Skip to main content
Log in

Classification of signals by means of Genetic Programming

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper describes a new technique for signal classification by means of Genetic Programming (GP). The novelty of this technique is that no prior knowledge of the signals is needed to extract the features. Instead of it, GP is able to extract the most relevant features needed for classification. This technique has been applied for the solution of a well-known problem: the classification of EEG signals in epileptic and healthy patients. In this problem, signals obtained from EEG recordings must be correctly classified into their corresponding class. The aim is to show that the technique described here, with the automatic extraction of features, can return better results than the classical techniques based on manual extraction of features. For this purpose, a final comparison between the results obtained with this technique and other results found in the literature with the same database can be found. This comparison shows how this technique can improve the ones found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abarbanel HDI, Brown R, Kennel MB (1991) Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data. Int J Mod Phys 5(9):1347–1375. doi:10.1142/S021797929100064X

    Article  MATH  Google Scholar 

  • Addison PS (2002) The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. Institute of Physics Publishing, Bristol

    Book  Google Scholar 

  • Ahsan MR, Ibrahimy MI, Khalifa OO (2009) EMG signal classification for human computer interaction: a review. Eur J Sci Res 33(3):480–501

    Google Scholar 

  • Anderson CW, Stolz EA, Shamsunder S (1998) Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Trans Biomed Eng 45(3):277–286. doi:10.1109/10.661153

    Article  Google Scholar 

  • Andrzejak RG, Lehnertz K, Rieke C, Mormann F, David P, Elger CE (2001) Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys Rev E Stat Nonlin Soft Matter Phys 64 (6) doi:061907

  • Bazi Y, Melgani F (2006) Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans Geosci Remote Sens 44(11):3374–3385. doi:10.1109/tgrs.2006.880628

    Article  Google Scholar 

  • Buteneers P, Verstraeten D, van Mierlo P, Wyckhuys T, Stroobandt D, Raedt R, Hallez H, Schrauwen B (2011) Automatic detection of epileptic seizures on the intra-cranial electroencephalogram of rats using reservoir computing. Artif Intell Med 53(3):215–223. doi:10.1016/j.artmed.2011.08.006

    Article  Google Scholar 

  • Cardoso JF (1998) Blind signal separation: statistical principles. Proc IEEE 86(10):2009–2025. doi:10.1109/5.720250

    Article  Google Scholar 

  • Dalponte M, Bovolo F, Bruzzone L (2007) Automatic selection of frequency and time intervals for classification of EEG signals. Electron Lett 43(25):1406–1408. doi:10.1049/el:20072428

    Article  Google Scholar 

  • Deriche M, Al-ani A (2001) A new algorithm for EEG feature selection using mutual information. In: IEEE International Conference of the Acoustics Speech and Signal Processing 2001, pp 1057–1060. doi:10.1109/ICASSP.2001.941101

  • Dolinsky JU, Jenkinson ID, Colquhoun GJ (2007) Application of Genetic Programming to the calibration of industrial robots. Comput Ind 58(3):255–264. doi:10.1016/j.compind.2006.06.003

    Article  Google Scholar 

  • Espejo PG, Ventura S, Herrera F (2010) A survey on the application of genetic programming to classification. Systems, man, and cybernetics, Part C: applications and reviews. IEEE Transactions on 40 (2):121–144. doi:10.1109/TSMCC.2009.2033566

    Google Scholar 

  • Guler I, Ubeyli ED (2005) Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods 148(2):113–121. doi:10.1016/j.jneumeth.2005.04.01

    Article  Google Scholar 

  • Guler NF, Ubeylib I, Guler ED, Guler I (2005) Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 29:506–514. doi:10.1016/j.eswa.2005.04.011

    Article  Google Scholar 

  • Guo L, Rivero D, Seoane JA, Pazos A Classification of EEG signals using relative wavelet energy and artificial neural networks. In: Proceedings of the first ACM/SIGEVO Summit on genetic and evolutionary computation, Shanghai, China, 2009. pp 177–184. doi:10.1145/1543834.1543860

  • Hong G, Jack LB, Nandi AK (2005) Feature generation using genetic programming with application to fault classification. In: IEEE Transactions on Systems, Man and Cybernetics, Part B: cybernetics 35 (1):89–99

  • Hsu WY, Lin CH, Hsu HJ, Chen PH, Chen IR (2012) Wavelet-based envelope features with automatic EOG artifact removal: application to single-trial EEG data. Expert Syst Appl 39(3):2743–2749. doi:10.1016/j.eswa.2011.08.132

    Article  MathSciNet  Google Scholar 

  • Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430. doi:10.1016/s0893-6080(00)00026-5

    Article  Google Scholar 

  • Kannathal N, Acharya UR, Lim CM, Sadasivan PK (2005a) Characterization of EEG—a comparative study. Comput Methods Prog Biomed 80(1):17–23. doi:10.1016/j.cmpb.2005.06.005

    Article  Google Scholar 

  • Kannathal N, Choob ML, Acharyab UR, Sadasivana PK (2005b) Entropies for the detection of epilepsy in EEG. Comput Methods Programs Biomed 80(3):187–194. doi:10.1016/j.cmpb.2005.06.01

    Article  Google Scholar 

  • Kishore JK, Patnaik LM, Mani V, Agrawal VK (2000) Application of genetic programming for multi category pattern classification. IEEE Trans Evol Comput 4(3):242–258. doi:10.1109/4235.873235

    Article  Google Scholar 

  • Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Lima CAM, Coelho ALV (2011) Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study. Artif Intell Med 53(2):83–95. doi:10.1016/j.artmed.2011.07.003

    Article  Google Scholar 

  • Lopes R, Betrouni N (2009) Fractal and multifractal analysis: a review. Med Image Anal 13(4):634–649. doi:10.1016/j.media.2009.05.003

    Article  Google Scholar 

  • Mallat S, Hwang WL (1992) Singularity detection and processing with wavelets. IEEE Trans Infor Theory 38(2):617–643. doi:10.1109/18.119727

    Article  MathSciNet  MATH  Google Scholar 

  • Mohseni HR, Maghsoudi A, Shamsollahi B Seizure Detection in EEG signals: a comparison of different approaches. In: Conference of the IEEE Engineering in Medicine and Biology Society 2006, pp 6724–6727. doi:10.1109/IEMBS.2006.260931

  • Montana DJ (1995) Strongly typed genetic programming. Evol Comput 3(2):199–230. doi:10.1162/evco.1995.3.2.199

    Article  Google Scholar 

  • Nigam VP, Graupe D (2004) A neural-network-based detection of epilepsy. Neurol Res 26(1):55–60. doi:10.1179/016164104773026534

    Article  Google Scholar 

  • Polat K, Günes S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 32(2):625–631. doi:10.1016/j.amc.2006.09.022

    Google Scholar 

  • Rabuñal JR, Puertas J, Suarez J, Rivero D (2007) Determination of the unit hydrograph of a typical urban basin using Genetic Programming and artificial neural networks. Hydrol Process 21:476–485. doi:10.1002/hyp.6250

    Article  Google Scholar 

  • Rivero D, Rabuñal JR, Dorado J, Pazos A (2005) Time series forecast with anticipation using Genetic Programming. Lect Notes Comput Sci 3512:968–975. doi:10.1007/11494669_119

    Article  Google Scholar 

  • Rivero D, Dorado J, Rabuñal J, Pazos A (2009) Evolving simple feed-forward and recurrent ANN’s for signal classification: A comparison. IEEE-INNS-ENNS International Joint Conference on Neural Networks, pp 2685–2692.doi:10.1109/IJCNN.2009.5178621

  • Rivero D, Fernandez-Blanco E, Dorado J, Pazos A (2011a) A new signal classification technique by means of Genetic Algorithms and kNN. IEEE Congress on Evolutionary Computation (CEC), pp 581–586. doi:10.1109/CEC.2011.5949671

  • Rivero D, Fernandez-Blanco E, Dorado J, Pazos A (2011b) Using recurrent ANNs for the detection of epileptic seizures in EEG signals. IEEE Congress on Evolutionary Computation (CEC), pp 587–592. doi:10.1109/CEC.2011.5949672

  • Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76(11):1804–1807. doi:10.1103/PhysRevLett.76.1804

    Article  Google Scholar 

  • Sadati N, Mohseni HR, Maghsoudi A (2006) Epileptic Seizure Detection using neural fuzzy networks. In: IEEE International Conference on Fuzzy Systems, pp 596–600 doi:10.1109/FUZZY.2006.1681772

  • Schneider M, Mustaro PN Lima CAM (2009) Automatic recognition of epileptic seizure in EEG via support vector machine and dimension fractal. In: Proceedings of the 2009 international joint conference on Neural Networks, pp 2841–2845. doi:10.1109/IJCNN.2009.5179059

  • Schröder M, Bogdan M, Rosenstiel W, Hinterberger T, Birbaumer N (2003) Automated EEG feature selection for brain computer interfaces. In: Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, pp 626–629. doi:10.1109/CNE.2003.1196906

  • Srinivasan V, Eswaran C, Sriraam N (2005) Artificial neural network based epileptic detection using time-domain and frequency-domain features. J Med Syst 29(6):647–660. doi:10.1007/s10916-005-6133-1

    Article  Google Scholar 

  • Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32(4):1084–1093. doi:10.1016/j.eswa.2006.02.005

    Article  Google Scholar 

  • Subasi A, Gursoy MI (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37:8659–8666. doi:10.1016/j.eswa.2010.06.065

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    Article  Google Scholar 

  • Tzallas AT, Tsipouras MG, Fotiadis DI (2007) Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci 7(3):1–13. doi:10.1155/2007/80510

    Article  Google Scholar 

  • Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Trans Infor Technol Biomed 13(5):703–710. doi:10.1109/TITB.2009.2017939

    Article  Google Scholar 

  • Übeyli ED (2009) Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Syst Appl 37(2):985–992. doi:10.1016/j.eswa.2009.05.078

    Article  Google Scholar 

  • Zhan YQ, Shen DG (2006) Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method. IEEE Trans Med Imaging 25(3):256–272. doi:10.1109/tmi.2005.862744

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

First of all, the authors want to thank the support from the CESGA to execute the test of this paper. The authors wants also to thank the support from different institutions who has funded this work, in particularly, projects: RD07/0067/0005 funded by the Carlos III Health and 10SIN105004PR funded by Economy and Industry Department of Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Fernández-Blanco.

Additional information

Communicated by F. Herrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Blanco, E., Rivero, D., Gestal, M. et al. Classification of signals by means of Genetic Programming. Soft Comput 17, 1929–1937 (2013). https://doi.org/10.1007/s00500-013-1036-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1036-4

Keywords

Navigation