
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 104 -- 104 -

Dynamic Generation of Investment Recommendations 
Using Grammatical Evolution
Carlos Martín, David Quintana*, Pedro Isasi

Department of Computer Science and Engineering, Universidad Carlos III de Madrid, Leganés (Spain)

Received 6 July 2020 | Accepted 20 March 2021 | Published 22 April 2021 

Keywords

Dynamic Strategy, 
Evolutionary 
Computation, Finance, 
Grammatical Evolution, 
Structural Change, 
Trading.

Abstract

The attainment of trading rules using Grammatical Evolution traditionally follows a static approach. A single 
rule is obtained and then used to generate investment recommendations over time. The main disadvantage of 
this approach is that it does not consider the need to adapt to the structural changes that are often associated 
with financial time series. We improve the canonical approach introducing an alternative that involves a 
dynamic selection mechanism that switches between an active rule and a candidate one optimized for the most 
recent market data available. The proposed solution seeks the flexibility required by structural changes while 
limiting the transaction costs commonly associated with constant model updates. The performance of the 
algorithm is compared with four alternatives: the standard static approach; a sliding window-based generation 
of trading rules that are used for a single time period, and two ensemble-based strategies. The experimental 
results, based on market data, show that the suggested approach beats the rest.
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I. Introduction

FINANCIAL markets are subject to structural changes which 
cause investment rules that were profitable in the past to lose 

their effectiveness over time. This characteristic of market dynamics 
requires the implementation of mechanisms that detect structural 
changes and update investment strategies accordingly.

From Allen and Karjalainen [1] influential work on evolution of 
trading rules using Genetic Programming (GP) [2], many authors have 
followed with contributions based on the same technique or on the use 
of Grammatical Evolution (GE) [3]. Among them, [4]-[11].

The main disadvantage of the rules generated by the standard 
algorithm is the fact that they are static and, therefore, do not take 
into account the prevalent structural changes. Given the situation, the 
range of possibilities would have two extremes: either holding the same 
model through time or updating it with any new piece of information 
to keep up with the evolution of the price generation process.

Even though one might think that the constant update of the model 
is likely to be more appropriate than the static alternative, in practice 
it is often the case that the latter results in an increase in transaction 
costs that erodes completely the additional return obtained from better 
market timing.

This study improves the standard approach presenting an 
alternative that commutes between an active model and a candidate 
one. The algorithm has a hysteresis component that limits overtrading, 
while maintaining the ability to change the active model to cope with 
changes in the market price generation mechanism.

This research contributes to the state of the art improving the 
traditional use of Grammatical Evolution in this context. GE and GP-
based approaches are subject to well-known limitations [12], such as 
the difficulties to outperform the market in the face of strong upward 
trends, but are popular due the advantages that they offer, such as flexible 
representation. While there are many potential trading algorithms 
based on a wide variety of techniques [13]-[15], benchmarking them 
would require a separate study that goes beyond the aim of this one.

The rest of the document is structured as follows: first, we provide a 
brief overview of the relevant literature on GE for algorithmic trading. 
That will be followed by a description of the canonical GE-based 
static approach and then the introduction of the proposed solution in 
section IV. The experimental analysis used to evaluate the approach 
will be reported in section V. Finally, we will devote the last section to 
summary and conclusions.

II. Literature on GE for Trading

As we already mentioned, the efforts to obtain profitable trading 
rules using technical indicators with flexible representation is not 
new. The seminal contribution by Allen and Karjalainen [1] using GP 
paved the way for a substantial amount of related works. These extend 
the mentioned study suggesting new sets of functions and terminals, 
evaluation methods or investing universes.

In addition to these variations, other authors have explored the 
possibility of relying on a different core algorithm, GE. This approach, 
also under the framework of Evolutionary Computation, shares the 
main advantages of GP in this context and has been widely used in 
finance and economics [16]. According to a recent study [17], this 
technique seems to be more robust and to generate trading rules that 
are simpler and, therefore, easier to interpret. Hence, our decision to 
rely on GE as the core algorithm.
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Among the earliest studies focused on GE for trading purposes we 
can highlight the pioneering one authored by Brabazon and O’Neill 
[18]. This work explores the possibility of generating investment 
rules for the money market using GE. To that end, these researchers 
relied on a limited set of indicators together with a risk management 
mechanism that offered encouraging results. The same year, Dempsey 
et al. [19] also used GE to evolve investment rules based on technical 
indicators for the Nikkei 225 and S&P 500 indices. This time, the 
authors highlight the importance of limiting transaction costs and 
present a strategy to reduce the number of trading signals by means of 
a decay constant that controls the investment size of the trades. Their 
results suggest that the approach is useful. The Nikkei 225 index was 
beat by a wide margin while the American benchmark seemed to be 
significantly more difficult to exploit.

Contreras et al. [20] tested the potential of GE to produce profitable 
trading rules in the Spanish stock market using technical indicators. 
These researchers compare the profitability of the resulting strategies 
vs a GA-based alternative that they introduced in a previous work [21] 
and report profits of 14% vs losses of 20% by the GA-based strategy. 
These same authors presented more recently two extended versions. 
The first one, a hybrid one that follows a multi-objective approach [22], 
includes multi-strategies to limit unforeseen losses and offered good 
performance in their experimental analysis. The second one [23], was 
used to explore the feasibility of using meta-GE approximation. The 
approach, which relies on two overlapped instances of grammatical 
evolution, uses a combination of macroeconomic, fundamental and 
technical indicators to generate trading rules. Once again, the system, 
which promoted more robust and lower-risk portfolios, resulted in 
promising results.

Schmidbauer et al. [24] introduce a GE-based trading rule selection 
framework that considers robustness. To that end, they developed a 
multi-objective fitness test that considers both observed series and 
synthetic ones generated using bootstrap. They tested their approach 
on five-minute EUR/USD exchange market data and came to the 
conclusion that the use of their a-priory robustness criterion improves 
both robustness and profitability. Despite of this, they did not get to 
find profitable strategies in their experiments.

We could mention a related study Oesch and Maringer [25] where 
these authors use GE to develop a high frequency trading system 
that exploits volume inefficiencies at the bid–ask spread. Their 
experimental results show that the system identifies strategies that 
are both profitable and robust.

Martín et al. [26] introduced a GE-based ensemble approach that 
includes a voting mechanism with an inertia component that balances 
a certain degree to adaptability to structural change while limiting the 
number of trading signals. The results, based on S&P500 data, suggest 
that this strategy beats the traditional static approach that relies on a 
single model for the whole period and ensembles that implement more 
standard voting systems.

The approach that we present in this work poses a number of 
advantages vs other alternatives discussed above. The most important 
of them are the ability to adapt automatically to structural changes, 
and the fact that it is done in a way that limits the overtrading that 
often drags down the performance of other algorithms.

Finally, it is worth mentioning that the applications of GE are by no 
means limited to this field. This technique might potentially be used 
to tackle other problems related to economics and management, and 
its potential should be explored in domains like blockchain in banking 
[27]-[28] or industrial diagnosis [29].

III. Traditional Static Approach

Grammatical evolution, a metaheuristic closely related to genetic 
programming developed by Ryan et al. [3], encodes individuals 
as strings of integers that are mapped to programs by means of 
context-free grammars. Like other techniques within the framework 
of evolutionary computation, it is a stochastic population-based 
approach that refines solutions in an iterative way by means of the 
application of a number of operators (selection, crossover, mutation 
etc.) according to a basic loop.

While genotypes take the form to strings of integers, phenotypes 
are structured as Lisp-style functional trees. The connection 
between these two elements is managed by user-specified grammars 
that describe the core elements of the programs: terminals, non-
terminals and the associated lexis and syntax. It is worth noting 
that these descriptions, usually in Backus-Naur form (BNF), often 
incorporate domain knowledge and constrain the search space. The 
use of grammars offers an important advantage over standard genetic 
programming, like simultaneously enforcing closure and allowing 
different data types.

The process starts with the initialization of the population. This 
requires the generation of a as many vectors of integers as individuals. 
The vectors are then mapped to terminal and non-terminal elements 
according to the grammar. The initialization gradually generates 
functional trees (or their s-string equivalents) until either all the non-
terminal nodes get the required inputs, or all the initial contents of 
the vectors get used, case in which these are expanded with as many 
additional elements as necessary.

The range of trading rules that can be generated, is determined by 
the selection of the set of terminal and non-terminal elements, hence 
its importance. For the purposes of this study we basically relied on 
a previous study by Lohpetch and Corne [7]. The only difference was 
that we used daily data instead of monthly information. This choice 
aligns the study with most of the ones mentioned in the previous 
section. The set of non-terminal nodes included two relational 
operators (>and <) and three logical ones (And, Or and Not).

Regarding the terminal elements, we considered a number of 
technical indicators and the most important basic daily index prices, 
including Opening and Closing, Maximun and Minimum). Simple 
moving averages, another popular indicator, were included for 2, 3, 5 
and 10-months (MA2, MA3, MA5 and MA10). We included the 3-month 
as a momentum oscillator, and 12-month Rate of Change indicator 
(Roc3 and Roc12) and the 3-month rolling minima and maxima (Mx1, 
Mx2, Min1 and Min2) as short-term price resistance indicators. Finally, 
we added two trend-line indicators, upper and lower resistance lines 
(UR and LR) to characterize the speed and direction of price changes.

Generating syntactically correct investment rules based on these 
elements requires the definition of grammars. As we mentioned, 
these specify which operators and terminals are acceptable as input 
arguments, together with their appropriate outputs. In this study we 
also follow the one introduced in [7], which is detailed in Table I in 
BNF-form. The application of this grammar results in the obtainment 
of conditional rules that were interpreted as recommendations for 
being invested, “1”, or in cash, “0”, depending on market conditions.

Fig. 1 illustrates the structure of these trading rules showing one 
that could be potentially generated using this approach. In this case, 
the rule would trigger a recommendation to be invested if either 
the maximum trading price is larger than the two-month rolling 
maximum, the two-month rolling maximum is larger than the lower 
trend line indicator or the 5-month moving average is larger than the 
2-month one, or both.
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TABLE I. Grammar Used to Define Trading Rules

Nº Modulus Grammar Rule
1 1 <Rule> ::= <bool>
2 5 <Bool> ::= (And <bool><bool>)| (Or <bool><bool>)

<Bool> ::= (Not <bool>)
<Bool> ::= (><exp><exp>) | (<<exp><exp>)

3 16 <Exp>::= (Opening)|(Closing)|(Maximun)|(Minimum)
<Exp> ::= (Me2) | (Me3) | (Me5) | (Me10)
<Exp> ::= (Roc3)| (Roc12)
<Exp> ::= (Max1) | (Max2) | (Min1) | (Min2) 
<Exp> ::= (UR) | (LR)

GP
Tree

OR

> OR

> >Maximun MX2

MX2 LR MA5 MA2

Fig. 1. Example of trading rule represented as a tree. This would be equivalent 
to the Common Lisp S-expression (Or (>Maximun Mx2) (Or (>Mx2 LR) (>MA5 
MA2))).

Once we have discussed rule structure, we will consider evaluation. 
The quality of trading rules was assessed in terms of net profit or loss. 
Return, r, was characterized as the sum of returns minus transaction 
costs using continuous compounding like in [4] and [30]. Hence, the 
fitness function could be defined formally as

 (1)

where rt = ln(Pt) − ln(Pt−1) represents the return on the index 
computed as its price difference between time t − 1 and t; Ib(t) is a 
dichotomous variable that is equal to one in the periods where the rule 
recommends being invested and zero in the rest; Is(t) is 1 − b(t), and rf (t) 
is the risk-free rate of return for one period of time prevailing at time t.

Regarding the last term of the expression, it is an estimate for 
the transaction costs resulting from the purchases and sales derived 
from moving from a recommendation to be invested in the market 
to hold a cash position, and vice-versa. Here n represents number of 
transactions and c the one-way transaction cost as a fraction of price 
(in the experimental analysis it was set at 0.25%).

This process is illustrated in Fig. 2, where we can see the investment 
positions recommended by an investment rule on the S&P 500 over 250 
trading days. There, we show the behavior of the index together with 
an overlay using a thicker line that shows the return accumulation 
process. The strategy tracks the market, and therefore its performance, 
whenever the evaluation of the rule for the day returns “1”, and falls 
down to the bottom in case the recommendation for the day is being 
out of the market. Initially the rule recommends being in cash for 
about a month, accruing the risk-free interest rate, and then investing 
in the index for 4 days. 
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Fig. 2. Example of trading rule performance evaluation. Thicker line illustrates 
the recommended investment position and return accumulation for a trading 
rule over the period.

In this case, the evolved trading rule recommends moving in and out 
of the market several times. In the process, it anticipates two important 
market corrections, and prevents losses staying in cash over the period 
from approximately day 84 to 151 and between trading days 208 and 224. 

The main loop of GE requires the use genetic operators to drive 
the iterative improvement process at the core of the metaheuristic. 
These are very similar to the ones used in the more popular GP, 
making the range of alternatives very wide. In this study we relied 
on standard ones: tournament selection, single-point crossover and 
uniform mutation. Given that the use of these operators often results 
in a significant number of malformed individuals, we implemented 
two standard repair mechanisms. The first one, duplication, was used 
whenever the new individual happened to be too short. This strategy 
replicates a portion of the individual, selected randomly, and extends 
the genome up to the required size. The second, truncation, was 
used in the opposite scenario. It disregards the final elements of the 
sequence of integers that are unnecessary.

Finally, the core setup used in this study implements non-parametric 
parsimony pressure, a mechanism that punishes complexity selecting 
the simplest rule whenever there is a tie in the selection operator. 
This limit bloating and, as a result, enhances performance, reducing 
overfitting. In addition to that, this offers the advantage of improving 
interpretability, a key aspect in this domain.

IV. Dynamic Approach

The adaptive approach we suggest involves a dynamic selection 
mechanism that commutes between an active rule and a candidate 
one, optimized for the most recent available market data.

The system relies on the use of sliding windows. Given a window 
size, defined by a constant w, the process starts selecting the w most 
recent data points to evolve a trading rule using GE. Once a rule is 
obtained, it can be used to generate investment recommendations 
for future periods. If we do this only once, and we use the resulting 
strategy over the whole test period, we obtain the standard non-
adaptive approach often found in the literature. We will label it Static.

On the opposite end of the spectrum, we might repeat the process 
to generate rules that would only be used once for a single time-step. 
That is, if we moved the sliding window one time-step at a time, we 
would obtain overlapping training samples that would differ in a 
single element. The new one would add the most recent data point, 
and drop the oldest one. If we considered only the most recent rule to 
provide an investment recommendation for the next period, and we 
iterated, we would obtain a very adaptive strategy that we will call 
Naif. These rules could also be combined into ensembles so that the 
recommendations of the e most recent rules for any specific period 
could be combined into a single one either using a simple majority 
voting approach, Majority, or a weighted voting mechanism, Weighted.
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The solution that we introduce intends to achieve a balance 
between the need to adapt to structural change and to limit the impact 
of over-trading. The starting point would be the Naif approach, which 
evolves a trading rule for each time step using a sliding window with 
a fix window size w. Given a time t, a trading rule is evolved using 
GE in the period between t − w and t − 1. Given that it would be the 
only alternative, it would be considered the best rule and therefore, 
it be used to generate the first investment recommendation. At t+1, 
a candidate rule would be evolved based on the period from t−w+1 
to t. At that point, the current best rule and the new candidate rule 
would be compared. The best one would get the status of current best 
rule and therefore, would be used to generate the required investment 
recommendation for t + 1.

The process of updating the best investment rule comparing the 
performance of the current one vs the candidate rule based on the 
most recent w data points is repeated at every time-step. As a result, 
we obtain a dynamic investment strategy. It is worth noting that once 
the current best rule is replaced by a new one, it is lost. The process 
can only move forward.

Rule comparison is a key aspect that requires clarification. It is made 
on the basis of investment performance on a common evaluation period 
that will always be the training period for the new candidate rule (the 
most recent w data points). This also means that, given period overlaps, 
from the point of view of current best rule, performance will always be 
based on the evaluation of investment recommendations on a period that 
includes test data to some degree. If the current best performing model 
had been updated in the previous period (and, therefore, had generated 
recommendations for one period only) and we use it as reference 
point, we would have w − 1 recommendations on training data and 1 
recommendation on test data. On the other end of the spectrum, if the 
best current model had maintained its status for w or more consecutive 
time periods, we would consider the whole w recommendations on 
test data. Once again, we would like to emphasize that this explanation 
uses the current best-performing model as the reference point. As we 
mentioned, as long as the new candidate rule is concerned, the two rules 
are compared based on performance on its training sample.

This process is illustrated with an example in Fig. 3. Panel 2a 
describes the selection of a first inversion rule, obtained with GE, on 
a training sample of w = 10 periods, t5 −t14 (row 1, in dotted black and 
white). Being the first rule, it is chosen as an active rule and will generate 
the recommendation. Once the first recommendation is obtained, step 
T1, “0”, t15 (in black and white), the sliding window moves one period 
to the right and the second rule is generated, panel 2b, based on the 
time period t6 − t15, (row 2, in dotted black and white). The performance 
of this candidate rule is compared with the performance of the best 
rule in progress, rule 1, in the same period (marked with black lines). 
That means we would consider 9 time periods that were part of the 
training sample for the active rule, t6−t14 (row, 2, in dotted black and 
white), and one of the test sample, t15 (in black). Based on that, the 
candidate rule, 2, would take over the role of current best rule, and its 
recommendation, “0”, would be used as the output of the system for 
T2, the second time step of the test period t16 (in black and white) and 
the sixteenth element of the sequence.

In T3, in 2c, the best current rule would be the second one, and the 
new candidate would be obtained based on the period from t7 to t16 

(row 3, in dotted black and white). In the example, the comparison in 
this period would favor rule 2 and, as a result, the candidate rule, 3, 
would be discarded and, once again, the output of the system would 
mirror the recommendation of the second rule, “0”, to stay out of the 
market. The dynamics of the process in test periods 4-6, represented 
in 2d - 2f are very similar. As the sliding window moves, it generates 
new candidate rules that are compared with the best alternative at that 
time, updating them accordingly.

 
T1. Current rule: 1. 

 

(b)   T2. Current rule: 1. 
 Candidate rule: 1. Candidate rule: 2. 
 Best rule: 1. Best rule: 2. 
 Recommendation: 0 Recommendation: 0 

 
(c)  T3. Current rule: 2.  (d)   T4. Current rule: 2. 

 Candidate rule: 3. Candidate rule: 4. 
 Best rule: 2. Best rule: 2 
 Recommendation: 0 Recommendation: 1 

 
(e)   T5. Current rule: 2.  (f)   T6. Current rule: 5. 

 Candidate rule: 5. Candidate rule: 6. 
 Best rule: 5. Best rule: 6. 
 Recommendation: 1 Recommendation: 1 

(a)

Fig. 3. Illustration of algorithm behavior. Rule selection for test periods 1 to 
6. Training samples in darker color. Test samples in lighter color. Investment 
recommendations by rule: “1” stay in the market “0” stay in cash. Basis of rule 
comparison in rectangles.

V. Experimental Analysis

This section describes the experimental work used to evaluate 
the dynamic approach introduced in the previous section. We start 
discussing the main aspects of the experimental setup, including data 
set, experimental protocol and parameterization, to then analyze the 
results.

A. Experimental Setup
The performance of the Dynamic approach was assessed comparing 

its returns vs. the four comparable strategies described in 4: Static, 
Naif, and the two ensemble-based alternatives, Majority and Weighted, 
to time the Standard & Poor’s 500 index.

The sample covered 13 years of daily data starting from the beginning 
of 2005 to the end of 2017. In addition to the index information, we also 
needed the historical daily short-term risk-free interest rates of return 
over the same periods. The former was obtained from the commercial 
provider Datastrean, while interest rates were downloaded from the 
Federal Reserve Bank of Atlanta.

The main data set was divided in two. The first sample, which 
covered from 2005 to the end of 2012 was used to run the exploratory 
experiments for parametrization purposes while the rest was kept 
for testing. Once the parameters were chosen, the final performance 
was evaluated on an annual basis in the period from the beginning of 
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2013 to the end of 2017. Given the evaluation period, we also used the 
last portion of the first sample to train some of the models that were 
compared in the test sample.

While the decision to break down the comparative analysis in 5 sub-
periods instead of using only one makes no difference in the way the 
models are trained, we understand that this kind of evaluation provides 
relevant information on the evolution of reliability over time. Given 
that GE is a stochastic method we repeated the experiments 30 times.

The exploratory analysis resulted in the selection of population 
size of 500 individuals, which evolved over 50 generations carrying 
over the best individual of every generation to the next one. The 
population was initialized using geometric series with a minimum 
initial complexity of 5 and a probability of growth of 0.85.

Regarding the main operators, we used simple tournament with 
a size of 2, and applied the following to those selected: one-point 
crossover with probability of 0.85, duplication with a probability 
of 0.05, and uniform mutation with a probability of 0.1. The latter 
randomly modified genes within a specified range (-128, 127) with a 
probability of 0.05, allowing a circular wrapping of gene vector up to 
16 times before discarding the individual as invalid.

In order to improve diversity and avoid premature convergence, 
both during the initialization process of the algorithm and during the 
genetic mutation operation, if the same individual appeared more than 
once in the population, we tried up to 100 attempts to replace it with 
a new one.

The size of the training window was set at three years (753 sessions), 
while the number of sessions in the test period was fixed at one year 
(251 sessions).

In relation to the ensembles, the number of rules, e, considered 
to generate the recommendations was set to 5 and the weights of the 
Weighted approach were set to [0.05,0.1,0.15,0.25,0.45]. Here, the last 
elements of the vector make reference to the emphasis given to the rules 
based on the most recent information. That is, the vote of the most recent 
rule would have significantly more importance than the rest.

B. Results
The main results of the experiments are summarized in Table II. 

There, we report the most important descriptive statistics for the net 
returns over 30 experiments. The table details the performance of the 
Dynamic approach plus the two benchmarks that represent the opposite 
extremes in terms of adaptation to structural change, Static and Naif, 
plus the two ensembles, Majority and Weighted, described before.

As we can see, the Dynamic strategy provided the best average 
performance. If we focus on average yearly return over the whole 
5-year period, it offered 10.71% net return. Meanwhile, the performance 
of the most competitive alternative, the Static approach, was 2.54%. 
This result, though significantly poorer, was still better than the one 
obtained by the ensembles and, specially, the Naif one, which resulted 
in an average yearly net loss of 3.96%. If we consider reliability, the 
dynamic strategy also yielded more consistency, as the average of the 
yearly return variances was very low compared to the one obtained 
using the Static approach.

Once we analyze the results year by year, we can see that Dynamic 
clearly dominates Static, Naif, Majority and Weighted regardless of 
market conditions. Although the rank of the four alternatives changes 
between them over time, Dynamic consistently outperforms the four 
of them.

The significance of the reported mean performance differences 
vs. Dynamic was formally tested. The process followed to that end 
started with the assessment of the normality of the distribution of 
returns using Kolmogorov-Smirnov test with the Lilliefors correction 
[31]. Whenever the normality of the results was rejected, we relied on 

non-parametric Wilcoxon’ test [32]. Conversely, in case that it could 
not be rejected, we used Levene’s homoskedasticity test [33]. At that 
point, depending on the result, we employed either a t-test [34] or 
Welch’s [35]. According to this protocol, all the differences with the 
exception of one were significant at 1%. The observed performance 
differences might be explained by two main reasons: better market 
timing and better control of transaction costs. The latter aspect was 
analyzed tracking the number of purchase and sale orders generated 
by the three methods. This information is reported in Table III.

TABLE II. Net Return. Main Descriptive Statistics Over 30 Runs. Test 
Results

Strategy Mean Median Var. Max. Min.
2013 Dynamic 0.2161 0.2318 0.0017 0.2543 0.1311

Static 0.0381 * 0.0409 0.0001 0.0715 0.0051

Naif 0.1318 ** 0.1318 0.0002 0.1520 0.0921

Majority 0.1367 ** 0.1363 0.0002 0.1557 0.0964

Weighted 0.1372 ** 0.1387 0.0001 0.1582 0.1088

2014 Dynamic 0.0922 0.0994 0.0002 0.1042 0.0522

Static 0.0606 ** 0.0827 0.0015 0.1042 0.0079

Naif 0.0559 ** 0.0567 0.0002 0.0817 0.0257

Majority 0.0852 ** 0.0876 0.0001 0.0969 0.0471

Weighted 0.0782 ** 0.0784 0.0001 0.0961 0.0548

2015 Dynamic -0.0152 -0.0123 0.0002 -0.0123 -0.0935

Static -0.0160 * -0.0123 0.0001 -0.0123 -0.0601

Majority -0.0903 ** -0.0817 0.0017 -0.0303 -0.1738

Weighted -0.1266 ** -0.1270 0.0016 -0.0488 -0.1958

2016 Dynamic 0.0758 0.0889 0.0012 0.0889 -0.0217

Static 0.0241 ** 0.0043 0.0016 0.0889 -0.0223

Naif -0.1411 ** -0.1440 0.0014 -0.0335 -0.2193

Majority -0.0448 ** -0.0383 0.0012 0.0075 -0.1231

Weighted -0.0828 ** -0.0778 0.0023 0.0043 -0.1922

2017 Dynamic 0.1668 0.1668 0.0000 0.1668 0.1668

Static 0.0204 ** 0.0092 0.0016 0.1668 0.0092

Naif -0.0718 ** -0.0755 0.0011 0.0295 -0.1316

Majority 0.0176 ** 0.0294 0.0022 0.1094 -0.0753

Weighted 0.0025 ** 0.0057 0.0023 0.0943 -0.1136

Mean Dynamic 0.1071 0.1149 0.00066 0.1204 0.0470

Static 0.0254 0.0250 0.00099 0.0838 -0.0120

Naif -0.0396 -0.0419 0.00104 0.0311 -0.0985

Majority 0.0209 0.0267 0.0011 0.0678 -0.0458

Weighted 0.0017 0.0036 0.0013 0.0608 -0.0676
** Significant vs. Dynamic at 1%

While it is clear that the Naif strategy was, by far, the most active 
one, the rank of the rest is not stable. The Dynamic strategy traded less 
often than the rest 3 out of the five years. The performance of the Naif 
approach was therefore severely undermined, as it is apparent once 
we analyze performance in gross terms.

Table IV is similar to Table II. The difference is that it represents 
gross returns and, therefore, the performance has not been adjusted 
for transaction costs. If we consider average yearly performance over 
the 2013-2017 period, we see that the 11.56% return offered by the 
Dynamic approach beats both the Naif and the Static one, with 7.20% 
and 3.72% respectively. That is also the case for the ensembles, as the 
one based on simple majority obtained an average gross return of 
6.66%, very similar to the one provided by the one based on weighted 
voting with 6.63%.



Regular Issue

- 109 -

TABLE III. Number of Transactions

Strategy Mean Median Var. Min. Max.
2013 Dynamic 4.93 4 6.82 2 10

Static 7.20 4 48.17 4 32

Naif 14.00 14 16.00 4 20

Majority 5.80 6 3.96 4 10

Weighted 5.07 4 1.86 4 10

2014 Dynamic 4.40 4 5.63 2 10

Static 7.07 4 25.31 2 14

Naif 14.73 14 11.72 8 22

Majority 8.00 8 1.66 6 10

Weighted 9.13 8 4.6 6 14

2015 Dynamic 2.40 2 3.42 2 12

Static 2.40 2 1.21 2 6

Naif 42.40 42 24.94 36 56

Majority 17.00 18 10.69 10 26

Weighted 24.33 24 21.26 18 40

2016 Dynamic 2.73 2 8.69 2 18

Static 5.53 4 13.43 2 18

Naif 72.47 72 58.40 62 92

Majority 29.33 28 19.95 18 40

Weighted 43.13 42 36.33 28 58

2017 Dynamic 2.00 2 0.00 2 2

Static 1.40 0 13.28 0 12

Naif 79.40 81 102.39 52 100

Majority 31.33 32 35.40 20 44

Weighted 45.93 48 111.86 30 78

Mean Dynamic 3.29 2.80 4.91 2.00 10.40

Static 4.72 2.80 20.28 2.00 16.40

Naif 44.60 44.60 42.69 42.00 48.40

Majority 18.29 18.40 17.50 11.60 26.00

Weighted 25.52 25.20 35.18 17.20 40.00

The breakdown by year shows that Naif profited much than Static 
in the periods where there was more to be gained. Losses in bad years 
were also mitigated to a very large extent. It is worth mentioning 
that disregarding transaction costs turned the 2016 major losses for 
the Naif strategy into profits. Conversely, the Static approach evolved 
a large proportion of trading rules that did not provide any trading 
signals, hence making the difference between net a gross performance 
negligible. The ensembles generally performed in line with the Naif 
in gross terms, but they obtained very good results in 2014, where 
Majority got to beat Dynamic. Having said that, the difference was 
small and not statistically significant.

As we also observed when we analyzed net returns, the Dynamic 
approach introduced in this study seems to be the most reliable one in 
terms gross performance. The average of yearly return variances was 
around half of the of the second most stable approach.

The fact that the Dynamic approach also offered such good results 
in gross terms indicate that the dominance that we observed in net 
returns can be explained by a both combination a combination of 
adaptability to structural change and limited transaction costs. The 
Naif strategy identified and exploited small structural changes, but 
the excessive trading caused by constant replacements of investment 
rules increased transaction costs to the point of making flexibility 
counterproductive. This is likely to be caused by the fact that trading 
rules identified using GE are implicitly optimized to limit the number 
of signals, as they are penalized in the fitness function. Once there is 

a constant change, the strategy that is used in practice is not none of 
the optimized ones and, therefore, the implicit control mechanism for 
transaction costs is likely to be affected. The Static approach does not 
offer the flexibility of the rest but, if structural change is limited over 
the period of use, the trade-off of limited transaction costs vs the loss 
of accuracy over time could still lead to good results.

The experimental results support the importance of using dynamic 
approaches like the described one. The advantages are not limited 
to the ability to generate relevant trading signals in a dynamic 
environment, which is clearly an important aspect, but also the 
possibility of doing it at the same time that it controls transaction 
costs. The proposed strategy Dynamic offers a good compromise 
between two often conflicting objectives: offering flexibility to adapt 
to structural changes and limiting the number of orders.

VI. Summary and Conclusions

The development of investment rules using grammatical evolution 
often entails obtaining a single rule based on a training period, which 
is then used to generate recommendations over time. The use of sliding 
windows improves the adaptability to the structural changes that 
prevail in financial series but tends to result in excessive transaction 
costs. Therefore, it is necessary to find alternatives that offer a balance 

TABLE IV. Gross Return. Main Descriptive Statistics Over 30 Runs. 
Test Results

Strategy Mean Median Var. Max. Min.
2013 Dynamic 0.2297 0.2531 0.0014 0.2593 0.1561

Static 0.0561 ** 0.0509 0.0004 0.1215 0.0193

Naif 0.1661 ** 0.1654 0.0003 0.2215 0.1409

Majority 0.1512 ** 0.1519 0.0001 0.1676 0.1214

Weighted 0.1540 ** 0.1562 0.0001 0.1732 0.1338

2014 Dynamic 0.1032 0.1092 0.0001 0.1141 0.0721

Static 0.0783 ** 0.0927 0.0007 0.1092 0.0429

Naif 0.0915 ** 0.0890 0.0001 0.1165 0.0716

Majority 0.1052 0.1074 0.0001 0.1184 0.0671

Weighted 0.1010 0.0987 0.0001 0.1161 0.0798

2015 Dynamic -0.0092 -0.0073 0.0001 -0.0073 -0.0635

Static -0.0100 -0.0073 0.0001 -0.0073 -0.0451

Naif -0.0627 ** -0.0627 0.0024 0.0576 -0.1379

Majority -0.0478 ** -0.0415 0.0014 0.0084 -0.1288

Weighted -0.0658 ** -0.0692 0.0014 0.0112 -0.1361

2016 Dynamic 0.0826 0.0939 0.0008 0.0939 -0.0042

Static 0.0379 ** 0.0293 0.0015 0.0952 -0.0073

Naif 0.0357 ** 0.0409 0.0018 0.1346 -0.0282

Majority 0.0285 ** 0.0355 0.0010 0.0775 0.0481

Weighted 0.0250 ** 0.0275 0.0019 0.1243 -0.0497

2017 Dynamic 0.1718 0.1718 0.0000 0.1718 0.1718

Static 0.0239 ** 0.0092 0.0017 0.1718 0.0092

Naif 0.1296 ** 0.1290 0.0013 0.1968 0.0591

Majority 0.0959 ** 0.0294 0.0014 0.1694 0.0323

Weighted 0.1174 ** 0.1110 0.0014 0.1922 0.0479

Mean Dynamic 0.1156 0.1241 0.00048 0.1264 0.0665

Static 0.0372 0.0350 0.00088 0.0981 0.0038

Naif 0.0720 0.0723 0.00119 0.1454 0.0211

Majority 0.0666 0.0565 0.0008 0.0280 0.1082

Weighted 0.0663 0.0648 0.0010 0.0151 0.1234

** Significant vs. Dynamic at 1% * Significant vs. Dynamic at 5%
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between flexibility and transaction expenses.

In this study we improve the standard approach introducing new 
solution that involves a dynamic selection mechanism, which switches 
between an active rule and a candidate one optimized for the most 
recent market data available. The process also includes a hysteresis 
component that reduces the risk of overtrading.

The approach was benchmarked against four alternatives based on 
the same core algorithm over a period of five years. The alternatives 
included: the standard static approach Static, a solution that updates 
constantly the decision rule, Naif, and two ensemble-based solutions 
that differ in the voting mechanism that they implement, Majority and 
Weighted.

The results obtained support the superiority of the new solution 
both in terms of return and reliability, followed by the Static approach.

The analysis of the impact of transaction costs on profitability 
highlights the importance of limiting overtrading, since there is a clear 
inverse relationship between the number of purchase and sale orders 
and performance. The Naif approach trades much more often than the 
rest, and commissions drag down its returns to a very large extent. It 
is worth noting that controlling this aspect seems to be a key success 
factor of the Dynamic alternative, but not the only one.

These findings bring out the importance of holding a balance 
between the importance to adapt to market structural changes and 
the risk of updating constantly recommendation models that are 
implicitly optimized for the longer term. The results support the new 
approach as a mechanism capable of maintaining the balance sought 
between these two contradictory goals.

Future lines of work might include replicating the study with 
other assets or financial indices; testing the approach with genetic 
programming; extending the grammar to analyze the impact on the 
results, or exploring the possibility of updating dynamically the set of 
terminals and nodes to make sure that the building blocks of the rules 
remain relevant over time.
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