Skip to main content
Log in

Defined an Optimized Molding for Physical and Mechanical Properties of W–Cu Nanocomposite Through Spark Plasma Sintering Using Gene Expression Programming: The Combination of Artificial Intelligence and Material Science

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Cu–W nanocomposites had many engineering applications due to the unique characteristics including hardness, transverse rupture strength, electrical conductivity, thermal conductivity, and relative density. This study was an attempt to used gene expression programming as a powerful soft computing technique to model the parameters for the synthesis of Cu–W nanocomposite prepared by spark plasma sintering. First, 97 different reliable experiments were carried out considering the type of Cu and W concentration, temperature, die pressure, and heat rate as input variables. The hardness, transverse rupture modules, electrical conductivity, thermal conductivity, and relative density of nanocomposite defined as output variable separately. An absolute fraction of variance (R2), mean absolute percentage error (MAPE), root relative squared error (RRSE), and mean squared error (MSE) were considered to validate the most appropriate GEP models. Sixfold cross validation was used through testing and training steps of GEP modeling. The results were divided randomly into 68 training sets and 29 testing sets. Finally, the best GEP models were selected for each output parameter. Sensitivity analyses are done to determine the rank of the practical parameters on each investigated properties and revealed that on hardness, transverse rupture modules, electrical conductivity, thermal conductivity, and relative density of nanocomposite, respectively. The results confirmed the ability of GEP for all parameters of Cu–W nanocomposites prepared by spark plasma sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hiraoka Y, Inoue T, Hanado H, et al. Ductile-to-brittle transition characteristics in W-Cu composites with increase of Cu content. J Mater Trans Commun. 2005;46(7):1663–70. https://doi.org/10.2320/matertrans.46.1663.

    Article  Google Scholar 

  2. Hanado H, Hiraoka Y. Localized deformation behavior of W–80 vol%Cu composite at room temperature. J Mater Trans Commun. 2007;48(4):775–9. https://doi.org/10.2320/matertrans.48.775.

    Article  Google Scholar 

  3. Ryu SS, Kim YD, Moon IH. Dilatometric analysis on the sintering behavior of nanocrystalline W-Cu prepared by mechanical alloying. J Alloys Comp Commun. 2002;335(1–2):233–40. https://doi.org/10.1016/S0925-8388(01)01805-9.

    Article  Google Scholar 

  4. Wang WS, Kwang KS. The effect of tungsten particle size on the processing and properties of infiltrated W-Cu compacts. J Metall Trans Commun. 1998;29A:1509–16. https://doi.org/10.1007/s11661-998-0366-9.

    Article  Google Scholar 

  5. Mordike BL, Kaczmar J, Kielbinski M, et al. Effect of tungsten content on the properties and structure of cold extruded Cu–W composite materials. J Powder Metall Int Commun. 1991;23:91–5.

    Google Scholar 

  6. Ho PW, Li QF, Fuh JYH. Evaluation of W-Cu metal matrix composites produced by powder injection molding and liquid infiltration. J Mater Sci Eng Commun. 2008;485:657–63. https://doi.org/10.1016/j.msea.2007.10.048.

    Article  Google Scholar 

  7. Amirjan M, Zangeneh-Madar K, Parvin N. Evaluation of microstructure and contiguity of W/Cu composites prepared by coated tungsten powders. Int J Refract Met Hard Mater Commun. 2009;27(4):729–33. https://doi.org/10.1016/j.ijrmhm.2008.12.008.

    Article  Google Scholar 

  8. Yunping L, Yu S. Thermal–mechanical process in producing high dispersed tungsten–copper composite powder. Int J Refract Met Hard Mater Commun. 2008;26:540–8. https://doi.org/10.1016/j.ijrmhm.2008.01.001.

    Article  Google Scholar 

  9. Ibrahim A, Abdallah M, Mostafa SF, et al. An experimental investigation on the W-Cu composites. J Mater Des Commun. 2009;30:1398–403. https://doi.org/10.1016/j.matdes.2008.06.068.

    Article  Google Scholar 

  10. Dongdong G, Shen Y. Influence of Cu–liquid content on densification and microstructure of direct laser sintered submicron W-Cu/micron Cu powder mixture. J Mater Sci Eng A Commun. 2008;489:169–77. https://doi.org/10.1016/j.msea.2007.12.008.

    Article  Google Scholar 

  11. Luo S, Yi J, Guo Y, et al. Microwave sintering W–Cu composites: analyses of densification and microstructural homogenization. J Alloys Comp Commun. 2009;473:L5–9. https://doi.org/10.1016/j.jallcom.2008.05.038.

    Article  Google Scholar 

  12. Da Costa FA, da Silvab AGP, Gomes UU. The influence of the dispersion technique on the characteristics of the W-Cu powders and on the sintering behavior. J Powder Technol Commun. 2003;134:123–32. https://doi.org/10.1016/S0032-5910(03)00123-2.

    Article  Google Scholar 

  13. Bhattacharya M, Basak T. A review on the susceptor assisted microwave processing of materials. J Energy Commun. 2016;97:306–38. https://doi.org/10.1016/j.energy.2015.11.034.

    Article  Google Scholar 

  14. Li D, Liu Z, Yu Y, et al. Research on the densification of W–40 wt.%Cu by liquid sintering and hot-hydrostatic extrusion. Int J Refract Metals Hard Mater Commun. 2008;26:286–9. https://doi.org/10.1016/j.ijrmhm.2007.06.004.

    Article  Google Scholar 

  15. Li D, Liu Z, Yu Y, et al. The influence of mechanical milling on the properties of W–40 wt.%Cu composite produced by hot extrusion. J Alloys Comp Commun. 2008;462:94–8. https://doi.org/10.1016/j.jallcom.2007.08.042.

    Article  Google Scholar 

  16. Rodriguez P, Caussat B, Ablitzer C, et al. Alumina coating on dense tungsten powder by fluidized bed metal organic chemical vapour deposition. J Nanosci Nanotechnol Commun. 2011;11(9):8083–8. https://doi.org/10.1166/jnn.2011.5097.

    Article  Google Scholar 

  17. Li DR, Liu ZY, Yu Y, et al. Numerical simulation of hot hydrostatic extrusion of W–40 wt.% Cu. J Mater Sci Eng Commun. 2009;499:118–22. https://doi.org/10.1016/j.msea.2007.11.125.

    Article  Google Scholar 

  18. Zhou Z, Du J, Song S, et al. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method. J Alloys Comp Commun. 2007;428:146–50. https://doi.org/10.1016/j.jallcom.2006.03.073.

    Article  Google Scholar 

  19. Lin T, Yin S, Wei YP. In-situ reaction used in producing composites by casting process. J Mater Rev Commun. 2001;14:30–1.

    Google Scholar 

  20. Gill SC, Zimmermann M, Kurz W. Resolidification of the Al–Al2Cu eutectic the coupled zone. J Acta Mater Commun. 1992;40(11):2895–906. https://doi.org/10.1016/0956-7151(92)90454-M.

    Article  Google Scholar 

  21. Liang SH, Hu R, Fan ZK. Microstructure and properties of CuCr series pseudobinary alloy by arc melting. J Spec Cast Nonferrous Alloys Commun. 2000;4:25–6.

    Google Scholar 

  22. Zhao F, Xu H, et al. Preparation of CuCr25 alloys through vacuum arc-smelting and their properties. J Trans Nonferrous Met Soc Commun. 2000;10(1):73–5.

    Google Scholar 

  23. Shi YM, Xu YH, et al. Preparation of fiber-structured W/Cu contact materials. Foundry Technol. 2006;27(1):1238–40.

    Google Scholar 

  24. Duan LH, Lin WS, et al. Thermal properties of W-Cu composites manufactured by copper infiltration into tungsten fiber matrix. J Int J Refract Met Hard Mater Commun. 2014;46:96–100. https://doi.org/10.1016/j.ijrmhm.2014.05.022.

    Article  Google Scholar 

  25. Liang SH, Chen L, et al. Infiltrated W-Cu composites with combined architecture of hierarchical particulate tungsten and tungsten fibers. J Mater Charact Commun. 2015;110:33–8. https://doi.org/10.1016/j.matchar.2015.10.010.

    Article  Google Scholar 

  26. Cheng JG, Wan L, et al. Fabrication of W–20 wt% Cu alloys by powder injection molding. J Mater Process Technol Commun. 2010;210:137–42. https://doi.org/10.1016/j.jmatprotec.2009.08.001.

    Article  Google Scholar 

  27. Tang XQ, Zhang HB, et al. Fabrication of W-Cu functionally graded material by spark plasma sintering method. Int J Refract Met Hard Mater Commun. 2014;42:193–9. https://doi.org/10.1016/j.ijrmhm.2013.09.005.

    Article  Google Scholar 

  28. Elsayed A, Li W, et al. Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering. J Alloys Compd Commun. 2015;639:373–80. https://doi.org/10.1016/j.jallcom.2015.03.183.

    Article  Google Scholar 

  29. Autissier E, Richou M, et al. Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components. Fus Eng Des Commun. 2015;98–99:1929–32. https://doi.org/10.1016/j.fusengdes.2015.05.066.

    Article  Google Scholar 

  30. Raghu T, Sundaresan R, Ramakrishnan P, et al. Synthesis of nanocrystalline copper–tungsten alloys by mechanical alloying. J Mater Sci Eng A Commun. 2001;304–306:438–41. https://doi.org/10.1016/S0921-5093(00)01444-1.

    Article  Google Scholar 

  31. Hoseinian FS, Faradonbeh RS, Abdollahzadeh A, Rezai B, Soltani-Mohammadi S. Semi autogenous mill power model development using gene expression programming. Powder Technol Commun. 2017;308:61–9. https://doi.org/10.1016/j.powtec.2016.11.045.

    Article  Google Scholar 

  32. Ferreira, C. Gene expression programming: a new adaptive algorithm for solving problems. J Complex Systems. common. 2001. Vol. 13, issue 2: 87-129 cs/0102027.

  33. Rostami A, Ebadi H. Toward gene expression programming for accurate prognostication of the critical oil flow rate through the choke: correlation development. Asia-Pac J Chem Eng Commun. 2017;12:884–93. https://doi.org/10.1002/apj.2126.

    Article  Google Scholar 

  34. Rostami A, Shokrollahi A. Accurate prediction of water dewpoint temperature in natural gas dehydrators using gene expression programming approach. J Mol Liq Commun. 2017;243:196–204. https://doi.org/10.1016/j.molliq.2017.08.045.

    Article  Google Scholar 

  35. Ouaer H, Hosseini AH, Nait Amar M, Ben Seghier MEA, Ghriga MA, Nabipour N, Andersen PØ, Mosavi A, Shamshirband S. Rigorous connectionist models to predict carbon dioxide solubility in various ionic liquids. J Appl Sci Commun. 2020;10:304. https://doi.org/10.3390/app10010304.

    Article  Google Scholar 

  36. Baykasoğlu A, Güllü H, Çanakçı H, Özbakır L. Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl. 2008;35(1–2):111–23.

    Article  Google Scholar 

  37. Teodorescu L, Sherwood D. High energy physics event selection with gene expression programming. Comput Phys Commun. 2008;178:409–19. https://doi.org/10.1016/j.cpc.2007.10.003.

    Article  Google Scholar 

  38. Shojaei MR, Khayati GHR, Hasani A. Utilization of gene expression programming for modeling of mechanical performance of titanium/carbonated hydroxyapatite nanobiocomposites: the combination of artificial intelligence and material science. J Int J Eng Commun. 2021;34(4):948–55. https://doi.org/10.5829/ije.2021.34.04a.21.

    Article  Google Scholar 

  39. Ferreira C. Gene expression programming in problem solving. Soft computing and industry. Berlin: Springer; 2002. p. 635–53. https://doi.org/10.1007/978-1-4471-0123-9_54.

    Book  Google Scholar 

  40. Mousavi SM, Aminian P, Gandomi AH, Alavi AH, Bolandi H. A new predictive model for compressive strength of HPC using gene expression programming. J Adv Eng Softw Commun. 2012;45(1):105–14. https://doi.org/10.1016/j.advengsoft.2011.09.014.

    Article  Google Scholar 

  41. Hosmer WD. Assessing the fit of the model. J Appl Logist Regres Commun. 2000. https://doi.org/10.1016/B978-0-12-809633-8.20349-X.

    Article  Google Scholar 

  42. Johari, A., and M. Nakhaee. Maximum lateral displacement prediction of bored pile wall in granular soil using Gene Expression Programming. National Congress on Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran. 2013.

  43. Sattari R, Khayati GR. Prediction of the size of silver nanoparticles prepared via green synthesis: a gene expression programming approach. J Sci Iran Commun. 2020. https://doi.org/10.24200/sci.2020.53209.3112.

    Article  Google Scholar 

  44. Abdellahi M, Najafinezhad A, Ghayour H, Saber-Samandari S, Khandan A. Preparing diopside nanoparticle scaffolds via space holder method: Simulation of the compressive strength and porosity. J Mech Behav Biomed Mater Commun. 2017;72:171–81. https://doi.org/10.1016/j.jmbbm.2017.05.004.

    Article  Google Scholar 

  45. Gandomi AM, Alavi AH, Gandomi M, Kazmi S. Formulation of shear strength of slender RC beams using gene expression programming, part II: With shear reinforcement. J Meas Commun. 2017;95:367–76. https://doi.org/10.1016/j.measurement.2016.10.024.

    Article  Google Scholar 

  46. Akin O, Samuel A. Modelling of concrete compressive strength admixed with GGBFS using gene expression programming. J Soft Comput Civil Eng Commun. 2019;3(2):43–53. https://doi.org/10.22115/scce.2019.178214.1103.

    Article  Google Scholar 

  47. Gesoglu M, Guneyisi E, Ozturan T, Ozbay E. Modeling the mechanical properties of rubberized concretes by neural network and genetic programming. J Mater Struct Commun. 2010;43(1):31–45. https://doi.org/10.1617/s11527-009-9468-0.

    Article  Google Scholar 

  48. Azimi-Pour M, Eskandari-Naddaf H. ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar. J Constr Build Mater Commun. 2018;189:978–92. https://doi.org/10.1016/j.conbuildmat.2018.09.031.

    Article  Google Scholar 

  49. Shahmansouri A, Bengar H, Jahani E. Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm. J Constr Build Mater Commun. 2019;229: 116883. https://doi.org/10.1016/j.conbuildmat.2019.116883.

    Article  Google Scholar 

  50. Severcan MH. Prediction of splitting tensile strength from the compressive strength of concrete using GEP. J Neural Comput Appl Commun. 2012;21:1937–45. https://doi.org/10.1007/s00521-011-0597-3.

    Article  Google Scholar 

  51. Shojaei MR, Khayati GHR, Hosseinipor H, Khorasani SMJ, Kafi R. Investigation of spring back phenomenon in the 316L stainless steel cathode blank based on the changes in electrical resistivity and magnetic properties due to the residual stress and martensite phase formation: an industrial failure. J Eng Fail Anal Commun. 2021. https://doi.org/10.1016/j.engfailanal.2021.105473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammdreza Shojaei.

Ethics declarations

Conflict of Interest

The authors (Mohammad Reza Shojaei; Gholam Reza Khayati) certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Advanced Machine Learning Approaches in Cognitive Computing” guest edited by Kuntpong Woraratpanya and Phayung Meesad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, M., Khayati, G.R. Defined an Optimized Molding for Physical and Mechanical Properties of W–Cu Nanocomposite Through Spark Plasma Sintering Using Gene Expression Programming: The Combination of Artificial Intelligence and Material Science. SN COMPUT. SCI. 3, 37 (2022). https://doi.org/10.1007/s42979-021-00901-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00901-4

Keywords

Navigation