
Research Article
Parallelizing Gene Expression Programming Algorithm in
Enabling Large-Scale Classification

Lixiong Xu, Yuan Huang, Xiaodong Shen, and Yang Liu

School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China

Correspondence should be addressed to Yang Liu; yang.liu@scu.edu.cn

Received 19 October 2016; Accepted 23 January 2017; Published 20 February 2017

Academic Editor: Alex M. Kuo

Copyright © 2017 Lixiong Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As one of the most effective function mining algorithms, Gene Expression Programming (GEP) algorithm has been widely used
in classification, pattern recognition, prediction, and other research fields. Based on the self-evolution, GEP is able to mine an
optimal function for dealing with further complicated tasks. However, in big data researches, GEP encounters low efficiency issue
due to its long time mining processes. To improve the efficiency of GEP in big data researches especially for processing large-scale
classification tasks, this paper presents a parallelized GEP algorithm usingMapReduce computing model.The experimental results
show that the presented algorithm is scalable and efficient for processing large-scale classification tasks.

1. Introduction

In recent years, Gene Expression Programming (GEP) [1]
algorithm has been widely studied due to its significant func-
tionmining ability. Comparing to the othermachine learning
algorithms such as support vector machine and neural net-
works, themost remarkable characteristic ofGEP is that it can
explicitly mine the mathematical equation 𝑓 of the depen-
dent variable y and independent variables x from dataset.
As a result, the equation y = 𝑓(x) can be easily stored and
employed in future study of the data. Similar to the Genetic
Algorithm, GEP algorithm also simulates the processes of
biological evolution to mine a function with the best fitness
to represent the data relations. During the evolution, the
algorithm employs selection, crossover, and mutation oper-
ations to generate offspring. Each individual of the offspring
is assessed by a fitness function. The individual that has a
better fitness has a higher chance to be selected to produce a
next generation.The evolution keeps evolving until a satisfied
function that can describe the data relations is found.

As an effective data analyzing approach, classification has
been researched a lot.The classification algorithms, especially
supervised classification algorithms, for example, artificial
neural networks (ANNs), show remarkable classification
abilities. However, ANNs are also function-fitting algorithms

fundamentally, although the algorithms cannot output the
functions explicitly as GEP does. This point motivates us
that GEP can also be employed to deal with the supervised
classification tasks using the following idea:

(1) Let the training data be x and the encoded classes be
y.

(2) Train theGEP algorithmusing x and y tomine a func-
tion 𝑓.

(3) Input the to-be-classified data xt to𝑓; observe the out-
put yc, which can represent the classes that xt should
belong to. Therefore, xt is classified.

It alsomotivates us that, based on theworks [2, 3], GEP-based
classification has great potential to be further applied into
large-scale classification tasks.

Unfortunately several works [4–6] pointed out that to
process large-scale tasks using GEP may encounter the low
efficiency issue. The reason is that, as a heuristic algorithm,
GEP needs an extremely long time to mine the best-fitted
function for large volume of data. Therefore to improve the
large-scale classification efficiency using GEP is also focused
by this paper. As a result, this paper presents a parallelized
GEP algorithm in enabling large-scale classification. The
algorithm is designed and implemented in the MapReduce

Hindawi
Scientific Programming
Volume 2017, Article ID 5081526, 10 pages
https://doi.org/10.1155/2017/5081526

https://doi.org/10.1155/2017/5081526

2 Scientific Programming

distributed computing environment. Following a number of
tests based on standard benchmark datasets have been carried
out. The experimental results reveal that the parallelized
GEP algorithm shows advantages in dealing with large-scale
classification tasks.

The rest of the paper is organized as follows: Section 2
reviews the related work; Section 3 presents the paralleliza-
tion of GEP; Section 4 discusses the experimental results; and
Section 5 concludes the paper.

2. Related Work

As an effective function mining algorithm, GEP has been
widely applied in numbers of researches. Sabar et al. [7]
employedGEP to design a hyperheuristic framework in order
to solve the combinatorial optimization problems.Their exp-
erimental results show that the proposed framework has great
potential to solve the problems. Hwang et al. [8] employed
GEP to predict the Qos (Quality of Service) traffic in the
Ethernet passive optical network.The authors combinedGEP
algorithm to tackle the queue variation during waiting times
as well as reducing the high priority packet delay. Deng et al.
[9] also employed GEP and rough set to assess the security
risk in cyber physical power system. Based on their studies,
security risk levels of cyber physical power system can be
accurately predicted.

However, several works [4–6] pointed out that GEP has
low efficiency issue for processing complicated tasks. To
solve the issue, several researchers focused on improving the
algorithm parameters of GEP. Xue and Wu [10] proposed
Symbiotic Gene Expression Programming (SGEP) based on
symbiotic algorithm, estimation of distribution algorithm,
and evolution processes improved GEP. The experimental
results indicate that SGEP outperforms GEP in terms of
efficiency. Chen et al. [11] pointed out that the most com-
putationally expensive computation of GEP is the evolution
in the expression tree. Therefore they proposed Reduced-
GEP algorithmwhich is based on the chromosome reduction.
The experimental results show that the algorithm is effective
and efficient in calculating the fitness and reducing the size
of chromosome. In research [12], inspired by the diversity
of chromosome arrangements in biology, an unconstrained
encoded Gene Expression Programming was proposed. The
approach can enlarge the function searching space, which
enhances the parallelism and the adaptability of the standard
GEP algorithm.

Another effective way of solving the efficiency issue of
GEP is to use parallel computing or distributed computing.
Du et al. [13] proposed an asynchronous distributed parallel
GEP algorithm. They aimed at speeding up the convergence
of finding the optimal solution using MPI (Message Passing
Interface) [14]. In each processor, a standalone GEP algo-
rithm is running. And then the processors exchange their
best individuals and continue evolving. Until a termination
message is sent to the processors, the algorithm stops. Based
on the experimental results, the authors claimed that the
proposed algorithm can greatly speed up the algorithm
convergence. However, they have not evaluated the algorithm
using large volume of data. And alsoMPI is highly depending

on the homogeneous hardware environment, which limits
the algorithm adaption. Du et al. also proposed a MapRe-
duce [15] based distributed GEP algorithm to process large
populations and datasets. Similar to [13], eachMap computes
the fitness and in each Reduce the selection, mutation, and
crossover operations are executed. The output is output into
the distributed file system where the exchanges of the best
individuals occur. Although the authors claimed that they
achieved algorithm speedup, two issues should be discussed.
Firstly the algorithm needs a large number of Reduces, which
generates system overhead because of IO operations [2] in
reducers. Secondly their algorithm needs a large number of
iterations. However, MapReduce does not support iteration
originally. Instead, the algorithm has to submit a number of
MapReduce jobs to the cluster, which generates tremendously
large overhead [3]. Browne and dos Santos [16] also discussed
the parallelization of GEP using the island model. However,
their algorithm does not focus on the parallelization. And
the algorithm performance for processing the large volume
of dataset has not been evaluated.

The improvement of GEP presented in this paper mainly
focuses on parallelizing the GEP algorithm for executing
large-scale classification. Our algorithm first employs the
Hadoop framework [17] as the underlying infrastructure.
And secondly combining with the ensemble techniques, the
algorithm is able to supply efficiency, scalability, and accuracy.

3. Algorithm Design

3.1. Classification Using GEP. Based on the selection, cross-
over, mutation, and fitness, GEP is able to mine a function
from the given dataset. Therefore, let 𝑇 denote the training
dataset; 𝑡𝑖 denote an instance in 𝑇; 𝑙 denote the length of𝑡𝑖; 𝑗 denote the 𝑗th class of 𝑇; 𝑇𝑒 denote the testing dataset;𝑡𝑒𝑖 denote an instance in 𝑇𝑒; 𝑐𝑗 denote the coded identifier
of class; 𝜎 denote a threshold; 𝑟 represent the number of
correctly classified instances; and 𝑛 represent the number of
training instances. The classification using GEP is shown in
Algorithm 1.

3.2. MapReduce and Hadoop. MapReduce computing model
contributes two main functions Map and Reduce to facilitate
the development of the distributed computing applications.
Map function executes main computation and Reduce func-
tion collects the intermediate output of Maps and generates
the final output. Each Map computes the data instances one
by one in the form of key-value pair {𝐾1,Value1}. And then
the computed result is output as an intermediate output{𝐾2,Value2}.The Reduces collects the intermediate output of
all Maps. Afterwards each Reduce merges the inputs having
the same key and generates the final output.

Hadoop framework [17, 18] is a Java based implementa-
tion ofMapReduce. Two types of nodes including one Name-
Node and severalDataNodes consist of a typicalHadoop clus-
ter.TheNameNodemanages themetadata, whilst the DataN-
ode executes a number ofMap (mappers) andReduce (reduc-
ers) operations in parallel. Both the NameNode and Data-
Nodes contribute their resources including processors, mem-
ory, hard disks, and network adaptors to form the Hadoop

Scientific Programming 3

(1) For each 𝑡𝑖 ∈ 𝑇
Encode 𝑐𝑗 representing the class of 𝑡𝑖(2) For each 𝑡𝑖 in 𝑇

Input 𝑡𝑖 and 𝑐𝑗 into GEP(3) Let 𝑐𝑗 be y and 𝑡𝑖 be x.(4) Initiate GEP components: function set, link function, selection
mutation, crossover and fitness 𝑟/𝑛.(5) In each generation, GEP mines 𝑐 = 𝑓(𝑡𝑖),
if |𝑐 − 𝑐𝑗| ≤ 𝜎𝑟 = 𝑟 + 1(6) GEP keeps running
until terminating condition (determined generation or fitness) met(7) Output 𝑓 which represents 𝑐𝑗 = 𝑓(𝑡𝑖)(8) Let 𝜎 denote a threshold
For each 𝑡𝑒𝑖 in 𝑇𝑒

Compute 𝑦𝑒 = 𝑓(𝑡𝑒𝑖)
if |𝑦𝑒 − 𝑐𝑗| ≤ 𝜎𝑡𝑒𝑖 ∈ 𝑐𝑗
else 𝑡𝑒𝑖 is an outlier(9) Classification terminates

Algorithm 1: The pseudocode of classification using GEP.

Distributed File System (HDFS) [17]. HDFS not only is
responsible for high performance data storage but also
manages data processing for the mappers and reducers,
which supplies fault tolerant, load balancing, scalability,
and heterogeneous hardware support. Figure 1 shows the
structure of Hadoop framework.

3.3. Parallelization of GEP in Enabling Large-Scale Classifi-
cation. In the training phase, let 𝑚 denote the number of
mappers. Therefore, the training dataset 𝑇 can be divided
into a number of 𝑚 data chunks, in which each chunk is
represented by 𝑇𝑖 𝑖 ∈ 𝑚. 𝑇𝑖 satisfies

𝑚⋃
𝑖=1

𝑇𝑖 = 𝑇. (1)

Firstly 𝑚 mappers input 𝑚 data chunks in parallel. And
then eachmapper initiates one sub-GEP starting the function
mining according to the input training data. As long as a
function (a classifier) has been mined in each mapper, totally
a number of𝑚 classifiers are generated.

In the classification phase, the testing dataset 𝑇𝑒 is also
divided into 𝑚 chunks. Each previously trained classifier
inputs one testing data chunk and executes the classification.
Therefore, the classification using GEP can be parallelized.
However, one problem should be mentioned that, due to the
data separation of the training dataset, each sub-GEP in each
mapper is only trained by a subset of the original dataset.
The insufficient training may lead to the loss of classification
accuracy. In order to parallelize GEP classification avoiding
accuracy loss, ensemble techniques including bootstrapping
and majority voting are employed.

Bootstrapping is based on the idea of controlling the
number of times that the training instances appear in the

bootstrapping samples, so that, in the number of 𝐵 boot-
strapping samples, each instance appears the same number
of times [19]. To create balanced bootstrapping samples, the
following steps could be followed:

(1) Construct a string of the instances𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛
repeating 𝐵 times so that a sequence 𝑌1, 𝑌2, 𝑌3, . . . ,𝑌𝐵𝑛 is achieved.

(2) A random permutation 𝑝 of the integers from 1 to 𝐵𝑛
is taken. Therefore the first bootstrapping sample can
be created from 𝑌𝑝(1), 𝑌𝑝(2), 𝑌𝑝(3), . . . , 𝑌𝑝(𝑛), more-
over the second bootstrapping sample from 𝑌𝑝(𝑛 +1), 𝑌𝑝(𝑛 + 2), 𝑌𝑝(𝑛 + 3), . . . , 𝑌𝑝(2𝑛), and so on.

(3) Repeat step (2) until 𝑌𝑝((𝐵 − 1)𝑛 + 1), 𝑌𝑝((𝐵 − 1)𝑛 +2), 𝑌𝑝((𝐵 − 1)𝑛 + 3), . . . , 𝑌𝑝(𝐵𝑛), which is the Bth
bootstrapping sample.

Based on the bootstrapping, the instance distributions of
the original dataset can be simulated in the samples, in
which the original data information can be kept more. The
majority voting is a commonly used combination technique.
The ensemble classifier predicts a class for a test instance that
is predicted by the majority of the base classifiers [20].

By employing the bootstrapping and majority voting, the
parallelized GEP classification algorithm works as follows.

In the training phase:

(1) The algorithm firstly generates a number of 𝑚 boot-
strapped sample sets using the training dataset T.
Each set 𝑇𝑖 is saved in one data chunk stored in the
HDFS.

(2) Each mapper initiates a sub-GEP and inputs one data
chunk from HDFS.

4 Scientific Programming

Data

Data
chunk

1

Data
chunk

2

Data
chunk

n

Mapper
1

Mapper
2

Mapper
n

Map phase

Reducer
1

Reducer
2

Reducer
m

Reduce phase

Intermediate
output

Output

Output
1

Output
2

Output
m

Hadoop distributed file system

...
...

...
...

Figure 1: The structure of Hadoop framework.

(3) Each mapper trains its sub-GEP according to step(1) to (6) in Algorithm 1. As long as the training
terminates, the mined function 𝑓𝑖 is collected by
reducer and saved into HDFS in the value pairs⟨𝑚𝑎𝑝𝑝𝑒𝑟𝐼𝑑, 𝑓𝑖⟩.

(4) As in each mapper its sub-GEP mines the function
individually, therefore, finally a number of𝑚 different
functions can be saved, which means a number of 𝑚
weak classifiers are created.

Figure 2 shows the training phase of the algorithm.
In the classification phase:

(1) Each mapper retrieves one function 𝑓𝑖 fromHDFS so
that the mapper becomes one weak classifier.

(2) And then all themappers input the same one instance𝑡𝑒𝑖 from the testing dataset 𝑇𝑒.
(3) In each mapper, when 𝑡𝑒𝑖 is input, a value of 𝑐 can be

computed according to𝑓𝑖. Comparing the values of 𝑐𝑗,𝜎, and 𝑐 according to step (8) in Algorithm 1, 𝑡𝑒𝑖 can
be classified.

(4) The 𝑔th mapper outputs its intermediate output ⟨𝑡𝑒𝑖 ,𝑟𝑒𝑠𝑢𝑙𝑡𝑔⟩.
(5) One reducer collects all the intermediate outputs

from all the 𝑚 mappers. And then, it merges the
outputs having the same key into one group. In the
group, themajority voting is executed to vote the final
classification result.

Figure 3 shows the classification phase.

4. Algorithm Evaluation

4.1. Experimental Environment. In order to evaluate the algo-
rithm performance, a physical Hadoop cluster constituted

Table 1: The cluster details.

NameNode

CPU: Core i7@3GHz
Memory: 8GB
SSD: 750GB
OS: Fedora

DataNodes

CPU: Core
i7@3.8GHz

Memory: 32GB
SSD: 250GB
OS: Fedora.

Network bandwidth 1Gbps
Hadoop version 2.3.0

Table 2: The dataset details.

Type Iris Wine
Dataset characteristics Multivariate Multivariate
Instance number 150 178
Attribute number 4 13
Class number 3 3

by one NameNode and four DataNodes is established. The
details of the cluster are listed in Table 1.

The datasets employed in the experiments are Iris dataset
[21] and Wine dataset [22]. The details of the datasets are
listed in Table 2.

The parameters of GEP used in the experiments are listed
in Table 3.

4.2. Accuracy of the Classification. Let rightNum represent the
number of the correctly classified instances and wrongNum

Scientific Programming 5

Tr
ai

ni
ng

 d
at

a

Mapper training

Mapper training

Mapper training

Bootstrapping Mapper training

Bootstrapped
sample

m

Bootstrapped
sample

1

Bo
ot

str
ap

pi
ng

Reducer output

Bootstrapped
sample

2

...
...

...

⟨1, y = f1(x)⟩

⟨2, y = f2(x)⟩

⟨m, y = fm(x)⟩

⟨

Figure 2: Training phase in the classification.

Trained mapper 1

Trained mapper 2

Trained mapper n

Reduce phaseTrained classifiers

Reducer
collection

Reducer merge

Majority voted
result

{key1, valuek}

{key1, value1}
{key1, value1}
{key1, value1}

{key1, value2}
{key1, value3}

{key1, valuej}

{key1, valuem}

O
ne

 te
sti

ng
 in

st
an

ce

· · ·

· · ·

...

Figure 3: The classification of the presented algorithm.

represent the number of the wrongly classified instances.
Therefore the classification accuracy 𝑝 is defined as

𝑝 = 𝑟𝑖𝑔ℎ𝑡𝑁𝑢𝑚
𝑟𝑖𝑔ℎ𝑡𝑁𝑢𝑚 + 𝑤𝑟𝑜𝑛𝑔𝑁𝑢𝑚 × 100%. (2)

In the following tests, increasing numbers of instances are
selected from the two datasets as the training instances, whilst

Table 3: The details of the parameters of GEP.

Number of genes 2 (iris)/4 (wine)
Linking function +
Head length 6
Function set + − ∗/cos sin tan exp log sqrt abs
Fitness r/n
Terminal set abcd (iris)/abcdefghijklm (wine)
Population size 100
Mutation rate 0.044
IS transposition rate 0.1
RIS transposition rate 0.1
Gene transposition rate 0.1
One-point recombination rate 0.4
Two-point recombination rate 0.2
Gene recombination rate 0.1
Threshold 𝜎 0.5
Coded classes 1, 2, and 3

the rest instances are the testing instances.The bootstrapping
number is four and the algorithm starts eleven mappers for
executing the parallelizedGEP classification.The experimen-
tal results are shown in Figures 4–14 and The Functions in
Each Sub-GEP forClassifying IrisDataset andTheFunctions in
Each Sub-GEP for Classifying Wine Dataset in the appendix.

Figure 4 shows the classification accuracy of the Iris
dataset with an increasing number of the training instances
from 12 to 105. It can be observed that the parallel GEP algo-
rithm performs highly stable and outperforms the standalone
GEP algorithm.The visualizations of the classification results

6 Scientific Programming

12 24 36 48 60 72 84 96 106
Number of training instances

Parallel GEP
Standalone GEP

0

20

40

60

80

100

120

Pr
ec

isi
on

 (%
)

Figure 4: The precision comparison for classifying Iris dataset.

12 24 36 48 60 72 84 96 108 118
Number of training instances

Parallel GEP
Standalone GEP

0
10
20
30
40
50
60
70
80
90

100

Pr
ec

isi
on

 (%
)

Figure 5: The precision comparison for classifying Wine dataset.

12 24 36 48 60 72 84 96 106
Number of training instances

BPNN
Parallel GEP

0

20

40

60

80

100

120

Pr
ec

isi
on

 (%
)

Figure 6:The precision comparison for classifying Iris dataset using
parallel GEP and BPNN.

are shown by Figures 11, 12, and The Functions in Each Sub-
GEP for Classifying Iris Dataset in the appendix.

Wine dataset has also been employed to evaluate the clas-
sification accuracy. Comparing to Iris dataset, each instance
of Wine dataset has 13 attributes, which may impact the
classification accuracy. The experimental result is shown in
Figure 5.

Figure 5 shows the classification accuracy of the Wine
dataset with an increasing number of the training instances
from 12 to 118.The result shows that, due to more attributions
of the instances, the accuracy of the parallel GEP starts

12 24 36 48 60 72 84 96 108 118
Number of training instances

BPNN
Parallel GEP

0
10
20
30
40
50
60
70
80
90

100

Pr
ec

isi
on

 (%
)

Figure 7: The precision comparison for classifying Wine dataset
using parallel GEP and BPNN.

1 2 3 4 5 6 7 8 9 10
Bootstrapping number

0
10
20
30
40
50
60
70
80
90

Pr
ec

isi
on

 (%
)

Figure 8: Precision of the classification with increasing bootstrap-
ping numbers.

0
2000
4000
6000
8000

10000
12000
14000

0.5 1 2 4 8 16 32 64 128 256 512 1024

Ru
nn

in
g

tim
e (

s)

Data sizes (MB)

Parallel GEP
Standalone GEP

Figure 9: Algorithm efficiency comparison of increasing training
data sizes.

fluctuating. However, in most of the tests the parallel GEP
still outperforms the standalone GEP in terms of accuracy.
It further indicates the ensemble techniques can help to
improve the classification accuracy. The visualizations of the
classification results are shown by Figures 13, 14, and The
Functions in Each Sub-GEP for Classifying Wine Dataset in
the appendix.

Scientific Programming 7

0.5 1 2 4 8 16 32 64 128 256 512 1024
Data sizes (MB)

Parallel GEP
MRBPNN-1

MRBPNN-2
MRBPNN-3

0
1000
2000
3000
4000
5000
6000
7000

Ru
nn

in
g

tim
e (

s)

Figure 10: Comparison of the processing time of the parallel BPNNs
and the parallel GEP with increasing training data sizes.

0 0.5

y12

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 11: The classification result of the standalone GEP using Iris
dataset.

For further evaluating the effectiveness of the proposed
algorithm, we also implemented backpropagation neural net-
work (BPNN).The comparisons of the classification accuracy
are shown in Figure 6.

Figure 6 indicates that, in terms of Iris dataset classi-
fication accuracy, the parallel GEP algorithm outperforms
BPNN. Although the neural network also performs well in
the classification, when the number of the training instances
is small, it gives lower classification accuracy.

Figure 7 indicates that, in terms ofWine dataset classifica-
tion accuracy, the parallel GEP algorithmgreatly outperforms
BPNN. Due to more attributions in the dataset, it is difficult
for BPNN to correctly classify most of the testing instances.
Contrarily, parallel GEP can still keep a higher accuracy.

It should be noticed that the bootstrapping numberwhich
represents the number of times the training instances appear
in the bootstrapping samples also impacts the algorithm
accuracy.Therefore Figure 8 is generated to show the classifi-
cation results with increasing bootstrapping numbers. Wine
dataset is selected as the experimental dataset, in which a
number of 118 instances are the training instances and the
remaining 60 instances are the testing instances.

In Figure 8, it can be observed that when the bootstrap-
ping number is less than 6, the classification precision keeps
increasing. And then, the precision varies slightly. Figure 8

significantly tells that initially enlarging the bootstrapping
number improves the classification. However, when the boot-
strapping number reaches a certain value, the performance in
terms of classification precision cannot be further improved.

4.3. Running Time of the Classification. In this section, Wine
dataset is selected as the experimental dataset. The algorithm
processing time for the increasing training data sizes has been
evaluated. In the following tests, firstly the bootstrapping
number is 4, which means each training instance appears
4 times. The number of the training instances is 118 whilst
the testing instances remain 60. And then the training data
size is duplicated from approximately 0.5MB to 1024MB. It
should be pointed out that, because of the duplication, the
bootstrapping number will change from 4 to 4𝑛, where 𝑛
represents the duplicated times. However, this section only
focuses on the algorithm efficiency. Therefore although the
varying bootstrapping numbers may affect the classification
precision slightly according to Figure 8, the algorithm pro-
cessing time with increasing training data sizes is highlighted
in Figure 9.

Figure 9 shows that when the training data size is small,
the performances of the standaloneGEP and the parallel GEP
are nearly the same. However, when the data size becomes
larger, the parallel GEP outperforms the standalone GEP.
When the data size increases more than 256MB, the stan-
dalone GEP cannot finish the classification due to memory
limitation. Contrarily, the parallel GEP still works fine even if
the data size increases to 1024MB.

To further compare the classification efficiency to the
other classification algorithms, theMapReduce based parallel
bac propagation neural network algorithms (MRBPNN 1, 2,
and 3) [2] are also implemented.The comparisons are shown
in Figure 10.

Figure 10 shows that in terms of the algorithm running
time, the parallel BPNN algorithms MRBPNN 1 and 2 out-
perform the parallel GEP.Themain reason is that GEP needs
longer time to evolve. Contrarily, MRBPNN 1 and 2 need
shorter time to train the neurons. Although parallel GEP per-
forms slower than MRBPNN 1 and 2 do, it can supply higher
classification accuracy according to Figures 6 and 7.

5. Conclusion

This paper presents a MapReduce and ensemble techniques
based parallel Gene Expression Programming algorithm in
enabling large-scale classification. The parallelization of GEP
mainly focuses on paralleling the training phase (function
mining phase) which is the most time consuming and com-
putational intensive process. The experimental results show
that the presented algorithm outperforms the standalone
GEP and BPNN in terms classification accuracy. In the
algorithm executing time evaluations, the presented parallel
GEP also shows remarkable performance comparing to the
standalone GEP. Although the parallel GEP works slower
than MRBPNN 1 and 2, it can supply higher classification
accuracy, which enables the presented parallel GEP to be one
of the effective tools dealing with large-scale classification.

8 Scientific Programming

0 0.5

y1

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y2

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y3

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y4

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y5

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y6

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y7

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y8

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y9

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y10

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y11

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 12: The classification results of eleven sub-GEPs.

0 0.5

y12

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 13: The classification result of the standalone GEP using
Wine dataset.

Appendix

In the appendix, the details of classifying Iris and Wine
dataset have been listed. Figure 11 visualizes the classification
result of the standalone GEP for classifying Iris dataset.

Figure 11 indicates that GEP has ability tomine a function
f to classify instances into three classes. In this case, themined
function f is represented by 𝑦12:
𝑦12 = (𝑑) + (cos (sin (cos (abs (((𝑏) ∗ (𝑑)) ∗ (𝑐)))))) (A.1)

The Iris dataset classification results of the eleven sub-
GEPs employed by parallel GEP are shown in Figure 12.

Figure 12 shows that the eleven sub-GEPs have different
classification results due to differently mined functions 𝑓.

However, because of the majority voting in the reducer,
parallel GEP is able to output a correct classification result.
The eleven mined functions are listed as follows.

The Functions in Each Sub-GEP for Classifying Iris Dataset

𝑦1 = (𝑑) + (cos(sin((tan(exp(𝑑))) ∗ ((𝑎)/(𝑐)))));
𝑦2 = (𝑑) + (sin(sqrt(sqrt(𝑑))));
𝑦3 = (cos(cos(abs(cos(cos(−(𝑑))))))) + (𝑑);
𝑦4 = (cos(sin((log(𝑏))/(sqrt(𝑏))))) + (𝑑);
𝑦5 = (𝑑) + (cos(sin(exp(tan(exp((𝑏)/(𝑏)))))));
𝑦6 = (𝑑) + (abs(cos(−(−(sin(sqrt(𝑎)))))));
𝑦7 = (−(−(𝑑))) + (cos((cos(sin(𝑏))) ∗ (cos(cos(𝑏)))));
𝑦8 = (sqrt(sin(sin(sqrt(sin(𝑑)))))) + (𝑑);
𝑦9 = (abs(𝑑)) + (cos(cos(exp(exp((−(𝑎)) − (𝑐))))));
𝑦10 = (𝑑) + (cos(abs(sqrt(cos(sqrt(sqrt(𝑑)))))));
𝑦11 = (abs(sin(exp((𝑑) + (−(𝑑)))))) + (𝑑);

Figure 13 visualizes the classification result of the standalone
GEP for classifying Wine dataset.

Scientific Programming 9

0 0.5

y1

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y2

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y3

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y4

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y5

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y6

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y7

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y8

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y9

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y10

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5

y11

−0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 14: The classification results of eleven sub-GEPs.

In this case, the mined function 𝑓 is represented by 𝑦12:
𝑦12 = (((cos(cos(exp(cos((𝑙)(𝑔))))))

+ (cos(cos(cos((cos (𝑘)) − ((𝑗)(𝑔)))))))

+ (cos (𝑔))) + (cos (cos (exp (𝑘))))

(A.2)

The Wine dataset classification results of the eleven sub-
GEPs employed by parallel GEP are shown in Figure 14.

The eleven mined functions are listed as follows.

The Functions in Each Sub-GEP for Classifying Wine Dataset
𝑦1 = (((cos(cos(sqrt((sqrt(𝑚)) +(𝑏))))) + (cos(𝑘))) + (sin(sin(cos(𝑔))))) +(sqrt(sin(abs(cos(sin(tan(𝑘)))))))
𝑦2 = (((cos(cos(sqrt(cos(ℎ))))) + ((cos(cos(𝑗))) ∗((cos(ℎ)) ∗ (cos(𝑔))))) + (abs(sin(exp(𝑘))))) +(cos(cos(cos(cos(cos(cos(𝑔)))))))
𝑦3 = (((cos(sin(cos(sin(−((𝑎) + (𝑔))))))) +(sin(cos(sin(𝑎))))) + (sin(sin(cos(𝑔))))) +(cos(cos((cos(abs(𝑔))) + (sin(𝑎)))))
𝑦4 = (((cos(cos(log(((𝑐) ∗ (𝑙)) ∗ (𝑚))))) + (cos(𝑔))) +(cos(sin(𝑓)))) + (cos(cos(exp(𝑘))))
𝑦5 = (((cos(ℎ))+(−(sin(−((sqrt(𝑑))∗((𝑒)/(𝑚)))))))+(cos(𝑔))) + (cos(cos((cos(𝑗))/𝑘))))

𝑦6 = (((cos(abs(cos(exp(𝑘))))) +(cos(cos(cos(cos(sin(log(𝑑)))))))) +(sin(sin(cos(𝑔)))))+(cos(log((𝑚)−(((𝑘)−(𝑒))−(𝑒)))))
𝑦7 = (((cos(sqrt(𝑘))) + (cos(sin(abs((log(𝑘)) + ((𝑔) −(𝑎))))))) + (cos(sin(abs((log(𝑚)) + (ℎ)))))) + (cos(𝑔))
𝑦8 = (((cos(sin(sin((𝑗) − ((𝑙)/(𝑎)))))) +(abs(sin(exp(abs(𝑘)))))) + (cos(sin(sin(cos((𝑐) +(𝑔))))))) + (sin(cos(𝑔)))
𝑦9 = (((abs(cos(cos(log(((𝑚) − (𝑑))/(𝑓)))))) +(cos(cos(exp(𝑘)))))+(cos(tan(−(tan(−(sqrt(𝑎))))))))+(cos(𝑔))
𝑦10 = (((cos(sin(cos(sin(cos(sin(𝑖)))))))+ (cos(𝑔)))+(cos(sin(log(((𝑚) + (𝑚)) + ((𝑗) + (𝑗))))))) +(tan(sin(cos(cos(exp(𝑘))))))
𝑦11 = (((cos(𝑘))+ (cos(𝑔)))+ (sin(exp(cos((cos(𝑔))+(sin(𝑎))))))) + (sin(sqrt(𝑔)))

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this article.

Acknowledgments

The authors would like to appreciate the support fromNatio-
nal Natural Science Foundation of China (no. 51437003).

10 Scientific Programming

References

[1] C. Ferreira, “Gene expression programming in problem solv-
ing,” in Soft Computing and Industry, pp. 635–653, Springer,
London, UK, 2002.

[2] Y. Liu, J. Yang, Y. Huang, L. Xu, S. Li, and M. Qi, “MapReduce
based parallel neural networks in enabling large scale machine
learning,” Computational Intelligence and Neuroscience, vol.
2015, Article ID 297672, 13 pages, 2015.

[3] Y. Liu, L. Xu, andM. Li, “TheParallelization of back propagation
neural network inMapReduce and Spark,” International Journal
of Parallel Programming, pp. 1–20, 2016.

[4] C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson, “Evolving
accurate and compact classification rules with gene expression
programming,” IEEE Transactions on Evolutionary Computa-
tion, vol. 7, no. 6, pp. 519–531, 2003.

[5] S. Dehuri and S.-B. Cho, “Multi-objective classification rule
mining using gene expression programming,” in Proceedings
of the 3rd International Conference on Convergence and Hybrid
Information Technology (ICCIT ’08), pp. 754–760, November
2008.

[6] J. Wu, T. Li, B. Fang, Y. Jiang, Z. Li, and Y. Liu, “Parallel niche
gene expression programming based on generalmulti-core pro-
cessor,” in Proceedings of the International Conference on Arti-
ficial Intelligence and Computational Intelligence (AICI ’10), pp.
75–79, October 2010.

[7] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “Automatic
design of a hyper-heuristic framework with gene expression
programming for combinatorial optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 3, pp.
309–325, 2015.

[8] I.-S. Hwang, J.-Y. Lee, and A.-T. Liem, “Genetic expression
programming: a new approach for QoS traffic prediction in
EPONs,” in Proceedings of the 4th International Conference on
Ubiquitous and Future Networks (ICUFN ’12), pp. 249–254, July
2012.

[9] S. Deng, D. Yue, X. Fu, and A. Zhou, “Security risk assessment
of cyber physical power system based on rough set and gene
expression programming,” IEEE/CAA Journal of Automatica
Sinica, vol. 2, no. 4, pp. 431–439, 2015.

[10] S. Xue and J. Wu, “Gene expression programming based on
symbiotic evolutionary algorithm,” in Proceedings of the 2nd
International Conference on Artificial Intelligence, Management
Science and Electronic Commerce (AIMSEC ’11), pp. 3055–3058,
August 2011.

[11] Y. Chen, C. J. Tang, R. Li, M. F. Zhu, C. Li, and J. Zuo, “Reduced-
GEP: improving gene expression programming by gene reduc-
tion,” in Proceedings of the 2nd International Conference on
Intelligent Human-Machine Systems and Cybernetics (IHMSC
’10), pp. 176–179, IEEE, Nanjing, China, August 2010.

[12] J. Zhang, Z.Wu, Z.Wang, J. Guo, andZ.Huang, “Unconstrained
gene expression programming,” in Proceedings of the IEEE Con-
gress on Evolutionary Computation (CEC ’09), pp. 2043–2048,
May 2009.

[13] X. Du, L. Ding, and L. Jia, “Asynchronous distributed parallel
gene expression programming based on estimation of dis-
tribution algorithm,” in Proceedings of the 4th International
Conference on Natural Computation (ICNC ’08), pp. 433–437,
October 2008.

[14] Message Passing Interface, http://www.mcs.anl.gov/research/
projects/mpi/.

[15] X. Du, Y. Ni, Z. Yao, R. Xiao, and D. Xie, “High performance
parallel evolutionary algorithm model based on MapReduce
framework,” International Journal of Computer Applications in
Technology, vol. 46, no. 3, pp. 290–295, 2013.

[16] N. P. A. Browne andM. V. dos Santos, “Adaptive representations
for improving evolvability, parameter control, and paralleliza-
tion of gene expression programming,” Applied Computational
Intelligence and Soft Computing, vol. 2010, Article ID 409045, 19
pages, 2010.

[17] Apache Hadoop, http://hadoop.apache.org.
[18] J. Venner, Pro Hadoop, Springer, New York, NY, USA, 2009.
[19] N. K. Alham, Parallelizing support vector machines for scalable

image annotation [Ph.D. thesis], Brunel University, Uxbridge,
UK, 2011.

[20] N. K. Alham,M. Li, Y. Liu, andM.Qi, “AMapReduce-based dis-
tributed SVM ensemble for scalable image classification and
annotation,”Computers andMathematics with Applications, vol.
66, no. 10, pp. 1920–1934, 2013.

[21] The Iris Dataset, https://archive.ics.uci.edu/ml/datasets/Iris.
[22] TheWine Dataset, https://archive.ics.uci.edu/ml/datasets/wine.

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://hadoop.apache.org
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/wine

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

