Skip to main content

Advertisement

Log in

Optimization of silicon solar cell fabrication based on neural network and genetic programming modeling

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This study describes techniques for the cascade modeling and the optimization that are required to conduct the simulator-based process optimization of solar cell fabrication. Two modeling approaches, neural networks and genetic programming, are employed to model the crucial relation for the consecutively connected two processes in solar cell fabrication. One model (Model 1) is used to map the five inputs (time, amount of nitrogen and DI water in surface texturing and temperature and time in emitter diffusion) to the two outputs (reflectance and sheet resistance) of the first process. The other model (Model 2) is used to connect the two inputs (reflectance and sheet resistance) to the one output (efficiency) of the second process. After modeling of the two processes, genetic algorithms and particle swarm optimization were applied to search for the optimal recipe. In the first optimization stage, we searched for the optimal reflectance and sheet resistance that can provide the best efficiency in the fabrication process. The optimized reflectance and sheet resistance found by the particle swarm optimization were better than those found by the genetic algorithm. In the second optimization stage, the five input parameters were searched by using the reflectance and sheet resistance values obtained in the first stage. The found five variables such as the texturing time, amount of nitrogen, DI water, diffusion time, and temperature are used as a recipe for the solar cell fabrication. The amount of nitrogen, DI water, and diffusion time in the optimized recipes showed considerable differences according to the modeling approaches. More importantly, repeated applications of particle swarm optimization yielded process conditions with smaller variations, implying greater consistency in recipe generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AbdulHadi M, Al-Ibrahim AM, Virk GS (2004) Neuro-fuzzy-based solar cell model. IEEE Trans Energy Convers 19(3):619–624

    Article  Google Scholar 

  • Agostinellia G, Batznerb DL, Burgelmanc M (2003) A theoretical model for the front region of cadmium telluride solar cells. Thin Solid Films 431-432(1):407–413

    Article  Google Scholar 

  • Appelbaum J, Chait A, Thompson D (1992) Parameterization of solar cells. NASA STI/Recon Technical Report N

  • Baker JE (1987) Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the 2nd international conference on genetic algorithms and their application, pp 14–21

  • Brameier M, Banzhaf W (2001) Comparison of linear genetic programming and neural network in medical data mining. IEEE Trans Evolu Comput 5:17–26

    Article  Google Scholar 

  • Davis C, Hong SJ, Setia R, Pratap R, Brown T, Ku B, Triplett G, May G (2004) An object-oriented neural network simulator for semiconductor manufacturing applications. In: The 8th world multi-conference on systemics cybernetics informatics, vol 5, pp 365–370

  • Frenzel JF (1993) Genetic algorithms. IEEE Potentials 12(3):21–24

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization & machine Learning. Addison Wesley

  • Green MA, Blakers AW, Shi J, Keller, EM, Wenham SR (1984) High-efficiency silicon solar cells. IEEE Trans Electron Devices 31:679–683

    Article  Google Scholar 

  • Han SS, Ceiler M, Bidstrup S, Kohl P, May G (1994) Modeling the properties of PECVD silicon dioxide films using optimized back-propagation neural network. IEEE Trans CPMT 17:174–182

    Google Scholar 

  • Jervase JA, Bourdoucen H, Lawati AA (2001) Solar cell parameter extraction using genetic algorithms. Meas Sci Technol 12:1922–1925

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks vol IV, pp 1942–1948

  • Kim DS, Hilali MM, Rohatgi A, Nakano K, Hariharan A, Matthei K (2006) Development of a phosphorus spray diffusion system for low cost silicon solar cells. J Electrochem Soc 153:A1391–1396

    Article  Google Scholar 

  • Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Koza J (1994) Genetic programming II. Automatic discovery of reusable programs. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Koza J, Bennett III, F, Andre D, Keane M (1999) Genetic programming III: Darwinian invention and problem solving. Morgan Kaufmann

  • Lee SJ, Pandey A, Kim DS, Rohatgi A, May G, Hong SJ, Han SS (2007) Characterization and optimization of the contact formation for high-performance silicon solar cells. Lecture Notes in Computer Science vol 4493, pp 246–251

  • Marvin DC (1988) Solar cell modeling and simulation. NASA STI/Recon Technical Report N

  • Michael S, Bates AD, Green MS (2005) Silvaco ATLAS as a solar cell modeling tool. In: 31st IEEE photovoltaic specialists conference, vol (3–7), pp 719–721

  • Mottet S (1980) Solar cell modeling for computer-aided generator design and irradiation degradation computations. In: ESA photovoltaic generations in space, pp 177–186

  • Nijs JF, Szlufcik J, Poortmans J, Sivoththaman S, Mertens RP (1999) Advanced manufacturing concepts for crystalline silicon solar cells. IEEE Trans Electron Devices 46:1948–1969

    Article  Google Scholar 

  • Rohatgi A, Chen Z, Doshi P, Pham T, Ruby D (1994) High-efficiency silicon solar cells by rapid thermal processing. Appl Phys Lett 65:2087–2089

    Article  Google Scholar 

  • Shi YH, Eberhart RC (1998) A Modified Particle Swarm Optimizer. In: IEEE international conference on evolutionary computation, pp 69–73

Download references

Acknowledgments

This work was supported by the Grant of the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Institute of Logistics Information Technology) and the ERC program of MOST/KOSEF (Next-generation Power Technology Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungshin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, H., Jeon, TR., Kim, S. et al. Optimization of silicon solar cell fabrication based on neural network and genetic programming modeling. Soft Comput 14, 161–169 (2010). https://doi.org/10.1007/s00500-009-0438-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-009-0438-9

Keywords

Navigation