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ABSTRACT

This paper proposes Polyandry, a new nature-inspired modification to canonical Genetic Programming (GP). Polyandry
aims to improve evolvability in GP. Evolvability is a critically important GP trait, the maintenance of which determines
the arrival of the GP at a global optimum solution. Specifically evolvability is defined as the ability of the genetic operators
employed in GP to produce offspring that are fitter than their parents. When GP fails to exhibit evolvability, further
adaptation of the GP individuals towards a global optimum solution becomes impossible.

Polyandry improves evolvability by improving the typically disruptive standard GP crossover operator. The algorithm
employs a dual strategy towards this goal. The chief part of this strategy is an incorporation of genetic material from
multiple mating partners into broods of offspring. Given such a brood, the offspring in the brood then compete according
to a culling function, which we make equivalent to the main GP fitness function. Polyandry’s incorporation of genetic
material from multiple GP individuals into broods of offspring represents a more aggressive search for building block
information. This characteristic of the algorithm leads to an advanced explorative capability in both GP genotype space
and fitness space. The second component of the Polyandry strategy is an attempt at multiple crossover points, in order to
find crossover points that minimize building block disruption from parents to offspring. This strategy is employed by a
similar algorithm, Brood Recombination.

We conduct experiments to compare Polyandry with the canonical GP. Our experiments demonstrate that Polyandry
consistently exhibits better evolvability than the canonical GP. As a consequence, Polyandry achieves higher success rates
and discovers globally optimal solutions in significantly fewer generations than the latter. The result of these observations
is that given certain brood size settings, Polyandry requires less computational effort to arrive at a global optimum solution
than the canonical GP.

We also conduct experiments to compare Polyandry with the analogous nature-inspired modification to canonical
GP, Brood Recombination. The adoption of Brood Recombination in order to improve evolvability is ubiquitous in GP
literature. Our results demonstrate that Polyandry consistently exhibits better evolvability than Brood Recombination,
due to a more explorative nature of the algorithm in both genotype and fitness space. As a result, although the two
algorithms exhibit similar success rates, Polyandry consistently discovers globally optimal solutions in significantly fewer
GP generations than Brood Recombination. The key advantage of Polyandry over Brood Recombination is therefore
faster solution discovery. As a consequence Polyandry consistently requires less computational effort to arrive at a global
optimum solution compared to Brood Recombination.

Further, we establish that the computational effort exerted by Polyandry is competitively low, relative to other

Evolutionary Algorithm (EA) methodologies in literature. We conclude that Polyandry is a better alternative to both the

canonical GP as well as Brood Recombination with regards to the achievement and maintenance of evolvability.
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1 INTRODUCTION

Genetic Programming (GP) is a soft computing tech-
nique that borrows from the principles of variation and
natural selection in nature [1]. The GP methodology
searches a large program space by iteratively selecting
and applying variation operators to members of a pop-
ulation. Here the members of the population to which
variation is applied are selected according to a fitness
function.

The iterative selection and variation in GP is con-
ducted with the aim of evolving the population to a
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global optimum solution. The arrival of GP at a global
optimum solution depends fundamentally on the ability
of the algorithm to maintain evolvability throughout
its generations [2] [3]. In GP, evolvability is defined as
the ability of employed genetic (or variation) operators
to produce offspring that are fitter than their parents
[2] [3]. Evolvability is a vital concept underlying the
workings of GP. A GP that fails to maintain evolvabil-
ity cannot adapt successfully in response to selection
pressure applied by the fitness function [2].

A formidable obstacle towards the maintenance
of evolvability is the disruptiveness of the standard
crossover genetic operator [4].1 Standard crossover

1In this article the terms standard (GP) crossover and canon-
ical GP refer to Koza’s crossover operator and Koza’s original
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predominantly produces offspring that are less fit than
their parents [4]. We present Polyandry, a modifica-
tion to the canonical GP. Polyandry aims to improve
the standard GP crossover operator, thus improving
evolvability. Similarly to GP, the elementary idea un-
derlying Polyandry hails from an analogy in nature.
Polyandry is similar to Brood Recombination [2] [3]
[5], an existing methodology to improve crossover.

In nature, organisms may produce several offspring
as a means of increasing the chances of offspring sur-
vival [6] [7] [8] [9] [10]. A collection of these offspring is
referred to as a brood or a clutch. The existing Brood
Recombination algorithm [2] [3] [5] is drawn from the
analogy of a brood of offspring being produced by the
same two parents. Such a brood, produced by sexual
reproduction involving meiosis and recombination, is
genetically diverse [11]. When two parent organisms
create a sizeable brood of offspring as opposed to fewer
offspring, multiple diverse combinations of the genetic
material from the two parents are attempted in the
different offspring. As a result the probability that at
least one of the offspring will possess an optimal com-
bination of genetic material, and thus a high fitness,
is increased [12]. The probability of fitter offspring is
directly linked to the concept of improved evolvability
in GP.

Our Polyandry algorithm is based on the analogy
in nature of a brood of offspring being produced by a
single female parent and multiple mating partners. Al-
though multiple matings between two organisms may
produce a high level of genetic diversity in a brood,
multiple paternities lead to a much higher level of di-
versity among brood offspring [6] [10] [13]. The distinct
offspring in a Polyandry brood represent attempts at
combining different sections of genetic material from
the female parent with genetic material from diverse
mating partners. Multiple paternities represent a more
aggressive search for good genetic material. As a result
the probability of fitter offspring in a Polyandry brood
is even higher than the same for a brood produced
from just two parents [6] [11] [13].

We hypothesize that the advantages of Polyandry
in nature should translate to GP. This hypothesis is
based on the common fundamental goal of both nat-
ural evolution and GP; this being the discovery of
good genetic material in response to selective pressure.
Based on our hypothesis, we implement a Polyandry
algorithm and compare the evolvability yielded with
the same for the canonical GP algorithm as well as
the Brood Recombination algorithm. We conduct ex-
periments comparing the three mentioned algorithms
across four GP benchmark problem domains: the Ar-
tificial Ant, Even-5 Parity, Symbolic Regression and
11-Multiplexer domains. The experiments demonstrate
that Polyandry consistently exhibits better evolvability
than the both the canonical GP and Brood Recombi-
nation algorithms. High evolvability is associated with
better GP performance [2]. Accordingly, given certain
brood size settings, the Polyandry algorithm requires
less computational effort to arrive at a global opti-

GP algorithm respectively, described in [1].

mum solution compared to the canonical GP.2 Further,
Polyandry consistently requires less computational ef-
fort to reach a global optimum solution compared to
Brood Recombination. These observations are consis-
tent across all four domains tested. We will see that
Polyandry’s outperformance of the canonical GP stems
from the higher success rate and faster solution dis-
covery exhibited by the former. Further Polyandry’s
outperformance of Brood Recombination stems from
the faster solution discovery of Polyandry relative to
Brood Recombination.

This paper is organized as follows: Section 2 pro-
vides detailed information on the concepts of evolvabil-
ity, Brood Recombination and Polyandry, and further
argues for an algorithm incorporating Polyandry as a
superior alternative to Brood Recombination; section 3
describes the novel algorithm; section 4 describes ex-
periments conducted with the aim of demonstrating
the better evolvability achieved by our approach with
respect to Brood Recombination; section 5 provides
results and a subsequent discussion from experiments
conducted; section 6 is a conclusion and discusses pos-
sible future extensions to the Polyandry algorithm.

2 BACKGROUND

2.1 Evolvability

In natural evolution, evolvability is defined as the abil-
ity of a population to adapt in response to selective
pressure [14] [15]. A similar definition from [16] estab-
lishes that evolvability is a population’s capacity to
evolve.

The term evolvability represents a similar concept
in GP. In GP evolvability is defined as the ability of
a population to adapt in response to the selection
pressure applied by a fitness function [2]. Specifically,
the evolvability of a GP system is the capacity of
the employed representation and genetic operators to
produce offspring that are fitter than their parents [2]
[3]. According to [2], evolvability is perceived as the
most fine-grained measurement of the performance of
GP.

Evolvability in GP is influenced by the ability of
genetic operators, such as the standard crossover oper-
ator, to leave existing highly fit building blocks intact
while creating further opportunities for adaptation
[2]. The maintenance of highly fit building blocks is
paramount to fitness gains in GP. Here building blocks
determine the fitness value of an individual [1] [2] [17]
[18]. Successful intact building block transmission be-
tween parents and offspring during crossover yields a
high probability of fitter offspring [19]. This is because
the undisrupted building blocks transmitted from each
parent can jointly form an extended building block
in the offspring. Building block extension is what
ultimately leads to fitter offspring [1] [17].

Evolvability is realized in GP if, during the cre-
ation of offspring, a genetic operator perturbs the

2We measure computational effort according to a modification
of the standard metric proposed by Koza in [1]. This is discussed
in more detail in Section 5.1.
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less adapted sections of individuals in the population
that is sections that do not contain highly fit building
blocks as opposed to the highly adapted sections. It
follows that the typically disruptive nature of the stan-
dard crossover operator is a major obstacle towards
evolvability. Standard GP crossover predominantly
produces offspring that are less fit than their parents
as building blocks residing in the parents are often
disrupted during crossover events [1] [2] [4]. This dis-
ruption occurs because crossover points are chosen
at random and thus are likely to be located within
building blocks. It follows that crossover mostly fails
to transmit intact building blocks from parents to off-
spring.

2.2 Brood recombination in nature and the
brood recombination algorithm

The Brood Recombination algorithm was introduced
in [2] [3] [5], with the aim of improving evolvability.
In the parallel phenomenon in nature, an organism
produces several offspring by mating multiple times
with a single partner. As a result of meiosis and re-
combination the resulting brood is genetically diverse.
Due to this diversity, the distinct offspring possess dis-
tinct competitive advantages or disadvantages. As a
result of selection pressure only a fraction of the brood
survives [9].

The Brood Recombination algorithm is a modifi-
cation to the canonical GP. Fig. 1 outlines the steps
involved in the canonical GP, with added detail on
the steps conducted by the standard GP crossover
operator. In [1] Koza sets the values of the genetic
operator probabilities p1% and p2% (Fig. 1) to 90%
and 10% respectively. Koza observes that aside from
crossover and reproduction, other genetic operators,
such as mutation, have no substantive effect on the
success rate of GP [1]. The canonical GP in Fig. 1 thus
employs only crossover and reproduction. Also in this
study, we focus on the standard crossover operator.

The Brood Recombination algorithm performs all
of the steps detailed in Fig. 1, with the exception
that it replaces the standard crossover operator with
a Brood Recombination operator, PB(n). Here RB(n)
produces 2n offspring from two selected parents in GP.
Subsequently only the best offspring from the resulting
brood are inserted into the GP population. RB(n) is
parameterized by the brood size factor n and the culling
function FB [20]. The brood size factor determines
the standard size of a brood. The offspring in a brood
compete according to FB . FB may differ from, but is
often the same as the fitness function applied to the
whole GP population. The steps conducted by RB(n)
are listed in Fig. 2.

We note that in the Brood Recombination algo-
rithm, RB(n) creates p1% of [Generation](n+1) in
place of standard crossover (line 4a. Fig. 1). We
will abbreviate the Brood Recombination algorithm as
BR for the remainder of this text. BR minimizes the
disruptiveness of the standard crossover operator by
making several attempts at creating fit offspring from

1. Initialise an integer n to represent the current
generation (n = 0).

2. Create the initial GP population
(Generation0).

3. Evaluate the fitness of each individual in
Generation0.

4. Repeat

(a) Create p1% of Generationn+1 by standard
crossover. The steps involved in each
crossover event are:

i. Select parents P1 and P2 from the popu-
lation via fitness proportionate or tourna-
ment selection.

ii. Randomly select crossover points (sub-
trees) Si1 and Si2 from P1 and P2 respec-
tively.

iii. Exchange subtrees Si1 and Si2 to form
brood offspring C1 and C2.

iv. Insert C1 and C2 into Generationn+1.

(b) Create p2% of Generationn+1 by reproduc-
tion.

(c) Calculate the fitness of each individual in
Generationn+1.

(d) Increment n by 1.

5. Until a global optimum solution is reached or
the maximum number of generations have been
run.

Figure 1: Pseudo-code for the canonical GP, adapted
from [1]

1. Select parents P1 and P2 from the population
via fitness proportionate or tournament selec-
tion.

2. For i = 1 to n perform standard crossover
between P1 and P2 by:

(a) Randomly selecting crossover points (sub-
trees) Si1 and Si2 from P1 and P2 respec-
tively.

(b) Exchanging subtrees Si1 and Si2 to form
brood offspring Bi1 and Bi2.

3. Determine the fitness value of each one of the
2n members of the brood according to FB .

4. Sort the 2n members of the brood in ascending
order of fitness according to FB .

5. Select offspring (“children”) C1 and C2 which
are the fittest of the 2n brood members accord-
ing to FB .

6. Return C1 and C2 as the offspring produced by
RB(n), for insertion into the GP population.

Figure 2: Pseudo-code for Algorithm RB(n), adapted
from [16]
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two parents [2] [21] [22] [23]. Specifically, BR makes
several attempts at finding suitable crossover points
in both parents. Under [R]B(n), each time standard
crossover is applied, random crossover points are se-
lected. Thus we expect the offspring in a brood to be
genetically diverse, and the product of diverse crossover
points with respect to each other. If the culling func-
tion, FB, is the same as the GP fitness function, we
select the fittest offspring of the brood for insertion
into the GP population. This fitness criteria leads to
the selection of offspring in which there is minimal
building block disruption, compared to the remainder
of the brood. In Subsection 2.1 we established that fit
offspring are associated with minimal building block
disruption.

In minimizing crossover disruptiveness, BR im-
proves GP evolvability [2] [3]. Under the algorithm,
the offspring returned by RB(n) are those resulting
from crossover operations that are likely to have per-
turbed sections that do not contain building blocks. As
a consequence, crossover is no longer associated with
disruption, but rather becomes an operator that is
more likely to create opportunities for further building
block extension [2].

We however note that BR is more computationally
expensive than the canonical GP. Given a brood size
2n, RB(n) is n times more computationally expensive
than standard crossover. This is because the fitness of
each of the 2n offspring in a brood has to be evaluated,
before only the best 2 offspring are selected.

By contrast, standard crossover creates only 2 off-
spring, both of which are incorporated into the GP
population. In literature this problem is resolved by us-
ing a cheaper culling function to evaluate the offspring
in a brood [21] [23]. For example, in [21], Tackett uses
a small fraction of the total number of fitness cases in
the main GP fitness function to evaluate competing
offspring in a brood.

In [22] it is established that generally a BR GP
with a larger brood size finds solutions faster than a
BR GP with a smaller brood size. The theory behind
this observation is that larger brood sizes correspond
to more attempts at finding suitable crossover points
and thus lower chances of building block disruption
from parents to offspring [22]. According to [22], there
however exists a threshold brood size beyond which
further increases in brood size do not yield further im-
provements in algorithm performance. This threshold
value is referred to as the brood-diversity point.

Why does a brood-diversity point exist, limiting
the correlation between brood size and performance
increases? In GP, the total number of distinct possible
crossover points in an individual is limited by the size
of the individual. Specifically, an individual with m
nodes has a total of only m distinct crossover points.
Thus beyond a certain brood size, the crossover points
attempted by [R]B(n) will begin to be duplicated [22].
Beyond the brood-diversity point, increases in brood
size are not associated with further exploration of
unique crossover points. This explains a general lack
of performance gains for brood sizes exceeding the

threshold.
Zhang et al. conduct experiments to test the ef-

ficacy of BR in object classification problems in [22].
The experiments demonstrate a decrease in the clas-
sification accuracy of BR for brood sizes beyond the
brood-diversity point. Here classification accuracy is
measured as the proportion of images in a training
set that are correctly classified by a GP. Although the
authors do not provide a reason for the decrease in clas-
sification accuracy beyond the brood diversity point,
we discuss a possible theory. For brood sizes higher
than the threshold point, duplicate crossover points at-
tempted by [R]B(n) should lead to duplicate offspring
in a brood. As a result of duplications, the pair of
fittest offspring in the brood returned by [R]B(n) may
be identical. This lack of diversity in the offspring
returned to the evolving population may contribute to
premature convergence.

Some limitations to the level of evolvability
achieved by BR emerge. As a GP progresses, larger
building blocks are formed [1]. It therefore becomes
more difficult to create offspring that are fitter than
their parents [22]. This is because most crossover
points will be likely to reside within building blocks.
Thus if the brood size selected for a BR GP is too small,
it translates to an insufficient number of attempts at
suitable crossover points in the later stages of the algo-
rithm when larger building blocks exist. Building block
disruption may therefore still occur. We observe that
because BR attempts to achieve evolvability solely by
the trial of multiple crossover points, the maintenance
of evolvability becomes difficult in the later stages of
the algorithm. We may opt to initialize a BR GP with
a large brood size in an attempt to exhaust possible
crossover points in the later stages of GP. However due
to the existence of a brood diversity point, this may
also be to the detriment of the performance of the GP.

We introduce a method inspired by Polyandry in
nature. The method employs an aggressive search
for good building block material, in order to improve
evolvability. Further, similar to Brood Recombination,
Polyandry attempts multiple crossover points during
the production of offspring. This leads to minimized
building block disruption from parents to offspring.

2.3 Polyandry in nature

In nature, Polyandry is defined as the tendency of
a female individual to mate with multiple partners
within her species, leading to a high level of genetic
diversity in the offspring belonging to her clutch [6].
Polyandrous females directly solicit copulations from
multiple males [7]. It is argued that this behavior has
evolved due to the genetic benefits associated with
Polyandry [24]. Multiple paternities lead to a much
higher level of diversity among offspring belonging
to a female’s clutch [6] [10] [13]. The offspring of a
multiply mated family are more than twice as diverse
as those from a singly mated family [11]. In literature
it is hypothesized that the key aim of Polyandrous
behavior is the creation of this useful genetic diversity
[6] [7] [24] [25].
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Polyandrous behaviour is perceived as a bet hedg-
ing strategy [26] and pays homage to the adage that
advises not to “put all of one’s eggs in the same basket”.
In this context, bet hedging is defined as a strategy
where the risk of failure (that is producing less fit off-
spring) is reduced by increasing the fitness diversity
among the offspring in the brood [26]. The increased
fitness diversity among the offspring in a brood is a
consequence of an increased genetic diversity of the
same, the latter being due to multiple paternities of
the offspring. In creating a highly fitness diverse brood,
the chance that at least some of the offspring produced
will have a high fitness is increased.

When a female mates with multiple partners, she
reduces the chances of all her eggs being fertilized by a
poor quality male [6]. Mating with multiple partners
represents a more aggressive search for good genetic
material. Since the resulting offspring in the female’s
clutch bear multiple paternities, the likelihood of at
least some of the offspring having being sired by a
relatively fit male is higher [6] [11] [13]. The fraction
of offspring sired by fitter males is in turn likely to be
fit and thus these offspring have a higher chance of
survival. Here the diversity generated by Polyandry
serves to find fitter genetic material and thus increase
the viability of at least some of the offspring generated.

We see therefore that Polyandry in nature is asso-
ciated with a higher likelihood of fitter offspring. We
hypothesize that this can translate to a computational
GP model.

2.4 A polyandry algorithm as an alternative to
the brood recombination algorithm

In Subsection 2.3, we established that in nature, a
brood that is the product of multiple paternities will
possess a higher level of diversity than a brood that
is the product of single paternity. We seek to inves-
tigate the advantages of an algorithm incorporating
Polyandry over an algorithm incorporating Brood Re-
combination. The Polyandry algorithm (described in
Section 3) is identical to BR with the exception that
each brood produced is the product of crossovers be-
tween a single GP individual and multiple individuals.

We hypothesize that, as in the case of nature, the
Polyandry algorithm should generate more genetically
diverse broods than BR. In GP, a group of parse trees
is genetically diverse if the parse trees are structurally
diverse. Alternately stated, our hypothesis claims that
a Polyandry algorithm will be more explorative in
genotype space as compared to BR. In this article we
use the term genotype space to describe the space of all
possible parse trees, given the function and terminal
set for a GP problem domain. This definition follows
from the extensive use of the term to describe the space
of all possible encodings or genotypes in GP literature
[27] [28] [29].

We further hypothesize that the greater structural
diversity of a Polyandry algorithm brood should trans-
late to greater fitness diversity in the offspring be-
longing to the brood. This hypothesis arises from the

knowledge that genotype space and fitness space in
GP are closely related [30]. The term fitness space
describes the space of all possible fitness values for a
given problem domain [29].

As in nature, a more diverse brood with respect
to fitness space should contain offspring with more
extreme fitness values. This means that a brood pro-
duced by Polyandry is more likely to contain offspring
that are less fit as well as offspring that are more fit
than the offspring in a BR brood. Let us then say
that the Polyandry algorithm, similarly to BR, uses a
culling function FB to select offspring from the brood
to input into the GP population. If the culling function
is equivalent to the main fitness function of the GP, the
existence of fitter offspring in a Polyandry brood will
result in the introduction of fitter offspring into the
GP population, compared to BR. Thus generally, the
offspring produced by a Polyandry algorithm, following
selection from a brood, will be fitter than the same
for BR. This translates into the Polyandry algorithm
demonstrating better evolvability as compared to BR.

Similarly to BR, the Polyandry algorithm, through
the production of multiple offspring in a brood, makes
multiple attempts at finding suitable crossover points
(this is discussed in detail in Section 3). As a result,
the probability of building block disruption is reduced.
Over and above this, the Polyandry algorithm employs
another strategy to improving evolvability. This strat-
egy is the more aggressive search for building block
information, achieved by incorporating genetic mate-
rial from multiple mates into a brood. We hypothesize
the dual strategy towards improving evolvability should
translate to a better exhibition of this phenomenon
relative to BR.

3 THE POLYANDRY ALGORITHM

Our Polyandry algorithm is similar to BR, as described
in Subsection 2.2. As with BR, the algorithm replaces
standard crossover in the canonical GP with an op-
erator, PB(n). The algorithm for PB(n) is shown in
Fig. 3. We note that the full Polyandry algorithm is
identical to the canonical GP, with the exception that
PB(n) creates p1% of [Generation](n+1) in place of
standard crossover (line 4a. in Fig. 1).

From Fig. 3, we observe that the only difference
between PB(n) and RB(n) is that the former selects
a brand new mate from the population to produce
each pair of offspring in a brood. Each ‘mating’ act,
which produces a pair of offspring in the brood, is thus
performed between the principal parent and a distinct
mating partner. Thus n distinct mating partners are
involved in the formation of a brood of size 2n. The
probability that the same individual is selected twice as
a mate depends on the size of the GP population. Gen-
erally, given a small tournament size (e.g., tournament
size 2), this probability is small. We will abbreviate
the Polyandry algorithm described here as PP for the
remainder of this text.

Also from Fig. 3, we note the dual strategy em-
ployed by PP towards achieving evolvability. PP at-
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1. Select a principal parent P1 from the popula-
tion via fitness proportionate selection or tour-
nament selection.

2. For i = 1 to n:

(a) Randomly select a mating partner P2 from
the population via fitness proportionate or
tournament selection.

(b) Perform standard crossover between P1 and
P2 by:

i. Randomly selecting crossover points (sub-
trees) Si1 and Si2 from P1 and P2 respec-
tively.

ii. Exchanging subtrees Si1 and Si2 to form
brood offspring Bi1 and Bi2.

3. Determine the fitness value of each one of the
2n members of the brood according to FB .

4. Sort the 2n members of the brood in ascending
order of fitness according to FB .

5. Select offspring (“children”) C1 and C2 which
are the fittest of the 2n brood members accord-
ing to FB .

6. Return C1 and C2 as the offspring produced by
PB(n), for insertion into the GP population.

Figure 3: Pseudo-code for Algorithm PB(n)

tempts multiple crossover points with respect to the
principal parent in order to find a suitable crossover
point in the individual. This is due to the randomness
involved in selecting a crossover point in the principal
parent each time a pair of offspring is created and
added to the brood. PP thus minimizes building block
disruption in the principal parent, in a similar manner
to BR. Further PP performs a wider search for building
block material by incorporating genetic material from
multiple mates into a brood. As discussed, this also
serves to increase evolvability.

We note that for the same brood size the com-
putational effort exerted by PP is the same as that
for BR. This is because both algorithms create and
evaluate the fitness of the same number of offspring.
The improved evolvability we anticipate of PP relative
to BR is therefore not at the expense of an increase in
computational effort.

4 EXPERIMENT SETUP

Our experiments seek to empirically support three
hypotheses:

H1. PP exhibits better evolvability than the canoni-
cal GP.

H2. PP exhibits better evolvability than BR.

H3. The better evolvability of PP relative to both
the canonical GP and BR is as a consequence of
the following:

1. PP produces more structurally diverse broods
than BR. Thus PP is more explorative in geno-
type space than BR. A PP brood is also more
structurally diverse than a pair of individuals

generated by standard crossover in the canon-
ical GP. Thus PP is also more explorative in
genotype space relative to the canonical GP.

2. The more explorative nature in genotype space
of PP means that the algorithm conducts a
more aggressive search for building block infor-
mation. Thus the algorithm is more explorative
in fitness space than both the canonical GP and
BR. Coupled with multiple attempts at locating
suitable crossover points in the principal par-
ent, this should lead to PP generally exhibiting
better evolvability than the two algorithms.

Four benchmark Genetic Programming domains
are analyzed in our experiments; the Artificial Ant,
Even-5 Parity, 11-Multiplexer and Symbolic Regression
domains. We implement the domains in Java SE 7 as
per their original specification in [1]. Details of the
problem domains are listed in Table 1.

Table 1: Problem domain details

Domain Function
set

Terminal
set

Fitness
case(s)

Fitness
func-
tion

Artificial
ant
(Ant)

{IF
FOOD
AHEAD,
P2, P3}

{MOVE,
TURN
RIGHT,
TURN
LEFT}

Santa Fe
Trail

Number
of pellets
left on
the trail

Even-5
parity
(Parity)

{AND,
OR,
NAND,
NOR}

{d0, d1,
d2, d3,
d4}

32 Fit-
ness
cases (all
possible
combina-
tions of
terminal
set)

Number
of incor-
rectly
classified
fitness
cases

11-Multi-
plexer
(Multi-
plexer)

{AND,
OR,
NOT,
IF}

{a0, a1,
a2, d0,
d1, d2,
d3, d4,
d5, d6,
d7}

2048
Fitness
cases (all
possible
combina-
tions of
terminal
set)

Number
of incor-
rectly
classified
fitness
cases

Symbolic
regres-
sion
(Regres-
sion)
(order
8 poly-
nomial -
x8 +x7 +
x6 +x5 +
x4 +x3 +
x2 + x)

{+,−, ∗,
%, cos,
sin, log,
exp}

{x} 21
equidis-
tant
points
in the
interval
[−1, 1]

Mean
squared
error of
function
repre-
sented
by parse
tree from
fitness
cases

For all experiments conducted, a standard popula-
tion size of 1000 individuals is used. Although small
population sizes can be effective, large population sizes
are recommended for solving difficult GP problems,
such as the Even-5 Parity problem, over a small number
of generations [31].

Further, we use tournament selection with a tour-
nament size of 2. The small tournament size ensures
that dissimilar mating partners are selected for the
principal parent in PP. We also use an initial tree
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depth of 6 (adapted from [1]) and a maximum tree
depth limit of 30. This high value for the maximum
depth limit is used to allow large potentially solution-
finding trees to be discovered in the difficult Even-5
Parity domain. Koza reported that given a population
size below 4000, no solutions are obtainable in this
domain using standard GP [1], as the domain requires
the formation of highly complex solution parse trees.
In fact, in [1] success rates above 0 were only obtained
through the use of an extremely large population (8000
individuals), or through Automatically Defined Func-
tions. We hope to find solutions in this domain using
both Polyandry and Brood Recombination, in order to
demonstrate the ability of BR and PP to form complex
parse trees, due to their ability to preserve and extend
existing building blocks.

For all experiments, the initial population is gen-
erated using Koza’s ramped half and half method [1].
We use crossover and reproduction with probabilities
of 0.9 and 0.1 respectively. These parameter settings
are adapted from [1]. Note that these parameter set-
tings correspond to a probability of 0.9 for RB(n) and
PB(n) in BR and PP respectively, and a reproduction
probability of 0.1.

The details of all the experiments run are listed
in Table 2. We choose the brood sizes in Table 2
to facilitate the comparison of BR and PP across a
spectrum of brood sizes. Note that a brood size of 2 is
equivalent to the canonical GP for both BR and PP.
This is indicated by a (C) in Table 2. The experiments
that correspond to BR and PP are also indicated in
the table. Each experiment consists of 30 runs with
the maximum number of generations set to 50.

Table 2: Experiment design

Brood size (brood size
factor)

Number of mates

200 (100) 1 (BR)

100 (PP)

100 (50) 1 (BR)

55 (PP)

40 (20) 1 (BR)

20 (PP)

20 (10) 1 (BR)

10 (PP)

10 (5) 1 (BR)

5 (PP)

4 (2) 1 (BR)

2 (PP)

2 (1) 1 (C)

The metrics measured in our experiments are di-
vided into two categories:

1. Standard GP performance metrics: Better evolv-
ability is associated with a better algorithm per-
formance [2]. We thus compare BR, PP and the
canonical GP with respect to the following stan-
dard metrics:

(a) The algorithm success rate. This is the propor-
tion of the total number of runs of an algorithm
that find a solution at or before the maximum
number of generations have been reached. This
metric is defined as the success proportion in
[32].

(b) Koza’s minimum computational effort metric [1].
This is the computational effort exerted by an
algorithm in solving a given problem (cf. Section
5.1, Equation 3).

(c) The number of generations taken to converge
to a global optimum solution, given a success-
ful run of the algorithm. The four benchmark
problem domains examined in this study are
all GP minimization problems [1]. Thus in this
study an algorithm is successful (meaning that
the algorithm has reached a global optimum so-
lution) when at least one individual in the GP
population is able to attain a fitness value of 0.
This indicates that the individual has attained
the minimal error over all the fitness cases. The
fitness cases for the four domains are listed in
Table 1.

2. Metrics that investigate the causality of better
evolvability: Here we compare BR and PP with
respect to the following:

The explorative capability in genotype
space. The number of distinct unique subtrees
in a population can be used as a measure of
the structural diversity in the population [33]
[34]. In this context a unique subtree is a sub-
tree that has no duplicates in the population
[34]. We measure the total number of distinct
unique subtrees in a brood in order to assess
the amount of structural diversity in the brood.
The algorithm that consistently yields the more
structurally diverse broods is the more explo-
rative algorithm in genotype space.

The explorative capability in fitness space.
We examine the walk of an algorithm through
fitness space by looking at the fitness dis-
tance between parent individuals and their
offspring. Specifically, for PP, we determine
DistanceF (P1, O) the fitness distance between
the principal parent P1 (Fig. 3) and an offspring
belonging to the brood generated by P1. We
do the same for BR, whereby the first parent
selected, P1 (Fig. 2), acts as the principal par-
ent. The formula for determining the fitness
distance between P1 and an offspring is shown
in Equation 1.

We note that given a brood, the standard de-
viation of DistanceF (P1, O) within the brood
is a measure of the diversity of fitness values
of the brood members relative to the prin-
cipal parent. This metric, which we abbre-
viate as SDDistanceF (P1,O), is calculated by
determining DistanceF (P1, O) for each mem-
ber in the brood, and subsequently determin-
ing the standard deviation of the values ob-
tained. A high value of SDDistanceF (P1,O) in-
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DistanceF (P1, O) = Fitness(P1) − Fitness(O)

where O is an offspring member of the brood gener-
ation.

Equation 1: Fitness distance between principal parent and an offspring member of the brood.
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DistanceF (P1, Oselected) =
(Fitness(P1) − Fitness(Oselected1)) + (Fitness(P1) − Fitness(Oselected2))

2

where Oselected1 and Oselected2 are the pair of offspring selected by the culling function FB from the brood
generated by P1. Note that Oselected1 and Oselected2 are returned into the GP population as a result of the brood
operator.

Equation 2: Fitness distance between principal parent and an offspring selected from the brood

Table 3: Algorithm success rates

Domain Ant Parity Multiplexer Regression

Algorithm
(Brood size)

C (2) 0.13 0.00 0.00 0.40

BR (4) 0.27 0.00 0.07 0.77

PP (4) 0.33 0.00 0.13 0.83

BR (10) 0.67 0.13 0.87 0.97

PP (10) 0.73 0.13 1.00 0.93

BR (20) 0.93 0.53 1.00 0.93

PP (20) 0.93 0.67 1.00 0.97

BR (40) 0.97 0.97 1.00 0.90

PP (40) 1.00 0.97 1.00 0.90

BR (100) 1.00 1.00 1.00 0.97

PP (100) 1.00 1.00 1.00 0.97

BR (200) 1.00 1.00 1.00 0.93

PP (200) 1.00 1.00 1.00 0.90

Equation 2: Fitness distance between principal parent and an offspring selected from the brood.

dicates that there is a high diversity in the
fitness values of offspring pertaining to the
brood. SDDistanceF (P1,O) is thus a measure
of the amount of exploration in fitness space
conducted by generating the brood.

The average fitness distance between the
offspring returned by the brood operator
PB(n) or RB(n) and the principal parent.
This formula for this metric is provided in Equa-
tion 2. In Equation 2, DistanceF (P1, Oselected)
can be perceived as a direct measure of evolv-
ability. In GP minimization problems, positive
values of this metric indicate fitness gains re-
sulting from a brood operator’s function. Also
large positive values of the metric indicate large
fitness gains from resulting from the operator.

5 RESULTS DISCUSSION

5.1 Success rates and minimum computational
effort

Table 3 draws a comparison of the success rates
achieved for PP relative to BR across brood sizes for
the different domains. From the table we observe that
the general trend, for both PP and BR, is that larger
brood sizes correspond to higher success rates. This
is expected as we have established that larger brood
sizes are associated with lower probabilities of building
block disruption, and hence better evolvability. From
Table 3 we note therefore that both algorithms gener-
ally exhibit increasingly higher success rates than the
canonical GP with increasing brood size across all four
domains. From these observations we can conclude
that Polyandry delivers an increasingly better perfor-
mance than the canonical GP with increasing brood
size. This supports hypothesis 1 (Section 4).

We observe in Table 3 that given a domain and a
fixed brood size, PP generally tends to have a higher
or equivalent success rate to BR. This is true for over
90% of the observations in the table.

Given the same domain and brood size, discrepan-

Table 3: Algorithm success rates

Domain

Algor-
ithm

Ant Parity Multi-
plexer

Regre-
ssion

(Brood
size)

C(2) 0.13 0.00 0.00 0.40

BR(4) 0.27 0.00 0.07 0.77

PP(4) 0.33 0.00 0.13 0.83

BR(10) 0.67 0.13 0.87 0.97

PP(10) 0.73 0.13 1.00 0.93

BR(20) 0.93 0.53 1.00 0.93

PP(20) 0.93 0.67 1.00 0.97

BR(40) 0.97 0.97 1.00 0.90

PP(40) 1.00 0.97 1.00 0.90

BR(100) 1.00 1.00 1.00 0.97

PP(100) 1.00 1.00 1.00 0.97

BR(200) 1.00 1.00 1.00 0.93

PP(200) 1.00 1.00 1.00 0.90

cies in success rates between BR and PP were evaluated
by conducting a statistical Z-test for two sample means
[35]. The tests did not establish significance. Hence we
cannot prove the statistical significance of observations
where the success rate for PP is higher than the same
for BR. However the success rates for both PP and
BR are already high for brood sizes above 2, 4, 4 and
10 in the Regression, Ant, Multiplexer and Parity do-
mains respectively. Therefore the success rate metric
seems inadequate for a comparison between BR and
PP, as PP does not perform significantly better than
an already highly performing BR with regards to the
metric. In light of this we will further compare BR
and PP with regard to the minimum computational
effort as well as the number of generations taken to
converge to a global optimum solution.

Table 4 shows the minimum number of fitness eval-
uations (that is the minimum computational effort)
required to give a probability of success of 0.99. The
minimum computational effort metric in is calculated
for PP and BR for the different brood sizes. The
values obtained are compared to values of the compu-
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tational effort reported in literature for other existing
Evolutionary Algorithm methodologies.

Specifically in Table 4 we compare the computa-
tional effort for BR and PP with the same for the canon-
ical GP [1], Evolutionary Programming [36], Traceless
GP [37], Cartesian GP [38] and Size Fair and Homolo-
gous Crossover GP [39].

Four of the observations in Table 4 are marked
with “No solution” as a result of the corresponding
runs being too difficult for canonical GP or BR and
PP given a small brood size. These observations cor-
respond to algorithm success rates of 0.00 in Table 3.
The computational effort is indeterminate when an
algorithm has a success rate of 0 [1] [40].

The formula for the calculation of the minimum
computational effort I(M, i, z), as described on page
194 of [1], is shown in Equation 3.

Imin(M, i, z) = mini(MR(z)(i+ 1))

where

1. z is the probability of success required by the
time generation i is reached, at least once in R
runs. Here z= 0.99

2. M is the population size

3. i is the generation number

4. R(z) = ceil
{

log(1−z)
log(1−P (M,i))

}
is the number of

runs required to satisfy z

5. P (M, i) =
{

NS(i)
Ntotal

}
is the cumulative probabil-

ity of success by generation i

Equation 3: Formula for evaluating GP computational
effort, taken from [1]

We note that PP and BR perform additional com-
putations compared to the canonical GP. Thus in Ta-
ble 4 the minimum computational effort I(M, i, z, n)
is calculated differently for both algorithms, as shown
in Equation 4. Let us discuss Equation 4 briefly. In
both PP and BR, the contribution of 2 individuals
(that is offspring) to the next GP generation requires
the fitness evaluation of all the members of a brood
of size 2n, where n is the brood size factor. As the
contribution of 2 GP individuals corresponds to 2n
fitness evaluations, we can say that the contribution of
1 GP individual corresponds to n fitness evaluations.
Thus the contribution of M GP individuals to each
new generation requires M ×n fitness evaluations. We
note that Equation 4 is in fact a slight overestimate
of the computational effort exerted by BR/PP. This
is because only 90% of the individuals in a GP gener-
ation are created by RB(n) and PB(n) in BR in PP
respectively (refer to the parameter settings in Sec-
tion 4). The remaining 10% of the individuals in a GP
generation are created by the reproduction operator.

Also in Equation 4, the ceiling operator is ignored
in the calculation of R(z), as recommended in [40].
According to [40] this should lead to a more accurate
estimation of the true value of the computational effort
from the sample data gathered in our experiments.

Imin(M, i, z) = mini((M × n)R(z)(i+ 1))

where

1. n is the PP/BR brood size factor

2.

R(z) =


log(1−z)

log(1−P (M,i)) ifP (M, i) < z

1 ifP (M, i) > z

is the number of runs required to satisfy z.

Equation 4: Formula for evaluating PP/BR computa-
tional effort

Equation 4 specifies the value of R(z) when P (M, i) >
z (where z = 0.99). This specification is adopted
from [32] and is missing in the original formulation for
computational effort prescribed in [1]. From Table 1 it
is clear that this specification is useful to our analysis,
as several experiments attain a success rate of 1.00 by
generation 50 (that is P (M, i) = 1.00 when i = 50 for
a large number of our experiments). From Equation 4
we can thus determine the computational effort at
generation 50 when P (M, i) = 1.00.

The remaining quantities in Equation 4 (that is
z,M, i and P (M, i)) are determined the same way as
in Equation 3. For the remainder of this text the
mention of minimum computational effort with respect
to BR and PP refers to computational effort calculated
according to Equation 4.

Following the recommendations in [40], in Table 4
we list Imin(M, i, z, n) for BR and PP along with the
generation i in which Imin(M, i, z, n) occurs and the
corresponding value of P (M, i). These values are listed
in the format:

Imin(M, i, z, n) (i, P (M, i))

The first row of results in Table 4 lists the compu-
tational effort of the canonical GP for the four domains,
taken from [1]. The value of this metric for the 11-
Multiplexer problem was not provided in [1]. Therefore
the value listed in the table, marked with a ∗, is in fact
the computational effort for the 6-Multiplexer problem,
according to [1]. We use this value to infer the per-
formance advantages of PP relative to the canonical
GP for the 11-Multiplexer problem. Also, from table
4.1 (Section 4), we examined an order 8 polynomial
in our experiments. Koza examined an order 4 poly-
nomial in [1]. Therefore the computational effort for
the canonical GP in Table 4, marked with a ∗∗, is
the computational effort for the order 4 polynomial in
[1], which we use to infer the performance advantages
of PP relative to the canonical GP for the order 8
polynomial. We chose to use an order 8 polynomial in
our experiments after empirically observing that lower
order polynomials present easy problems for the BR
and PP algorithms, such that both algorithms perform
very well and it is not easy to observe performance
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Table 4: Minimal computational effort I(M, i, z)/1000

Domain

Ant Parity Multiplexer Regression

Algorithm
(Parameters /
Brood size)

Canonical GP [1] 450 7840 245∗ 162.5∗∗
Canonical GP 580 (17, 0.13) No solution No solution 433 (47, 0.40)

BR(4) 1248 (41, 0.27) No solution 6275 (46, 0.07) 222 (34, 0.77)

PP(4) 702 (16, 0.20) No solution 3219 (49, 0.13) 230 (24, 0.63)

BR(10) 981 (38, 0.60) 6115 (37, 0.13) 399 (30, 0.83) 162 (18, 0.93)

PP(10) 524 (18, 0.57) 5632 (34, 0.13) 195 (38, 1.00) 154 (17, 0.93)

BR(20) 324 (18, 0.93) 2525 (37, 0.50) 230 (22, 1.00) 188 (10, 0.93)

PP(20) 309 (11, 0.83) 1677 (39, 0.67) 170 (16, 1.00) 176 (12, 0.97)

BR(40) 520 (12, 0.90) 1120 (27, 0.90) 280 (13, 1.00) 480 (11, 0.90)

PP(40) 300 (14, 1.00) 1040 (25, 0.90) 240 (11, 1.00) 400 (9, 0.90)

BR(100) 450 (8, 1.00) 850 (16, 1.00) 550 (10, 1.00) 677 (9, 0.97)

PP(100) 400 (7, 1.00) 850 (16, 1.00) 400 (7, 1.00) 610 (8, 0.97)

BR(200) 700 (6, 1.00) 1400 (13, 1.00) 900 (8, 1.00) 1531 (8, 0.93)

PP(200) 700 (6, 1.00) 1400 (13, 1.00) 700 (6, 1.00) 1400 (6, 0.90)

EP [31] - 2100 - -

Traceless GP [32] - 2417.5 - -

Cartesian GP
(non-neutral,
mutation rate =
0.1) [33]

139 - - -

Cartesian GP
(neutral, mutation
rate = 0.4) [33]

511 - - -

Cartesian GP
(non-neutral,
mutation rate =
0.12) [33]

888 - - -

Size Fair
Crossover GP
(initial tree depth
within interval [2,
6]) [34]

- - 270 -

Homologous
Crossover GP
(initial tree depth
within interval [2,
6]) [34]

- - 290 -

discrepancies between the two algorithms.

In the second row of results in Table 4, we list
the computational effort of the canonical GP for the
four domains determined empirically from our own
experiments. We calculate this using Equation 4 with
a brood size factor of 1. The results for the canonical
GP are listed in the same format as the same for BR
and PP.

For each domain in Table 4 the version of PP that
returns the lowest minimum computational effort is
highlighted in a bold font. We observe that in the
Artificial Ant domain, PP (40) has the lowest value
of this metric for the different versions of PP. This
value is lower than the minimum computational effort
for the canonical GP according to both [1] and our
empirical observations. Further, from the table, we
observe that the computational effort exerted by PP
(40) in the ant domain is competitive compared to

other EA methodologies described in literature.

In the Even-5 Parity domain, the best performing
PP algorithm, PP (100), has a minimum computational
effort that is lower than both the canonical GP and
other methodologies described in literature.

In the 11-Multiplexer domain, the best performing
PP algorithm, PP (20), requires a computational effort
that is lower than the computational effort for the
canonical GP for the 6-Multiplexer problem according
to [1]. We extrapolate that the computational effort
for the canonical GP for the harder 11-Multiplexer
problem is substantially higher than the value in the
table (245,000) and must therefore be higher than the
computational effort for PP (20). From the table, PP
(20) also yields a lower computational effort than other
algorithms in literature for the 11-Multiplexer problem.

From Table 4, in the Symbolic Regression domain,
the best performing PP algorithm, PP (10), requires
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a computational effort that is comparable to Koza’s
value of the computational effort of the canonical GP
for the less GP-hard order 4 polynomial [1]. From our
own empirical observations, the computational effort
required by PP (10) is less than that of the canonical
GP.

We can therefore make the overall conclusion that
given a suitable brood size, PP requires less compu-
tational effort than the canonical GP to arrive at a
global optimum GP solution. This further supports hy-
pothesis 1 in Section 4. We also conclude that given a
suitable brood size, PP exerts a competitively low com-
putational effort compared to other EA methodologies
in literature.

From Equation 4, larger brood sizes for PP should
lead to the exertion of more computational effort than
smaller brood sizes for the algorithm. The increase
in brood size is however offset by the fact that larger
brood sizes correspond to higher success rates (Ta-
ble 1) and faster solution discovery (as we will see
in Subsection 5.2). As a consequence, we observe in
Table 4 that up to brood sizes of 40, 100, 20 and 10 in
the Ant, Parity, Multiplexer and Regression domains
respectively, an increase in the brood size parameter
for PP actually results in a decrease in computational
effort.

However in Table 4 we observe that increasing the
brood size of PP does not indefinitely correspond to a
decrease in the computational effort of the algorithm.
Generally, beyond brood sizes 40, 100, 20 and 10 in
the Ant, Parity, Multiplexer and Regression domains
respectively, an increase in brood size leads to an in-
crease in computational effort. Beyond these threshold
brood sizes, there are no more significant performance
gains in the algorithm for larger brood sizes. The effect
is that the potential increase in computational effort
due to a larger brood size is no longer being offset by
performance gains. From Table 4, we observe a similar
pattern in the behaviour of BR. These observations
provide evidence of the existence of a brood diversity
point in both BR and PP.

We now compare BR and PP in terms of the com-
putational effort exerted. From Table 4 we observe
that given the same brood size and domain, PP gener-
ally requires less computational effort than BR. This
is true for over 80% of the observations in the table.
We conclude that PP requires less computational effort
than BR. This supports hypothesis 2 in Section 4. In
Subsection 5.2, we will observe that PP requires less
computational effort than BR because the former finds
solutions in significantly fewer generations than the
latter.

5.2 Number of generations to a solution

Figs. 4, 5, 6, and 7 are Box Whisker Charts contrasting
the number of generations taken to find a solution
for BR and PP, in the Ant, Parity, Multiplexer and
Regression domains respectively. Note that in each
chart in the figures, the white line corresponds to
the median of the chart. Also note that the Parity
problem had a success rate of 0 for brood sizes below

Figure 4: Artificial Ant Domain – PP vs. canonical
GP and BR: number of generations taken to find a
solution.

10; hence these are not included in Fig. 5. Similarly
the Multiplexer problem had a success rate of 0 for the
canonical GP. This algorithm is excluded from Fig. 6.

In Figs. 4–7 we observe that in general, the larger
the brood size, the fewer the number of generations
required to find a solution for both BR and PP. Once
again, this is expected as larger brood sizes correspond
to better evolvability. Further we observe that the
variance in the number of generations required (that is
the width of the boxplots) decreases as the brood size
is increased. Again this is true for both algorithms. We
associate the decrease in the variance with an increase
in the effectiveness of the algorithms as the brood
size is increased. Larger brood sizes translate to more
consistency with respect to preventing building block
disruption.

The main observation in Figs. 4–7 is that given
a fixed brood size, PP takes consistently fewer gener-
ations to find a solution than BR. This observation
holds across the different brood sizes and domains.
Further, both BR and PP generally take increasingly
fewer generations to find solutions than the canonical
GP with increasing brood size.

Table 5 is extrapolated from Figs. 4–7. The table
draws a comparison of the median number of genera-
tions taken by the algorithms to find solutions across
brood sizes and domains. Given a domain and a fixed
brood size, the difference in the median number of
generations between BR and PP is shown in brackets.
Here the PP metric is subtracted from the BR metric.
We use the median here as this metric is less sensitive
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Table 5: Median number of generations to a solution

Domain

Ant Parity Multiplexer Regression

Algorithm
(Brood size)

C(2) 29.0 - - 28.0

BR(4) 31.0 - 45.5 23.5

PP(4) 14.0 (17.0) - 35.5 (10.0) 18.5 (5.0)

BR(10) 21.0 46.5 26.5 15.5

PP(10) 13.5 (7.5) 32.0 (14.5) 17.0 (9.5) 10.0 (5.5)

BR(20) 9.5 30.5 16.5 10.0

PP(20) 7.0 (2.5) 21.0 (9.5) 12.0 (4.5) 7.5 (2.5)

BR(40) 8.0 21.0 11.5 9.0

PP(40) 4.5 (3.5) 16.5 (4.5) 8.0 3.5 6.5 (2.5)

BR(100) 4.0 14.5 9.5 7.0

PP(100) 4.0 (0.0) 12.0 (2.5) 6.0 (3.5) 6.0 (1.0)

BR(200) 3.5 12.0 6.5 6.0

PP(200) 2.0 (1.5) 10.0 (2.0) 8.0 (1.5) 5.0 (1.0)

Figure 5: Even-5 Parity Domain – PP vs. canonical
GP and BR: number of generations taken to find a
solution.

Figure 6: 11-Multiplexer Domain – PP vs. canonical
GP and BR: number of generations taken to find a
solution.
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Figure 7: Symbolic Regression Domain – PP vs. canon-
ical GP and BR: number of generations taken to find
a solution

to outliers than the mean [35] [41].

Table 5 provides further evidence that for the same
brood size PP consistently finds solutions faster than
BR. The difference in the median number of genera-
tions is substantive, the maximum value of this metric
reaching 17.0, 14.5, 10.0 and 5.5 in the Ant, Parity,
Multiplexer and Regression domains respectively.

In Table 5 we observe that the smaller the brood
size, the faster PP finds solutions relative to BR. This
is true across all four domains. We theorize that this
is due to BR becoming a more competitive algorithm
with increasing brood size.

We conducted statistical tests to verify that PP
finds solutions significantly faster than the canonical
GP. Also we conducted tests to verify that, given a
domain and a fixed brood size, PP finds solutions sig-
nificantly faster than the BR algorithm with the same
brood size. Our tests utilized the one-tail Student’s
t-distribution [41] to compare the sample means of the
number of generations to a solution for PP with the
same for both the canonical GP and BR. The p-values
resulting from the t-tests are listed in Table 6. In the
table, given a domain and a fixed brood size, p1 is the
p-value indicating the significance of the difference in
the number of generations to a solution between PP
and the canonical GP. Similarly p2 is the p-value indi-
cating the significance of the difference in the number
of generations to a solution between PP and the BR
algorithm with the same brood size. Note that because
the canonical GP did not find solutions for both Parity
and Multiplexer problems, p1 cannot be determined
in these domains. Also BR(4) and PP(4) did not find
solutions in the Parity domain and thus the correspond-
ing values of p1 and p2 are not listed in the table. In
Table 6 p-values that demonstrate significance (at α
= 0.05) are marked with an (s) symbol.

From Table 6 we observe that at a significance level
of 0.05, PP finds solutions faster than the canonical GP,
for all brood sizes, in the Ant and Regression domains.
This empirically supports hypothesis 1 in Section 4.
Also from the values of p2 in Table 6 we observe that
the advantage of PP over BR (visible in Figs. 4—7)
is significant for 100% of the brood sizes tested in the
Multiplexer domain, over 80% of the brood sizes tested
in the Ant domain as well as over 60% of the brood
sizes tested in the Parity and Regression domains. We
thus have statistical evidence that the likelihood of
PP discovering solutions faster than BR is high. This
supports hypothesis 2 in Section 4.

We therefore establish that PP discovers solutions
in fewer generations than the canonical GP. Further,
we establish that given a domain and a fixed brood size
although BR and PP exhibit similar success rates, PP
finds solutions in fewer generations than BR. These
results suggest an underlying better evolvability of PP
relative to both the canonical GP and BR.
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Table 6: PP vs. canonical GP and BR: significance of difference in numbers of generations to a solution

Brood size Ant Parity Multiplexer Regression

4 p1 = 0.041(s) - - p1 = 0.040(s)
p2 = 0.022(s) - p2 = 0.033(s) p2 = 0.443(s)

10 p1 = 0.000(s) - - p1 = 0.000(s)
p2 = 0.030(s) p2 = 0.098 p2 = 0.049(s) p2 = 0.040(s)

20 p1 = 0.000(s) - - p1 = 0.000(s)
p2 = 0.007(s) p2 = 0.270 p2 = 0.000(s) p2 = 0.190

40 p1 = 0.000(s) - - p1 = 0.000(s)
p2 = 0.044(s) p2 = 0.000(s) p2 = 0.000(s) p2 = 0.049(s)

100 p1 = 0.000(s) - - p1 = 0.000(s)
p2 = 0.466 p2 = 0.000(s) p2 = 0.000(s) p2 = 0.022(s)

200 p1 = 0.000(s) - - p1 = 0.000(s)
p2 = 0.001(s) p2 = 0.000(s) p2 = 0.000(s) p2 = 0.000(s)

5.3 Genotype space and fitness space
exploration metrics

Having established PP to consistently find solutions
faster than BR and the canonical GP, and also having
established PP to have a higher success rate than the
canonical GP, we seek to establish causality. We do
this by empirically supporting hypothesis 3 (Section 4).

Fig. 8 depicts the trend of the average number of
unique subtrees within a brood for the broods created
in each generation by BR and PP for brood sizes 4,
10, 20, 40, 100 and 200 in the Artificial Ant domain.
The results are compared with the trend of the average
number of unique subtrees within pairs of individuals
resulting from crossover in the canonical GP in each
generation over time. Recall that the number of unique
subtrees in a brood is a measure of the structural
diversity of the brood. In the figure, the termination
of a curve is due to the convergence of an algorithm
to a global optimum solution.

In Fig. 8 the increasing trend of a given curve is
likely to be due to the growth of the parse trees in the
GP population, and the discovery of new subtrees in
the population as a consequence of the randomness of
crossover point selection. Subsequent decreases in the
trend are likely to be associated with convergence of
the GP population. We use only one version of the
canonical GP. Thus the curve of the canonical GP is
in fact the same in Fig. 8 a, b, c, d, e and f, (the
curve may appear different in the figures due to the
different scales of the y-axis employed to accommodate
the other curves). We note the early termination of
the PP curve for brood sizes 40, 100 and 200. This
is due to all the runs of the algorithm having found a
global optimum solution.

From Fig. 8 we immediately observe that the
broods generated by PP are consistently more struc-
turally diverse than the broods generated by BR across
brood sizes, and across generations given a fixed brood
size. We obtained similar observations in the Parity,
Regression and Multiplexer domains. We observe that
both BR and PP tend to produce increasingly more
structurally diverse broods than the canonical GP with

increasing brood size. For brood sizes 4, 10 and 20
in the figure, BR and PP have an early advantage in
structural diversity. The early advantage in structural
exploration leads to convergence of the algorithms
(that is a subsequent loss of structural diversity) prior
to the canonical GP. This is observed in the curves for
BR and PP subsequently falling below the curve for
the canonical GP after the early generations in Fig. 8
a and b. Similarly the curve for BR falls below the
curve for the canonical GP after the early generations
in Fig. 8 c. Given empirical results similar to those
in Fig. 8 for all the four domains, we conducted one-
way ANOVA statistical tests. The aim of the tests
was to verify that given a domain and a fixed brood
size, PP consistently yields significantly more struc-
turally diverse broods than both BR and the canonical
GP across GP generations. The resulting p-values are
shown in Table 7.

In Table 7, given a domain and a fixed brood
size, p1 is the p-value indicating the significance of the
difference in the average number of unique subtrees
between PP and the canonical GP.

Similarly p2 is the p-value indicating the signifi-
cance of the difference in the average number of unique
subtrees between PP and the BR algorithm with the
same brood size. In Table 7 the p-values that demon-
strate significance (at α = 0.05) are marked with an
(s) symbol. From Table 7 we observe that with the
exception of the PP algorithms with brood sizes 4 and
10 in the Ant domain, the values of p1 are all below
0.01. Therefore for the majority of the observations
in the table, we are 99% confident that PP is more
explorative in genotype space relative to the canonical
GP. Also from Table 7 we observe that with the excep-
tion of brood size 4 for the Multiplexer and Regression
domains, the values of p2 are all below 0.05. Therefore
for the majority of the observations in the table, we are
95% confident that PP is more explorative in genotype
space than BR. The observations in Table 7 empirically
support hypothesis 3a (Section 4).

Fig. 9 compares the trends in SDDistanceF (P1,O)

(defined in Section 4) for BR and PP over time for
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Figure 8: Artificial Ant Domain – PP vs. BR and canonical GP: Average number of unique subtrees in brood
over time for brood sizes: a) 4, b) 10, c) 20, d) 40, e) 100, and f) 200.

Table 7: PP vs. canonical GP and BR: significance of difference in average number of unique subtrees

Brood size Ant Parity Multiplexer Regression

4 p1 = 0.179 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)

p2 = 0.022(s) p2 = 0.009(s) p2 = 0.149(s) p2 = 0.502(s)

10 p1 = 0.070 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)

p2 = 0.000(s) p2 = 0.000 p2 = 0.000(s) p2 = 0.000(s)

20 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)

p2 = 0.000(s) p2 = 0.000 p2 = 0.006(s) p2 = 0.000

40 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)

p2 = 0.000(s) p2 = 0.000(s) p2 = 0.011(s) p2 = 0.000(s)

100 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)

p2 = 0.000(s) p2 = 0.015(s) p2 = 0.007(s) p2 = 0.000(s)

200 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)

p2 = 0.001(s) p2 = 0.030(s) p2 = 0.007(s) p2 = 0.000(s)
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brood sizes 4, 10, 20, 40, 100, 200 in the Artificial Ant
Domain. The results are compared with the trend in
the average value of SDDistanceF (P1,O) within pairs of
individuals resulting from standard crossover in the
canonical GP over time. Recall that given a brood,
SDDistanceF (P1,O) pertaining to the brood is a measure
of the amount of exploration conducted in fitness space
by generating the brood. In the case of the canonical
GP, SDDistanceF (P1,O) is the amount of exploration
conducted in fitness space by generating a pair of
individuals from standard crossover. The curve of the
canonical GP is the same in Fig. 9 a, b, c, d, e and f.

In Fig. 9 we observe some consistency with respect
to the metric being higher for both BR and PP relative
to the canonical GP. This is evidence of both algorithms
being more explorative in fitness space relative to the
canonical GP. Further, we observe that the metric for
PP is generally higher than the same for BR, more so
in the earlier GP generations. For brood sizes 4, 10 and
20, the curve for PP may tend to fall below the curve
for BR in later generations due to PP converging faster.
Convergence of the GP population means that the main
GP individuals begin to possess similar fitness values.
As a result, brood offspring also possess similar fitness
values, leading to lower values of SDDistanceF (P1,O). If
PP consistently exhibits better evolvability than BR,
we do indeed expect PP to make faster fitness gains
and thus reach convergence before BR.

Empirical observations obtained from the other
three domains were similar to the ones depicted in
Fig. 9. However in the Symbolic Regression domain,
the fitness values of some unfit individuals are astro-
nomically large numbers (for example 2.27 × 10184).
As a result, metrics that are computed using average
fitness values, such as SDDistanceF (P1,O), take on as-
tronomically large values. Thus it becomes difficult to
compare the values of SDDistanceF (P1,O) for the differ-
ent algorithms, and observe subtle discrepancies in the
metric, in this domain.

Given empirical results for all the four domains, we
conducted one-way ANOVA statistical tests. The aim
of the tests was to verify that PP is significantly more
explorative in fitness space than both the canonical
GP and BR. The p-values resulting from these tests
are shown in table 5.6. In the table, given a domain
and a fixed brood size, p1 is the p-value indicating the
significance of the difference in the average value of
SDDistanceF (P1,O) between PP and the canonical GP.

Similarly in Table 9 p2 is the p-value indicating the
significance of the average value of SDDistanceF (P1,O)

between PP and the BR algorithm with the same
brood size. In the table the p-values that demonstrate
significance (at α = 0.05) are marked with an (s) sym-
bol. From Table 9, we observe that the tests cannot
distinguish between astronomically large values in the
Symbolic Regression domain. We will leave this do-
main out of the ensuing discussion. In the other three
domains, we observe that the values of p1 are all below
0.05. Thus we are 95% confident that PP is a more
explorative algorithm in fitness space, compared to
the canonical GP, in accordance with hypothesis 3b

(Section 4).

The values of p2 do not show any significance. How-
ever it is clear from Fig. 9 as well as the empirical data
gathered from the Parity and Multiplexer domains
that a higher SDDistanceF (P1,O) for PP in the earlier
generations (as compared to BR) is the general expec-
tation. Therefore we have empirical evidence of the
more explorative nature in fitness space of PP relative
to BR in accordance with hypothesis 3b. Hypothe-
sis 3 in Section 4 also states that a more explorative
algorithm in fitness space should exhibit a better evolv-
ability. In Fig. 10, we use a Gaussian distribution to
model the distribution of DistanceF (P1, O) metrics in
a brood. Gaussian distributions are commonly used
to model unknown distributions [41] [41]. For a fixed
domain and brood size, given an early GP genera-
tion, in which SDDistanceF (P1,O) for PP is higher than
SDDistanceF (P1,O) for BR, a comparison is drawn in
the figure between a PP brood, a BR brood and a pair
of individuals generated by crossover in the canonical
GP. Specifically Fig. 10 compares PP, BR and the
canonical GP in generations 2, 4 and 6 for a brood
size of 100 in the Artificial Ant Domain. For a given
algorithm and domain, the Gaussian distribution of
DistanceF (P1, O) in a generation is modeled by us-
ing the average value DistanceF (P1, O) , as well as
the standard deviation of DistanceF (P1, O) (that is
SDDistanceF (P1,O)) in the generation.

From Fig. 10, we observe that the generally higher
standard deviation of fitness values in a PP brood
results in a higher likelihood of more positive extreme
fitness values in the brood, compared to the other
two algorithms. This in turn means that the culling
function FB will return fitter offspring from a PP brood
relative to both a BR brood and a pair of offspring
created by standard crossover in the canonical GP.
The observations in Fig. 10 are generally true in early
GP generations, for all brood sizes in the Ant, Parity
and Multiplexer domains. We can therefore establish
that when SDDistanceF (P1,O) for PP is higher than
SDDistanceF (P1,O) for both BR and the canonical GP,
PP exhibits better evolvability than the other two
algorithms.

Fig. 11 depicts the trend of DistanceF (P1, O)
with time for the different brood sizes in the Ant do-
main. This metric is plotted for PP, BR and the
canonical GP. In the context of the canonical GP,
DistanceF (P1, Oselected) is the distance between p1
and the pair of offspring that result from standard
crossover with another GP individual. In the figure
we observe that the curve for the canonical GP is be-
low the x-axis. This indicates that the canonical GP
predominantly produces offspring that are less fit than
their parents. The observation is consistent with the
theory of the predominantly disruptive nature of the
standard crossover operator. A vital observation in
the figure is that RB(n) and PB(n) are both in fact
predominantly constructive operators for brood sizes
10 and above. This is clear as the corresponding curves
for the algorithms are above the x-axis, indicating that
the offspring returned by the brood operators are fitter



38 Research Article – SACJ No. 51, December 2013

Figure 9: Artificial Ant Domain – PP vs. BR and canonical GP: Average SDDistanceF (P1,O) within a brood over
time for brood sizes: a) 4, b) 10, c) 20, d) 40, e) 100, and f) 200.

Table 8: PP vs. canonical GP and BR: significance of difference in average value of SDDistanceF (P1,0)

Brood size Ant Parity Multiplexer Regression

4 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.653

p2 = 0.809 p2 = 0.668 p2 = 0.312 p2 = 0.532

10 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.324

p2 = 0.442 p2 = 0.896 p2 = 0.434 p2 = 0.631

20 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.333

p2 = 0.838 p2 = 0.518 p2 = 0.503 p2 = 0.323

40 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.545

p2 = 0.357 p2 = 0.396 p2 = 0.413 p2 = 0.332

100 p1 = 0.027(s) p1 = 0.000(s) p1 = 0.010(s) p1 = 0.347

p2 = 0.406 p2 = 0.785 p2 = 0.406 p2 = 0.317

200 p1 = 0.041(s) p1 = 0.000(s) p1 = 0.022(s) p1 = 0.347

p2 = 0.448 p2 = 0.579 p2 = 0.392 p2 = 0.332
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Figure 10: Artificial Ant Domain, brood size 100 – PP vs. BR and canonical GP: Distribution of offspring fitness
values for generations a) 2, b) 4, and c) 6.
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Figure 11: Artificial Ant Domain – PP vs. BR and canonical GP: Average DistanceF (P1, Oselected) over time for
brood sizes: a) 4, b) 10, c) 20, d) 40, e) 100, and f) 200.
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Table 9: PP vs. canonical GP and BR: significance of difference in average DistanceF (P1, 0selected)

Domain

Brood size Ant Parity Multiplexer Regression

4 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.653(s)
p2 = 0.608 p2 = 0.000(s) p2 = 0.792 p2 = 0.918

10 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)
p2 = 0.064 p2 = 0.240 p2 = 0.802 p2 = 0.230

20 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)
p2 = 0.117 p2 = 0.006(s) p2 = 0.728 p2 = 0.002(s)

40 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)
p2 = 0.138 p2 = 0.002(s) p2 = 0.099 p2 = 0.000(s)

100 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)
p2 = 0.050(s) p2 = 0.029(s) p2 = 0.092 p2 = 0.001(s)

200 p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s) p1 = 0.000(s)
p2 = 0.000(s) p2 = 0.092 p2 = 0.075 p2 = 0.001(s)

than their parents.

In Fig. 11 we further observe that offspring deliv-
ered by PB(n) are generally fitter than the same for
both RB(n) and the canonical GP across brood sizes
and domains. This is especially true for the larger
brood sizes. This is a further empirical confirmation
of the observations in Fig. 10. It is also an empirical
confirmation of hypothesis 3b. The Regression, Multi-
plexer and Parity domains presented similar empirical
results.

We conducted one-way ANOVA statistical tests to
verify that given the same brood size, PP consistently
yields fitter offspring than both BR and the canonical
GP. The results are shown in Table 9.

In Table 9, given a domain and a fixed brood size,
p1 is the p-value indicating the significance of the differ-
ence in the average value of DistanceF (P1, Oselected)
between PP and the canonical GP. Similarly p2 is the
p-value indicating the significance of the difference in
the average value of DistanceF (P1, Oselected) between
PP and the BR algorithm with the same brood size.
In Table 9 the results that are significant (at α = 0.05)
are marked with an (s) symbol.

From Table 9, we observe that all the values of p1
are equal to 0.000. Thus we are 99% confident that PP
consistently produces fitter offspring than the canonical
GP, for all brood sizes across all the four domains. This
empirically supports hypotheses 1 and 3b in Section 4.
Also From table 5.7 we observe that for the largest two
brood sizes, PP returns significantly fitter offspring
than BR, across all four domains. Overall the values
of p2 show significance for 50% of the brood sizes in
the Artificial Ant Domain, over 80% of the brood sizes
in the Even-5 Parity Domain, 50% of the brood sizes
in the Symbolic Regression Domain and over 60% of
the brood sizes in the 11-Multiplexer Domain.

From both statistical and empirical proof we con-
clude that in general a PP brood returns significantly
fitter offspring than a BR brood. We thus have further
proof of hypotheses 2 and 3b in Section 4.

6 CONCLUSION AND FUTURE WORK

This paper presented Polyandry, a nature inspired
methodology to improve evolvability in Genetic Pro-
gramming. Polyandry modifies the canonical GP by im-
plementing an operator, PB(n), to replace the typically
disruptive standard crossover operator. Polyandry op-
erates in a similar manner to Brood Recombination,
a ubiquitous methodology employed in GP literature
towards improving evolvability.

The Polyandry algorithm employs a dual strategy
towards improving evolvability in GP. Chiefly, an ag-
gressive search for good genetic material is conducted
by incorporating structures from multiple population
individuals into broods of GP offspring. Here instead of
producing a pair of offspring from standard crossover,
as in the canonical GP, a brood of offspring is generated
by employing multiple standard crossover operations
between a principal parent individual and distinct mat-
ing partners. Subsequently only the best two offspring
in the resulting brood are inserted into the GP pop-
ulation. Polyandry conducts a wider search for good
genetic material relative to both the canonical GP, and
the Brood Recombination algorithm. This stems from
the fact that Polyandry is more explorative of the GP
genotype space. This in turn translates to Polyandry
being more explorative of the GP fitness space.

The second aspect to the Polyandry strategy is a
minimization of building block disruption by attempt-
ing multiple crossover points with respect to the prin-
cipal parent individual. This is due to the randomness
involved in selecting a crossover point in the principal
parent each time a pair of offspring is created and
added to a PP brood. We surmise that this aspect of
the Polyandry strategy contributes to evolvability in a
similar manner to the Brood Recombination algorithm.

Experiments conducted have established that
Polyandry reliably discovers solutions in significantly
fewer GP generations, relative to both the canonical
GP and Brood Recombination. Further, Polyandry
delivers a higher success rate than the canonical GP.
The overall ramifications of these observations are that
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for certain brood size settings, Polyandry requires less
computational effort to arrive at a global optimum GP
solution compared to the canonical GP. Further, given
a fixed brood size, Polyandry consistently requires less
computational effort to arrive at a global optimum
solution with respect to Brood Recombination. We
also obtained empirical evidence demonstrating that
Polyandry consistently exhibits better evolvability than
both the canonical GP and Brood Recombination.

In future we hope to investigate the extent to which
Polyandry solves the problem of premature convergence
in GP. This arises from the success of Polyandry at
improving evolvability as well as the notion of the
connection between premature convergence and evolv-
ability. A GP that has converged prematurely has lost
the ability to produce offspring that are fitter than
their parents. By definition of evolvability, such a GP
system fails to maintain evolvability.

In future we would also like to explore the concept
of dynamic environments or seasons in GP, in con-
junction with Polyandry, to minimize the occurrence
of premature convergence. Natural evolution is open-
ended and makes use of the phenomena of dynamic
environments and Polyandry to constantly maintain
evolvability. We aim to investigate if the same can
translate to a GP computational model.

Ultimately we aim to examine whether the advan-
tages of Polyandry in Genetic Programming will trans-
late to more novel Evolutionary Algorithm methodolo-
gies, such as Gene Expression Programming and Multi
Expression Programming.
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