Skip to main content
Log in

A linear genetic programming approach for the prediction of solar global radiation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

An Erratum to this article was published on 15 August 2012

Abstract

In this article, the linear genetic programming (LGP) is utilized to predict the solar global radiation. The solar radiation is formulated in terms of several climatological and meteorological parameters. Comprehensive databases containing monthly data collected for 6 years (1995–2000) in two nominal cities in Iran are used to develop LGP-based models. Separate models are established for each city. To verify the performance of the proposed models, they are applied to estimate the solar global radiation of test data of database. The contribution of the parameters affecting the solar radiation is evaluated through a sensitivity analysis. The results indicate that the LGP models give precise estimations of the solar global radiation and significantly outperform traditional angstrom’s model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Azadeh A, Maghsoudi A, Sohrabkhani S (2009) An integrated artificial neural networks approach for predicting global radiation. Energy Convers Manage 50:1497–1505

    Article  Google Scholar 

  2. Alam MS, Saha SK, Chowdhury MAK, Saifuzzaman M, Rahman M (2005) Simulation of solar radiation system. Am J Appl Sci 2(4):751–758

    Article  Google Scholar 

  3. Al-Salihi AM, Kadum MM, Mohammed AJ (2010) Estimation of global solar radiation on horizontal surface using meteorological measurement for different cities in Iraq. Asian J Scient Res 3(4):240–248

    Article  Google Scholar 

  4. Box GEP, Jenkins G (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

    MATH  Google Scholar 

  5. Wu J, Chan CK (2011) Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN. Sol Energy 85:808–817

    Article  Google Scholar 

  6. Behrang MA, Assareh E, Noghrehabadi AR, Ghanbarzadeh A (2011) New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique. Energy 36(5):3036–3049

    Article  Google Scholar 

  7. Chakraverty S, Gupta P (2008) Comparison of neural network configurations in the long-range forecast of southwest monsoon rainfall over India. Neural Comput Appl 17(2):187–192

    Article  Google Scholar 

  8. El-Shafie A, Abdelazim T, Noureldin A (2010) Neural network modeling of time-dependent creep deformations in masonry structures. Neural Comput Appl 19:583–594

    Article  Google Scholar 

  9. Chakraverty S, Gupta P, Sharma S (2010) Neural network-based simulation for response identification of two-storey shear building subject to earthquake motion. Neural Comput Appl 19:367–375

    Article  Google Scholar 

  10. Kraslawski A, Pedrycz W, Nyström L (1999) Fuzzy neural network as instance generator for case-based reasoning system: an example of selection of heat exchange equipment in mixing. Neural Comput Appl 8(2):106–113

    Article  Google Scholar 

  11. Cao M, Qiao P (2008) Neural network committee-based sensitivity analysis strategy for geotechnical engineering problems. Neural Comput Appl 17:509–519

    Article  Google Scholar 

  12. Alavi AH, Gandomi AH (2011) Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput Struct 89(23–24):2176–2194

    Article  Google Scholar 

  13. Alavi AH, Gandomi AH, Mollahasani A, Heshmati AAR, Rashed A (2010) Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks. J Plant Nutr Soil Sci 173(3):368–379

    Article  Google Scholar 

  14. Al-Alawi SM, Al-Hinai HA (1998) An ANN approach for predicting global radiation in locations with no direct measurement instrumentation. Renew Energy 14:199–204

    Article  Google Scholar 

  15. Lopez G, Rubio MA, Martinez M, Batlles FJ (2001) Estimation of hourly global photosynthetically active radiation using artificial neural network models. Agri Forest Meteorol 107:279–291

    Article  Google Scholar 

  16. Sozen A, Arcaklıoglu E, Ozalp M, Galip Kanit E (2005) Solar-energy potential in Turkey. Appl Energy 80:367–381

    Article  Google Scholar 

  17. Ozgoren M, Bilgili M, Sahin B (2012) Estimation of global solar radiation using ANN over Turkey. Exp Sys Appl 39:5043–5051

    Article  Google Scholar 

  18. Alavi AH, Gandomi AH (2011) A robust data mining approach for formulation of geotechnical engineering systems. Eng Comput 28(3):242–274

    Article  Google Scholar 

  19. Koza JR (1992) Genetic programming, on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  20. Banzhaf W, Nordin P, Keller R, Francone F (1998) Genetic programming–an introduction on the automatic evolution of computer programs and its application. Morgan Kaufmann, Heidelberg

    Google Scholar 

  21. Alavi AH, Gandomi AH, Sahab MG, Gandomi M (2010) Multi expression programming: a new approach to formulation of soil classification. Eng Comput 26(2):111–118

    Article  Google Scholar 

  22. Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181(23):5227–5239

    Article  Google Scholar 

  23. Gandomi AH, Alavi AH (2012) A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neur Comput Appl 21:171–187

    Article  Google Scholar 

  24. Gandomi AH, Alavi AH, Sadat Hosseini SS (2008) Discussion on genetic programming for retrieving missing information in wave records along the west coast of India. Appl Ocean Res 30(4):338–339

    Article  Google Scholar 

  25. Brameier M, Banzhaf W (2007) Linear genetic programming. Springer, New York

    MATH  Google Scholar 

  26. Brameier M, Banzhaf W (2001) A comparison of linear genetic programming and neural networks in medical data mining. IEEE T Evolut Comput 5(1):17–26

    Article  Google Scholar 

  27. Alavi AH, Heshmati AAR, Gandomi AH, Askarinejad A, Mirjalili M (2008) Utilisation of computational intelligence techniques for stabilised soil. In: Proceedings of the 6th international conference on engineering computational technology, Civil-Comp Press, United Kingdom, Paper no. 175

  28. Alavi AH, Gandomi AH (2012) Energy-based models for assessment of soil liquefaction. Geosci Front 3(4):541–555

    Google Scholar 

  29. Gandomi AH, Alavi AH, Mousavi M, Tabatabaei SM (2011) A Hybrid computational approach to derive new ground-motion attenuation models. Eng Appl Artif Intell 24(4):717–732

    Article  Google Scholar 

  30. Gandomi AH, Alavi AH, Sahab MG (2010) New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming. Mater Struct 43(7):963–983

    Article  Google Scholar 

  31. Gandomi AH, Alavi AH, Yun GJ (2011) Nonlinear modeling of shear strength of SFRCB beams using linear genetic programming. Struct Eng Mech 38(1):1–25

    Article  Google Scholar 

  32. Conrads M, Dolezal O, Francone FD, Nordin P (2004) Discipulus Lite™–fast genetic programming based on AIM learning technology. Register Machine Learning Technologies Inc, Littleton, CO

    Google Scholar 

  33. Smith GN (1986) Probability and statistics in civil engineering. Collins, London

    Google Scholar 

  34. Angstrom A (1924) Solar and terrestrial radiation. QJR Meteorol Soc 50:121–125

    Article  Google Scholar 

  35. Alavi AH, Ameri M, Gandomi AH, Mirzahosseini MR (2011) Formulation of flow number of asphalt mixes using a hybrid computational method. Constr Build Mater 25(3):1338–1355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Shavandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shavandi, H., Saeedi Ramyani, S. A linear genetic programming approach for the prediction of solar global radiation. Neural Comput & Applic 23, 1197–1204 (2013). https://doi.org/10.1007/s00521-012-1039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1039-6

Keywords

Navigation