used to connect the
first lower level node to the upper level one (which also
corresponds to connecting to a point earlier in the note
sequence, as will be discussed below).  The biases are also
shared between all nodes on a given level, so in effect each
node and its inputs are duplicate networks. The overall
topology, shown  in Figure 4, has five layers, including the
input layer, and one output node.

Input Layer

Output

First Layer

Third Layer

Second Layer

Figure 4- Global Topology for Auto Raters

Since the note sequences being rated are variable in
length, a new network is built up for each individual that
the network is required to evaluate or with which it is being
trained.  Consistency is maintained by storing the shared
weights and biases and using them for each network that is
built .  The network is constructed by first creating one
input node for each time slot in the sequence being

evaluated. The value of the note at that point in the
sequence is then loaded into the input node in the following
manner:

• If the time slot contains a note, the value of the note
divided by 72 is loaded into the node.  The value of a
note is taken to be 12 times the octave, plus the note
value, where a C-0 is 1, a C#0 is 2, etc.

• If the time slot contains a rest (RST), a –1 is loaded
into the node.

Enough first layer nodes are then constructed to exactly
match the number needed given the first level spread and
delta amounts.  Once the nodes for the first level are
created, the connections between the two levels are made as
described above, using the shared weights for the first layer.
The second and third layers are constructed in a similar
fashion, and then each third layer node is connected to the
output node of the network which outputs a value between 0
and 1.  This is then multiplied by 100 to create the
appropriate rating.

The construction of the network in this fashion allows
it to telescope out to whatever the length of the input note
sequence.

5 Experimental Results
This section documents the experimental work done with
the GP-Music System and the auto raters.  The basic
parameters used for the experimental runs were similar to
those suggested by Koza (1994).  Individuals were selected
for reproduction using 4 individual tournament selection.
The genetic operators were crossover, reproduction, and
mutation with probabiliti es 0.7, 0.15 and 0.15, respectively.
Six generations were used with a generation size of 16.
Initial tree depths were limited to between 1 and 4 levels,
with a global maximum depth of 6 levels.

5.1 User Interactive Runs

Table 2- Base Line Trial Best of Run Individual
Gen. Nodes Depth Seq. Len. Fitness
3/5 28 6 26 40.00

Program Tree:
(play-two (play-two (add-space
(play-two F-4 B-5)) (add-space
(play-two B-5 F#4))) (play-two
(add-space (play-two (add-space
F#4) (play-two B-5 (play-two F#4
D#4)))) (play-two (add-space (add-
space E-4)) (add-space (play-two
F#4 D#4)))))
Web Site File Name: 2tune.au

Base Line Trial
The first trial made was primaril y to verify what the GP-
Music System can generate using the minimal set of
functions and terminals.  The operators were ' play_two' and
‘add-space.’  The notes were restricted to one octave, and
no pseudo-chords were allowed.



The sequences generated tended to not have much
structure, and many of the individuals sounded poor.  One
best of run individual is shown in Table 2.

This particular individual sounds quite pleasant
and was found in the 4th generation.  This and the other
sequences reported in the paper are available at
http://www.cs.bham.ac.uk/~rmp/eebic/WSC2/gp-
music/gp_music.html.

Complex Functions
The next step was to add in the more complicated

functions in Table 1.  The sequences generated during this
trial were better overall than those of the Base Line trial.
Adding the new functions seemed to smooth out the
variation between the best and worst individuals.  An
example best of run individual is shown in Table 3.

All Functionality
The next trial involved the addition to the terminal

set of the pseudo-chords and the limitation of the notes to
the C-Major scale.  In addition, the initial tree depths were
set to 4 to 6 levels, and the maximum depth to 9 levels.

Table 3- Complex Function Set Best of Run Individual
Gen. Nodes Depth Seq. Len. Fitness
3/5 21 8 21 25.00

Program Tree:
(play-two (play-and-mirror B-5)
(mirror (play-two (shift-up (play-
two (mirror G-4) (play-and-mirror D-
4))) (play-twice (play-two (play-
twice F#4) (play-twice (play-two
(shift-down A-5) (add-space
F#4))))))))
Web Site File Name: 4tune.au

The effect of this trial was startling.  Almost all of
the generated individuals were pleasant to li sten to.  The
only drawback is that some of the individuals sounded
similar as they all tended to rely on the pseudo-chords. A
typical best-of-run individual is shown in Table 4.

Table 4- All Functionality Best of Run Individual
Gen. Nodes Depth Seq. Len. Fitness
4/5 15 8 60 22.75

Program Tree:
(play-and-mirror (shift-down (play-
two (play-and-mirror (shift-down
(play-two  (shift-up (add-space A-
Chord)) (shift-up (add-space A-
Chord))))) (shift-up (add-space A-
Chord)))))
Web Site File Name: 9tune.au

This sequence uses the structuring of the complex
functions and the pseudo-chords to its advantage, playing
the ‘A-Chord’ backwards and forwards with an interesting
stutter in the middle.

Training Run
An additional, longer run, was made to gather data

for use in training the auto rater.  The training data was

gathered by running the GP-Music System over 10
generations with 20 individuals per generation.  This led to
the rating of a total of two hundred individuals.  The
maximum depth allowed was also increased to 12.  In all
other respects the computer was configured as for the ' All
Functionalit y' trial.  The human rater was Anne Pearce, a
retired music teacher.  The best individual generated by the
run is shown in Table 5.

Table 5- Training Run Best Individual
Gen. Nodes Depth Seq. Len. Fitness
9/9 24 9 120 46.00

Program Tree:
(play-twice (play-two (add-space
(shift-up (play-two (play-twice
(play-and-mirror  (shift-down
(shift-up D-Chord)))) (play-two
(play-twice G-Chord) (mirror F-
Chord))))) (play-and-mirror (shift-
down (shift-up (play-two (play-twice
G-Chord) (mirror F-Chord)))))))
Web Site File Name: anne-list-best.au

This individual is quite nice, certainly longer, and
perhaps superior to any of the others that we have
generated.  The tune sounds almost like some old sea
shanty, although it ends quite abruptly.  During this run the
two hundred ratings and the associated sequences were
captured for use to train the auto-rater.

5.2 Training the Auto Rater
The ratings generated during the human run were used to
train the auto-rater network described in Section 4.  The
ratings were divided up into two sets of 100 individuals,
one to serve as a training set and one to serve as a control
set.  For each training of the network, the individuals in the
training set were repeatedly used to modify network
weights and biases using back propagation.  Statistics were
kept during the training measuring the decimal error (the
absolute value of the difference between the human and
network rating on a 1-100 scale) for both the control and
training sets.  These measurements were made after each
complete cycle through individuals in the training set.

In preliminary runs we found that the best
parameters were: Level 1 Spread = 8, Level 1 Delta = 4,
Level 2 Spread = 8, Level 2 Delta = 4, Level 3 Spread = 4
and Level 3 Delta = 2.

Statistics gathered during training show that the
average error on the training set goes down to +/-5 after
1000 cycles, which is quite good when the rating is out of
100.  The minimum average error on the control set
reached a minimum of 7.16 at cycle 850, where training
was stopped to avoid overfitting.  This error seems quite
good on a 1-100 scale.  The cycle 850 weights were used
for the auto-rater during later automated runs of the GP-
Music system.



This analysis indicates that it is reasonable to train a
network to rate sequences in the GP-Music System.
Further detail s of our analysis are presented in [5].

5.3 Auto Rater Runs
The weights and biases for the auto-rater network trained
for 850 cycles were used in several runs of the GP-Music
System.  The first run was made with the same parameters
used during the human run that generated the training set
data. The best individual (anne-200-best.au) was discovered
in the seventh generation, indicating that evolutionary
forces are coming into play.  This individual actuall y
sounds quite nice, although not as good as the one
generated during the human generated run.

To evaluate how well the auto-rater works in
larger runs, runs with 100 and 500 sequences per
generation over 50 generations were made.  The resulting
best individuals were ‘anne-5000-best.au’ and ‘anne-
25000-best.au.’

Unfortunately, the 100 individual per generation
sequence doesn’ t sound nearly as good as the one generated
during the smaller run.  It alternates between low and high
note sequences at the beginning, and then diverts into a
different style at the end.

The 500 individual per generation sequence is
better than the previous one.  It stays consistent during the
length of the sequence, not changing pitch sequence or
style.  The sequence is quite strange, though, with only
three different notes.  Nonetheless, it is not unpleasant to
li sten to.

The three trials show that the auto-rater on its own is
able to evolve interesting, and pleasant sequences in the
GP-Music System, but not in a consistent fashion.

6 Conclusions
Our work so far with the GP-Music System has shown that
it is possible to evolve reasonable short melodies using
interactive genetic programming.  The improvement in
qualit y between runs using only simple concatenation, and
those using more complex structuring functions shows that
GP has advantages over genetic algorithms for this type of
task.  Nonetheless, there is a user bottleneck problem
whether GA or GP is used.  A user can only rate a small
number of sequences in a sitting, limiti ng the number of
individuals and generations that can be used.  We
addressed this problem with auto raters, which learn to rate
sequences in a similar fashion to the user, allowing longer
runs to be made.  These proved somewhat successful, but
the auto rater runs were not able to generate nice sequences
with the reliabilit y of human rated runs.  Still , our research
suggests that computers will be able to take a much more
active role in computerized music composition in the
future.
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