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Abstract

We recently solved the two spirals problem, a
di�cult neural network benchmark classi�cation
problem, using the genetic programming primi-
tives set up by [Koza, 1992]. Instead of using ab-
solute �tness, we use a relative �tness based on
a competition for coverage of the data set. This
is a form of co-evolutionary search because the
�tness function changes with the population. Be-
cause niches are opened by proportionate repro-
duction, rather than crowded out, and because
of the crossover operator, we �nd solutions which
have a nice modular structure. Our experiments
used our Massively Parallel Genetic Programming
(MPGP) system running on a SIMD machine of
4096 processors, the Maspar MP-2.

1 Introduction

This paper presents how a di�cult classi�cation prob-
lem, usually de�ned as the optimization of an absolute
�tness function, can be converted to a co-evolutionary
problem involving relative or competitive �tness. This is
related to work on sorting networks [Hillis, 1992], on self-
playing Backgammon learner [Tesauro, 1992], on evolv-
ing life-forms [Sims, 1994], and on co-evolving Tic-tac-
toe players[Angeline & Pollack, 1993], among others. In
the current situation, our construction leads to a case of
co-evolution in which there is only one species.
Our experiments using genetic programming (GP)

show that this approach can be more e�ective than the
canonical GP implementation using absolute �tness, and
moreover, that the co-evolution leads to an interesting
modularization of the solution to classi�cation problems.
We have used the intertwined spiral problem as a

benchmark for our experiments. This learning prob-
lem, originated by Alexis Wieland, perhaps based on
the cover of Perceptrons, has been a challenge for
pattern classi�cation algorithms and has been subject
of much work in the AI community, in particular in
the neural network �eld (e.g., [Lang & Witbrock, 1988,
Fahlman & Lebiere, 1990, Carpenter et al., 1992]). In

neural network classi�cation systems based on linear,
quasi-linear, radial, or clustering basis function, the in-
tertwined spirals problem leads to di�culty. When it is
solved, the neural net solution often has a very \expan-
sive" description of the spiral, i.e., the conjunction of
many small regions, does not generalize outside the train-
ing regions, and is thus not particularly satisfying.
This paper is organized as follows: First, section 2

presents a survey of the implementation of our Massively
Parallel Genetic Programming (MPGP). This will help
to understand the techniques that have been used in the
following sections. Then, the intertwined spiral problem
is described in section 3, along with its representation
in the co-evolutionary framework of simulated compet-
itive evolution. Results and discussion are presented in
section 4.

2 Massively Parallel GP

2.1 Parallel Evaluation of S-expressions

The individual structures that undergo adaptation in GP
are represented by expression trees composed from a set
of primitive functions and a set of terminals (either vari-
ables or functions of no argument). Usually, the number
of functions is small, and the size of the expression trees
are restricted, in order to restrict the size of the search
space.
In our parallel implementation, each of the 4096 pro-

cessor elements (PEs) simulates a virtual processor. Fol-
lowing Perkis ([Perkis, 1994]), this virtual processor is a
Stack Machine and takes the post�x representation of an
S-expression as its input.
To be able to evaluate a GP expression, the following

instructions are supported by the abstract machine:

� one instruction for each primitive function of the
function set. At execution time, arguments for these
instructions are popped from the stack into general
purpose registers, the function is computed, and the
result is pushed on the top of the stack.

� a PUSH instruction which pushes on the top of the



stack the value of a terminal,

� an IFGOTO and a GOTO instruction which are necessary
for branching if conditional functions are used,

� a STOP instruction which indicates the end of the pro-
gram.

This architecture allows each PE to process e�ciently
a di�erent genetic program in a MIMD-like way. The
parallel interpreter of the SIMD machine reads the cur-
rent post�x instruction for each virtual processor and
sequentially multiplexes each instruction, i.e., all proces-
sors for which the current instruction is a PUSH become
active and the instruction is performed; other proces-
sors are inactive (idle state). Then, the same operation
is performed for each of the other instructions in the in-
struction set in turn. Once a STOP instruction is executed
for a processor, that processor becomes idle, leaving the
result of its evaluation on the top of the stack. When
all processors have reached their STOP instruction, the
parallel evaluation of the entire population is complete.

2.2 Models for Fitness Evaluation, Selection

and Recombination

The MasPar MP-2 is a two-dimensional wrap-around
mesh architecture. In our implementation, the popula-
tion has been modeled according to this architecture: an
individual or a subpopulation is assigned to each node of
the mesh and, therefore, has four neighbors. This archi-
tecture allows for the implementation of di�erent models
for �tness evaluation, selection, and recombination, using
the kernel of the parallel GP described in the previous
section.

In this paper, only a tournament style of competi-
tive evolution has been used and compared to canon-
ical GP. A more general presentation of the di�erent
strategies that have been implemented can be found in
[Juill�e & Pollack, 1995].

3 The Spiral Problem and the Competi-

tive Evolution Paradigm

Experiments were conducted to compare canonical GP
evolution to competitive evolution for the intertwined
spiral problem. This learning problem consists in classi-
fying points into two classes according to two intertwined
spirals. The data set is composed of two sets of 97 points,
on the plane between -7 and +7. These two intertwined
spirals are shown as \�" and \�" in �gures 7 and 8.

[Koza, 1992] and [Angeline, 1995] also investigate this
problem using genetic programming. The same basic
form was used here to de�ne the problem and to per-
form the experiments. That is, the function set is com-
posed of: f+, �, �, %, iflte, sin, cosg, and the terminal

set is composed of: fx, y, <g, where < is the ephemeral
random constant.

With a population of 4096 individuals, two di�erent
approaches were taken. In the �rst experiment, following
Koza and Angeline, the �tness function was de�ned as
the number of hits out of 194. In the second experiment,
the �tness was de�ned as the result of a competition
among the individuals. The fact that the absolute �tness
function was known was in fact ignored, and a "game"
was set up in which only relative �tness was used as
the basis for reproduction. The trivial idea would be to
simply compare the absolute score of each individual and
the winner would be the individual with the larger score.
However, no useful information can be expected from this
kind of competition since the individual with the largest
absolute �tness will always win.

Instead, we only counted a player's ability to classify
those test cases which are NOT classi�ed by its oppo-
nent. As more or fewer copies of a player spread through
the population, their scores may rise or fall depending on
how many other members of the population also \cover"
the test cases. As a simpli�ed view, consider a full pair-
wise evaluation between one weak but unique player with
25 novel hits, against four identical players all with the
same 50 hits. Although they would reproduce twice as
fast in an absolute �tness competition, in this modi�ed
tournament, they will only receive their 50 points for
playing the weak player, who will actually receive 4*25!

In section 4, a simpli�ed model is presented to study
the dynamics of the population evolution when an ab-
solute �tness or a competitive �tness is used to control
interactions between species. We do not play all-against-
all, but several rounds of a more limited tournament com-
petition, and compute the �nal relative �tness of each
individual as the sum of all its scores during the compe-
tition. We can of course track the absolute �tness of a
population even though it is not used otherwise.

Our hypothesis is that the competitive evolution would
work better because it would promote more diversity in
the population, and allow subpopulations which covered
di�erent subproblems to emerge. As copies of individ-
uals which perform well on parts of the spiral spread
through the population, they will start to meet them-
selves in competition, and get a score of 0. This allows
other individuals which may have fewer total hits, but
cover other parts of the spiral to survive. From the re-
combinations between individuals of those two subpop-
ulations one might expect the emergence of a better in-
dividual that combine the \advantages" of both.

Several approaches may be used when simulating a
competitive evolution ([Sims, 1994]). In this work, each
generation is composed of a sequence of competition
rounds in which individuals are \randomly" paired up.
In fact, because the architecture of the MP-2 does not
have any fast-access shared-memory, this random pair-
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Figure 1: Divide-and-conquer communication pattern.

ing can only be approximated. This approximation has
been achieved by using a �xed communication pattern
(the divide-and-conquer communication pattern) but in-
dividuals are not assigned to the same processor all the
time: an exchange can occur between paired processors.
This results in a \random walk" performed by each in-
dividual in the population which makes them meet a
representative sample of opponent.
More precisely, for a given generation, all the pro-

cessors are paired according to the divide-and-conquer
communication pattern (such a pattern is presented in
�gure 1, in the case of eight processors). Each possible
pairing corresponds to one competition round. Opera-
tions performed in such a round are the following:

� each processor computes the score of the individual
associated to it: the number of hits that his opponent
doesn't get (i.e., the number of test cases that the
individual correctly classi�es and that his opponent
doesn't).

� for each pair of processor, one is arbitrarily selected.
Then, the individual that corresponds to this proces-
sor is assigned to the left processor and the second
one's individual is assigned to the right one. This
way, using divide and conquer, each individual will
perform a \random walk" in the population.

By performing this sequence of pairing according to the
communication pattern in the same generation several
times, we approximate an evaluation of each individual
against the whole population. At the end of those compe-
titions, each individual's �tness is calculated by summing
all its scores in the competition.
The objective of this strategy is to make each indi-

vidual in the population meet a representative sample of
individuals in order to re�ne their relative �tness. This
kind of \tournament" strategy (with no elimination) al-
lows us to achieve this goal since, by randomly picking a
winner at each round, paired individuals are very likely
to be di�erent from one tournament to the other.
Once individual �tness is evaluated, selection and re-

combination are performed according to a �tness propor-
tionate rule. Details of the implementation of selection
and recombination procedures for MPGP can be found
in [Juill�e & Pollack, 1995].

If (4 � x2 � y2) < 0:0 then

return (sin(�3:0 � y));
else

return

�
sin( 0:3214�x

0:04762�cos(sin(
y

x
�0:7874))

)

�
;

endif

Figure 4: Interpretation of the solution for the inter-
twined spiral problem.

4 Results and Discussion

For the two classes of experiments, we performed 25 runs
and each run was stopped after 300 generations. At each
generation, 90% of the population was replaced by o�-
spring resulting from recombination and the remaining
10% was the result of �tness proportionate reproduc-
tion. In order to make each individual meet a signi�cant
number of opponent, eight successive tournaments were
performed at each generation. Thus, each individual met
96 opponents (there are 12 rounds in a tournament with
a population size of 4096).

Our results concerning the performance of these 50
runs, shown in �gure 2, illustrate that under similar re-
productive parameter conditions, competitive evolution
statistically outperforms the absolute �tness approach.
This is clearly not a strong result over all settings of
the parameters, which will require many further simula-
tions, but a demonstration of an interesting e�ect: The
absolute �tness strategy works better for the �rst 40 gen-
erations, but, because of its rapid convergence, improves
its solution very slowly thereafter. On the other hand,
competitive evolution, which allows more diversity in the
population, has a slower initial improvement in �tness,
but ultimately has better overall performance.

Only a few runs of competitive �tness have provided us
with a perfect (194 hit) solution for the intertwined spiral
problem within 300 generations. We harvested some of
the perfect classi�cation solutions; one of the shortest of
these S-expressions has 52 atoms and is shown in �gure 3.

Because of the relatively small size of this result we
were able to analyze it and simplify it mathematically,
by collapsing constant calculations, removing insigni�-
cant digits, algebraic simpli�cation, and elimination of
redundant \introns". This analysis resulted in the con-
ditional function presented in �gure 4.

Basically, this solution splits the geometric plane into
two domains and a di�erent function is used for each
domain. Figure 5 displays the 4x2 � y2 function which
multiplexes the two other functions, shown in �gure 6,
to create the spiral.

The resulting function is shown in �gure 7, which plots
the function (above/below 0) along with the training
data on the range -10 to 10. Although it does not form a
perfect spiral, it does continue to simulate a spiral way
outside the original training range. In another set of ex-
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Figure 2: Absolute �tness versus competitive evolution for the intertwined spiral problem.

(sin (% (iflte (- (- (- (* _A _A) (sin (% (iflte -0.52381

_B

(sin -0.33333)

-0.33333)

-0.33333)))

(* _B _B))

(% _A (% -0.33333 _A)))

-0.80952

_B

(sin (% (% _A

(- (cos (sin (* (cos (sin -0.52381))

(% _B (% _A (- (cos -0.33333) 0.04762))))))

0.04762))

(sin (sin -0.33333)))))

-0.33333))

Figure 3: A 52-atom S-expression scoring 194 for the intertwined spiral problem.
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Figure 5: 4x2� y2 < 0, used to divide the plane into two
domains.
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Figure 6: sin(�3y) and the other function which are se-
lectively added to make a spiral.
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Figure 7: Perfect score generalizing classi�cation of the
two intertwined spirals.

periments (limited to 100 generations) another perfect
solution has been discovered (presented in �gure 8). The
S-expression representing this solution is composed of
161 atoms.
Furthermore, we believe that compared to neural net-

work solutions, which are often the composition of hun-
dreds of clusters or decision boundaries, and some of the
GP solutions shown by Koza, ours is the most perspica-
cious to date. The fact that the spiral is composed of a
synergy of two (or more) functions which cover separate
parts of the data supports the hypothesis that the rela-
tive �tness competitive evolution strategy can be more
e�ective than an absolute �tness function.
To support the idea that competitive evolution allows

subpopulations that cover di�erent parts of the prob-
lem to survive, contrary to an absolute �tness driven
evolution, we propose the following analysis. The two-
intertwined problem is a classi�cation problem. There-
fore, it can be seen as a set of test cases and the popu-
lation can be split up into groups (or clusters) in which
individuals would cover exactly the same test cases. For
the sake of clarity, let us formalize this idea. First, let us
de�ne the following terms:

� n: number of test cases,

� m: number of groups (or clusters) that compose the
population,

� ti: i
th test case,

� Gj : j
th group of individuals,

� sj(t): size (number of individuals) of groupGj at time
t,
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Figure 8: Another perfect score classi�cation of the two
intertwined spirals.

� T (Gj): returns a list of booleans of size n in which the
kth entry indicates whether the test case tk is covered
by individuals in group Gj ,

� B: matrix whose rows are the T (Gj).

B =

0
B@

T (G1)
...

T (Gm)

1
CA

Each entry bi;j of B is a 1 (true) if the test case tj is
covered by the group Gi, and 0 (false) otherwise.

For the following, let us consider an example:

� n = 10,

� m = 5,

� T (G1) = (0; 1; 1; 1; 0; 1; 0; 1; 0; 1),
T (G2) = (1; 0; 0; 0; 1; 0; 0; 0; 1; 0),
T (G3) = (0; 1; 0; 1; 0; 0; 1; 1; 0; 1),
T (G4) = (0; 0; 1; 1; 0; 0; 0; 0; 1; 0),
T (G5) = (0; 1; 0; 1; 1; 0; 1; 0; 0; 1)

Now, we can de�ne the (m�m) square matrix A for
which each entry ai;j equals the number of test cases cor-
rectly classi�ed by group Gi but that group Gj doesn't.
Thus, each entry of A is de�ned as follows:

ai;j =

nX
l=1

(bi;l ^ :bj;l)

With our example, A equals:

A =

0
BBBB@

0 6 2 4 3
3 0 3 2 2
1 5 0 4 1
1 2 2 0 2
2 4 1 4 0

1
CCCCA

Now, we can de�ne the �tness function for the two cases
of study:

� absolute �tness for an individual of group Gj :

fa(j) =

nX
l=1

bjl

For our example:
fa(1) = 6; fa(2) = 3; fa(3) = 5; fa(4) = 3; fa(5) = 5

� relative �tness for an individual of group Gj :

fr(j) =

mX
l=1

(sl(t)� aj;l)

According to this de�nition, each individual com-
petes once against all other individuals in the popu-
lation. In our experiments, we only approximate this
by making each individual compete against a sample
of the population.

For the sake of simplicity, we assume there are no re-
combination between individuals but only �tness propor-
tionate reproduction. Indeed, what we want to show with
this simpli�ed model is that subpopulations that cover
di�erent test cases survive when competitive evolution is
involved. Therefore, we want to study the dynamics of
the evolution of group size with time. A simple rule for
�tness proportionate reproduction gives us:

sj(t+ 1) = sj(t)�

�
1 + ��

f(j)� f

f

�

where:

� � is a parameter that controls the speed of the sim-
ulated evolution,

� f(j) is the �tness. According to the case of study, it
is replaced by fa(j) or fr(j).

� f is the average of the �tness.

A normalization step for sj(t + 1) is then performed in
order to keep a constant population size. If � = 1, we get
the more well-known expression for �tness proportionate
reproduction:

sj(t+ 1) = sj(t)�
f(j)

f
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Figure 9: Evolution of the ratio for each group in the population in the case of an absolute �tness.
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Figure 10: Evolution of the ratio for each group in the population in the case of a relative �tness.
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The graphical results of the evolution of the ratio for
each group in the population for the two models of evo-
lution are presented in �gure 9 and �gure 10. For our
analysis, all groups have the same size at t = 0, and we
took � = 0:5. Clearly, in the case of the absolute �t-
ness, all the population is overcome by the �rst group
which has the largest absolute �tness (fa(1) = 6). On
the contrary, in the case of the competitive evolution,
once stability is reached, the �rst group takes only 50%
of the population and groups 2 and 5 around 20%. Group
4 disappears very quickly and group 3 takes only a tiny
part of the population. It is possible to prove that these
results are independent of the initial size of the di�erent
groups (at the condition that no group has null size) and
of the value of the non-null parameter �.

The aim of this analysis is to show that competitive
evolution allows di�erent subpopulation to survive, con-
trary to the canonical model of evolution, therefore keep-
ing more diversity in the population. We also believe that
in the case of the intertwined spiral problem, recombina-
tion of individuals from di�erent subpopulation are at
the origin of new solutions that cover some part of the
problem that were speci�c to each of the two subpopu-
lations.

5 Conclusion

Experiments presented in this paper show that the classi-
�cation procedure for a challenging problem (namely, the
intertwined spiral problem) can be signi�cantly improved
by using a relative �tness rather than absolute �tness
approach. The heuristic behind this co-evolutionary ap-
proach is that in the classi�cation \game", more �tness
payo� is made to players which correctly classify sub-
problems covered by fewer other players (S-expressions
in the case of GP). So a particular player may survive
by covering areas of the problem which are not other-
wise classi�ed correctly by the majority population. We
are thus giving these minority players an ability to sur-
vive until their niche contribution to the total solution
is overtaken by, or incorporated by crossover into, new
stronger players.

This approach generally can be seen as a method for
�tness sharing ([Goldberg & Richardson, 1987]). How-
ever, �tness sharing explicitly controls the creation of
niches by derating the �tness of population elements ac-
cording to the number of individuals in niches. In con-
trast, co-evolution allows the niches to be formed and
maintained dynamically as a consequence of the relative
�tness, and prevents suboptimal niches from overcoming
the population.
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