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Abstract

Reconfigurable circuits have opened up a fundamentally new way of creating adaptable electronic
systems. Combined with artificial evolution, reconfigurable circuits allow an elegant adaptation
approach to compensating for changes in the distribution of input data, computational resource
errors, and variations in resource requirements. Referred to as “Evolvable Hardware” (EHW), this
paradigm has yielded astonishing results for traditional engineering challenges and has discovered
intriguing design principles which have not yet been seen in conventional engineering.
In this thesis, we present new and fundamental work on a holistic Evolvable Hardware approach,
motivated by the insight that Evolvable Hardware needs to compensate for events with different
change rates. Adaptation to gradual changes, such as variations in the distribution of the input
data, can be handled by simulated evolution, but adaptation to radical changes, such as fluctu-
ations in resource requirements, needs almost a complete re-evolution. To solve the challenge of
different adaptation speeds, we propose a unified approach based on multi-objective evolution. In
our method, we evolve and propagate candidate solutions that are diverse in objectives that may
experience radical changes. In case of a radical event, a candidate solution that comes closest to
meeting the new requirements will be instantiated. Afterwards, the evolutionary algorithm proceeds
with the continuous optimization and evolution of diverse solutions.
In our work, we focus on the algorithmic challenges of multi-objective hardware evolution. Em-
ploying the Cartesian Genetic Programming (CGP) model for circuit encoding, we introduce a
meaningful recombination operator. This recombination operator enables the use of Pareto based
multi-objective evolutionary algorithms (MOEA) for hardware design. As scalability becomes chal-
lenging with multi-objective hardware design, we introduce techniques such as objective scaling and
global- and local-search periodization to achieve a better computation time. Additionally, we en-
hance the evolution of structured functions by the automatic acquisition and reuse of subfunctions
and investigate age- and cone-based subfunction acquisition.
We demonstrate our methods on hardware classifier adaptation, compensation for the impact of
architecture reconfiguration on classification accuracy, and the optimization of processor execution
time and energy consumption.
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Zusammenfassung

Rekonfigurierbare Logikbausteine eröffnen neue Perspektiven für autonome Systeme. Kombiniert
mit den Methoden der künstlichen Intelligenz, können rekonfigurierbare Logikbausteine auf ele-
gante Weise dazu benutzt werden, Veränderungen in der Verteilung der Eingabedaten und der
Anforderung an die Systemressourcen sowie Fehler in der Hardware zu kompensieren. Bekannt
unter dem Begriff Evolvable Hardware, hat dieses Prinzip auf eindrucksvolle Weise das Entdecken
neuer Entwurfsprinzipien und neuartiger sowie leistungsfähiger Lösungen für bestehende Ingenieur-
saufgaben aufgezeigt.
In dieser Arbeit präsentieren wir einen ganzheitlichen Ansatz für Evolvable Hardware. Unsere Moti-
vation gründet in der Einsicht, dass es mehrere Zeitebenen geben kann in denen sich ein autonomes
System anpassen soll. Während kontinuierliche Veränderungen mit niedrigen Veränderungsraten–
wie sie häufig in der Natur vorkommen–durch kontinuierliche Optimierung kompensiert werden
können, bedürfen rasche Veränderungen im Voraus berechneter Lösungen, wie etwa Veränderungen
in den Systemressourcen. Um die Herausforderung der verschiedenen Veränderungs- und Adapta-
tionsraten aufzulösen, setzen wir auf einen einheitlichen Mechanismus basierend auf multikriterieller
Optimierung. Der multikriterielle Optimierer verbessert kontinuierlich die bestehende Lösung und
kompensiert damit Variationen mit niedriger Veränderungsrate. Gleichzeitig evolviert der Algo-
rithmus für Zielfunktionen, die raschen Veränderungen ausgesetzt sind, verschiedenartige Lösun-
gen. Somit kann im Falle einer schnellen Änderung, z. B. der benutzbaren Rechenressourcen,
eine geeignetere und bisher inaktive Lösung die aktive Lösung ersetzen. Anschließend fährt der
Algorithmus mit der kontinuierlichen Verbesserung und Optimierung fort.
In unserer Arbeit konzentrieren wir uns hauptsächlich auf die algorithmischen Aspekte der Evo-
lution von rekonfigurierbaren Schaltungen. Dazu erweitern wir das populäre Modell für digitale
Schaltungen, die Kartesische Genetische Programmierung, um einen strukturbasierten Rekombina-
tionsoperator. Dies erlaubt uns den Einsatz globaler Optimierer und damit auch der modernen
Pareto-basierten evolutionären Algorithmen für den Schaltungsentwurf. Zur Kompensation der
dabei auftretenden langsameren Konvergenz führen wir die Skalierung von Optimierungskriterien
und ein Periodisierungsschema ein, das die Konvergenzperformance lokaler Optimierer mit den
Eigenschaften globaler Optimierer verbindet. Weiterhin beschleunigen wir den Schaltungsentwurf
durch die automatische Identifikation und Wiederverwendung von Substrukturen. Dabei unter-
suchen wir struktur- und zeitbehaftete Identifikationsmechanismen.
Die Performance unserer Verfahren und Methoden verifizieren wir zum einen im Bereich der Mus-
tererkennung. Hier evolvieren wir Hardwareklassifizierer und vergleichen ihre Erkennungsraten mit
einer repräsentativen Auswahl an leistungsfähigen Mustererkennungsalgorithmen. Mit der Auswer-
tung gesammelter statistischer Daten können wir weiterhin die Erkennungsraten während der Rekon-
figuration eines Hardwareklassifizierers verbessern. Zum anderen benutzen wir unsere Methoden,
um die Ausführungszeiten und den Energieverbrauch eines Prozessors zu minimieren, indem wir die
Adressumsetzungsfunktion eines Prozessorcaches evolvieren.
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Chapter 1

Introduction

Reconfigurable hardware combined with nature inspired optimization gave birth to a new kind of
adaptable and autonomous systems two decades ago. The key principle of the new paradigm, called
Evolvable Hardware (EHW), is the adaptation to environmental changes, hardware defects, and
resource requirement variations by the method of evolutionary optimization. The ability to execute
the adaptation algorithms unattended, emphasizes the self-contained and autonomous nature of
these systems.

The elegance of EHW lies in its simplicity. Conventionally autonomous, adaptable, and fault-
tolerant hardware systems typically rely on a priori designed solutions and redundant elements.
EHW, on the other hand, optimizes its solution continuously and is able to react to situations
that have not been considered at design time. No special measures need to be taken to provide
adaptability.

Introduced in 1993 by Higuchi et al. [163] and de Garis [93], the impact of Evolvable Hardware
has been two-fold. The principle of EHW has been used to create circuits with astonishing prop-
erties [353], comprising innovative design principles [357], and which are competitive with the best
human designed solutions [73]. On the other hand, Evolvable Hardware stands for a paradigm shift
in engineering, replacing functional guarantees and determinism by gradual functional quality and
life long adaptation.

1.1 The Evolvable Hardware Principle

The application areas of computing machines have become incredibly diverse since their introduc-
tion in the last century. In almost all areas of automation, computing machines are helping us to
control all kinds of mechanical, electrical, hydraulic, and other systems. There are, however, areas
computing machines struggle with. These are the areas with incomplete goal definitions, fuzzy con-
straints, ill-defined and inconsistent environments, dynamic processes, and other uncertainties. The
complexity of capturing and formalizing the complete and precise mechanisms of such environments
may render a simple and well-defined task infeasible for a computing machine.

Biological systems had successfully conquered Earth’s physical and chemical world for millions of
years, creating exceptionally complex and complicated individuals. Lots of engineering impulses
come from mimicking the principles observed from Nature. The inspiration from biological evolu-
tion of how to evolve efficient and robust systems in dynamic and fuzzy environments is helping
engineers extend the coverage of today’s computing machines. Additionally, computing machines
themselves create, by pervading our world in large numbers and using sometimes almost unlimited
communication capacities, new ecosystems with similar aspects to their biological counterparts.
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Darwin observed a positive correlation between successful adaptation to changes and reproduction
in his work on the general principles of biological diversity [88]. Adopted as “evolutionary computa-
tion” in the optimization algorithms discipline, Nature’s iterative generate-and-test approach can be
canonically applied to the evolution of non-biological systems. Figure 1.1 illustrates the mechanism
with the example of a hardware image compressor. The goal of the presented application is to
minimize the energy required to transmit an on-board recorded image of, e.g., a Mars vehicle over
a radio link by continuously optimizing the image compressor to varying lighting conditions. The
evolutionary optimization starts with a set of randomly initialized candidate solutions in Figure 1.1
(a). A candidate solution is a “construction plan” for an image compressor. In the next step, a
candidate solution is used to configure a hardware device implementing the actual compressor and
evaluate the compression rate on a image, recently recorded by the on-board camera (Figure 1.1
(b)). The compression rate is evaluated for all candidate solutions, as presented in Figure 1.1 (c).
The best individual is selected in step (d) for reproduction. New candidate solutions are evolved by
mutating the previously selected parent individuals (Figure 1.1 (e)). The evolutionary cycle finishes
here and the next iteration starts with a new fitness evaluation. The best individual found so far is
selected to define the system’s behavior.
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Figure 1.1: The Evolvable Hardware principle explained using the evolutionary loop applied to an
image compressor.

The example of Figure 1.1 briefly presents the general principle of evolutionary algorithms and
also their special case—the continuous optimization of reconfigurable hardware. The continuous
optimization model allows a system to start reacting instantly to changes in the distribution of its
input data. Hardware defects in the reconfigurable fabric can also be addressed by the very same
measure. Additionally, letting the evolution consider auxiliary goal functions such as the circuit
size allows steering the evolution towards solutions with desired properties.

There are only limited mathematical tools for a precise convergence analysis of randomized methods
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Figure 1.2: Adaptation to radical changes by means of Pareto based multi-criteria optimization.
The optimization process maximizes the functional qualities and minimizes the resources used by
candidate solutions. Candidate solutions are marked by a circle. When a radical change in, i.e.,
system resources occurs (step (a)), the method selects and activates a non-dominant solution that
respects the new limitation in step (b). Later, evolution tries to improve the selected solution so as
to employ the remaining resources in step (c).

such as evolutionary algorithms. Environmental changes, as presented in the image compression
example, may stimulate adaptation within a timescale of minutes. While it is often possible to
build systems able to adapt to rather slow and gradual changes of the environment, adaptation to
radical changes, such as variations of system resources, may be more challenging. For instance, the
evolution of a new solution that would use one-half of the previously utilized resources may require
a complete reevolution. To solve this challenge within a sufficiently short period of time, one can
imagine executing multiple evolutionary algorithms evolving in parallel, covering potential radical
adaptation situations. A more elegant approach is offered by multi-criteria evolutionary algorithms
evolving a diverse set of candidate solutions embodying different trade-offs in, e.g., functional quality
and area, in a single run. Adaptation to radical resource changes can now be done almost instantly,
as shown in Figure 1.2. The very next time after the available resource size changes (Figure 1.2 (a)),
the system replaces its behavior by a solution satisfying the new restrictions and demonstrating the
highest functional quality (Figure 1.2 (b)). Then the evolution starts to improve the recently
instantiated solution to benefit from unused resources (Figure 1.2 (c)).

1.2 Challenges of Evolvable Hardware

The very heart of Evolvable Hardware from the algorithmic perspective is its evolutionary circuit
design and optimization. Its algorithmic and representational aspects can be characterized along
three dimensions: the way an EHW circuit is expressed within a formal model, the granularity of the
building blocks used to express the circuit, and the kind of knowledge utilized in the optimization.
Figure 1.3 illustrates the model space for digital EHW. There, a circuit can be described structurally,
e.g., by its schematic and the data flow. It also can be expressed behaviorally, capturing its function
by a program. The functional blocks used in the description may cover simple Boolean gates and
wires, and also complete IP cores and routing architectures. The design knowledge may come from
the application domain, from the specifics of the application itself, or be of a more general nature.
Balancing algorithmic and representational elements, the following aspects need consideration:

• EHW candidate solutions are described within a representation model. The representation
model abstraction level is the first trade-off to specify. A higher level, while being more com-
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Figure 1.3: Functional, knowledge, and encoding space of Evolvable Hardware.

plex and expressive, allows often for a relatively compact encoding of the solution. This may
dramatically reduce the search time of the evolutionary algorithm. On the other hand, higher
level representation models may imply a higher effort for mapping a solution to the recon-
figurable device. Here, a balance of evolutionary convergence speed and mapping complexity
has to be found, minimizing the overall effort.

• The functional granularity of the building blocks used by the representation model is the
next trade-off to specify. Intuitively, one may describe this challenge as the selection of the
most appropriate functional elements allowing for a simple and compact solution encoding.
Thereby, the selection of building blocks may give an orientation for the structures employed
by conventionally engineered solutions.

Complex building blocks facilitate compact solution encoding and often reduce the search
effort. On the other hand, complex building blocks typically lose the capability of efficiently
encoding fine granular structures. This hampers the discovery of solutions with a mixed
kind of complexity, something which can be highly efficient. Lowering the complexity to
the level of Boolean gates allows discovering any digital function bounded by the size of
the utilized reconfigurable device. This comes, however, at the cost of a large search space,
rendering the evolution tremendously complex. The representation model abstraction level
can be generalized even further, capturing transistor characteristics. As analog transistor
properties are modeled approximately, this introduces non-determinism and implicit coding
into the solution representation. Therefore, a solution evolved using a specific reconfigurable
device may not generalize to another device.

With respect to the presented considerations, the goal of selecting an appropriate complexity
level for the building blocks is to approach a compact and efficient solution encoding while
avoiding unnecessary restrictions on the search space.
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• Efficient mapping of a candidate solution to the reconfigurable hardware device is the third
challenging issue. In the area of evolutionary computation, the mapping of a candidate solu-
tion to the execution platform is referred to as the genotype to phenotype mapping. Today’s
field-programmable gate array devices offer reconfigurability at the functional levels of the
wire, the Boolean gate, and the arithmetic function. Native reconfigurability requires, how-
ever, the manufacturer’s time- and resource-demanding tool sets. In case the device’s native
reconfigurability can not be used efficiently or the representation model and functional block
granularity levels do not match the device’s structures, a common approach is the implementa-
tion of an efficiently reconfigurable architecture on top of the reconfigurable device [127,302].
Thereby, the goal is either to unify the evolution and reconfiguration abstraction levels or at
least to match them as far as possible, so as to minimize the mapping effort.

• Introducing application- and representation-specific knowledge to evolutionary search helps
reduce the search space. As evolutionary algorithms (EA) are algorithmically simple, the
incorporation of additional methods is typically not much of a challenge. Specifically, in the
area of digital circuit evolution, EAs offer manifold opportunities to improve scalability:

– Application- and application domain-specific knowledge as well as digital logic design
experience may help guide the evolution to more promising search areas. For instance,
the representation model can be shaped in such a way that only specifically structured
circuits can be expressed, whereas evolutionary operators can embed design rules to
construct circuits with desired properties. An additional way to incorporate knowledge
is to formalize “best practice” rules as metrics, preferring individuals matching certain
design principles for reproduction.

– Meta techniques capture general design principles. For instance, the automatic acqui-
sition and reuse of subfunctions introduces hierarchical design to circuit evolution, ex-
tending the set of functional blocks and increasing the complexity level of the functional
blocks [199]. Storing intermediate partial solutions in non-coding genotype areas for later
reuse is another technique for improving the convergence behavior [378].

– The choice of a suitable optimization approach is another pivotal point for fast conver-
gence. Depending on the properties of the fitness space, either local or global or hybrid
approaches may be highly beneficial. Global search implies information drift among
individuals whereas local search traces disjoint paths through the solution space. Lo-
cal search techniques can be very fast in evolving and optimizing digital circuits. To
enable similar convergence speeds for global search multi-objective EAs, hybrid meth-
ods, combining the behavioral and functional properties of both local and global search
algorithms, can be an elegant solution.

• An additional point when creating Evolvable Hardware systems is the correct matching of the
reconfiguration time scales of the application as well as of the architecture and genotype. By
architectural reconfiguration we mean, for instance, the change in available resources a solu-
tion may occupy. While genotype reconfiguration can be as time consuming as architectural
reconfiguration, the goal is to keep the genotype reconfiguration as short as possible because
it is executed every time a new solution is evaluated on the target hardware. The genotype
reconfiguration rate is typically governed by the temporal behavior of the application. The
application’s rate of change dictates the required adaptation rate of the optimizer and, in con-
sequence, puts bounds on the genotype reconfiguration time. Architectural reconfiguration,
on the other hand, is, in our example, initiated by the system’s control of the adaptation to
resource changes.

These challenges consider mostly the algorithmic adaptation mechanism of Evolvable Hardware.
From the hardware perspective, however, online reconfiguration is the major challenge. Guided by
the temporal restrictions of an application, a system designer has to consider, for instance,
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• the trade-offs between different reconfiguration kinds. Native full and partial reconfiguration
of modern reconfigurable logic devices can take up to some milliseconds (cf. Section 3.2.1.3).
Register-reconfigurable architectures implemented on top of reconfigurable devices may pos-
sess a much faster reconfiguration time while being less flexible and less resource efficient.
Building an Evolvable Hardware system, one has to balance between reconfiguration flexibil-
ity and time complexity.

• whether the same chip area has to be used to execute the currently active solution and
the fitness evaluation of candidate solutions. In this case, a system designer has to find an
interleaved execution scheme respecting the temporal requirements of the application.

• sharing and balancing resources between multiple processes running on the same reconfigurable
device. This can be useful to compensate for high change rates, as additional resources may
improve the adaptation times.

While hardware reconfiguration is not covered in the present thesis, a holistic Evolvable Hardware
approach needs to phase all presented aspects within a given time scale for an efficient and well-
behaved solution.

1.3 Thesis Contributions

The present thesis presents research on a holistic Evolvable Hardware approach, proposing multi-
objective evolution as the uniform adaptation method. Evolving and propagating a set of diverse
solutions, multi-objective evolutionary algorithms can compensate for gradual changes by simulated
evolution, and for radical changes by pre-evolved solutions. Our work is structured by the represen-
tational aspects, considering efficient digital circuit encoding, algorithmic methods improving the
scalability of multi-objective circuit evolution, and a section on adaptable architectures , where we
validate and compare our methods to state of the art solutions. We therefore contribute to the
following areas:

• Introducing Pareto based multi-objective evolution to Cartesian Genetic Pro-
gramming: A meaningful crossover operator. A Cartesian Genetic Program (CGP)
in its original form is a representation model reflecting a two-dimensional functional block
arrangement with a feed-forward interconnect. Formalized as a directed acyclic graph (DAG),
CGP is well suited to encode solutions for the fine granular look up table-based field pro-
grammable gate arrays (FPGA), as well as to coarse granular data flow architectures. How-
ever, the implicit coding of the spatial block positions in CGP makes it difficult to create
evolutionary operators acting on the inner structures of a candidate solution. As we rely
on multi-objective evolutionary optimization that requires an information drift among the
candidate solutions, we have first introduced a CGP crossover operator able to transfer mean-
ingful partial solutions. With this, we are able to adopt modern Pareto based multi-objective
optimizers for circuit evolution.

• Efficient hierarchical circuit design: Cone- and age-based acquisition and reuse of
subfunctions. In conventional Boolean logic design, complex circuits typically have a hier-
archical topology and are composed of repetitive substructures, such as half- and full-adders
and multiplexers. These substructures often have a cone-like topology with many inputs and a
few outputs. To enable CGP operators for hierarchical design, we have introduced automatic
structural subfunction acquisition and reuse. Additionally, the concept of subfunction acqui-
sition and reuse is a familiar principle of biological organs. Biological organs can encapsulate
substructures which persist unchanged for a long period of time, thus contributing indirectly
to an individual’s success. We have mimicked this principle by composing subfunctions from
nodes that have remained untouched by the mutation operator for some generations. With
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this cone- and age-based subfunction acquisition and reuse, we have significantly improved
the scalability for structured and unstructured applications, such as arithmetical functions
and pattern matching architectures.

• Scalability for multi-objective circuit evolution: An efficient fitness aggregation
scheme for Cartesian Genetic Programming. Modern Pareto based multi-objective
evolutionary algorithms (MOEA) show outstanding performance for a broad set of real world
applications (cf. Section 2.2). Prominent Pareto based MOEAs such as the NSGAII and
SPEA2 belong to the family of global optimizers. There are, however, application domains
where global search algorithms fall significantly behind local optimizers, such as specifically
configured Evolutionary Strategies. Evolution of CGP circuits is one of these application do-
mains. To improve the scalability of Pareto based MOEAs, we have analyzed the relation of
the objectives. It is typically challenging to precisely express the optimization goal dependen-
cies for a digital circuit. Additionally, the correspondence may change with the location of
the candidate solution within the design space. We have found an efficient linear combination
of functional quality, circuit size, and propagation delay, and thus substantially improved the
convergence speed of Pareto based MOEAs.

• Scalability for multi-objective circuit evolution: Algorithm periodization and
Pareto based Evolutionary Strategies. For a systematic approach to improve the scala-
bility of multi-objective evolution for application domains where local search-like algorithms
excel, we have introduced an algorithm periodization scheme able to combine the behavioral
and functional properties of different methods. To this end, we have proposed a rotational
algorithm execution scheme. Each algorithm in the cycle can be executed either for zero,
one, or multiple generations, depending on the repetition strategy that considers the history
of the search. For instance, at the onset of a search, global search algorithms can be very
fast and should be considered more frequently for execution, while in the final search phase,
local search-like algorithms become more beneficial. For fast multi-objective circuit evolution
we have formalized a periodization scheme for population based evolutionary algorithms and
introduced a multi-objective Evolutionary Strategy (ES) based local search technique—the
hybrid ES (hES). With these two measures, we have been able to significantly improve the
scalability of the multi-objective evolution of CGP circuits.

• Challenging conventional engineering: Evolvable Hardware for real world appli-
cations. In our work we have verified the performance of our methods by comparing them
to state of the art algorithms and using popular benchmarks as well as real world use cases.
For a detailed analysis we have considered the following applications:

– Evolvable hardware classifiers. We have developed a CGP based pattern matching
architecture and compared it to a set of state of the art conventional algorithms as well
as to the Functional Unit Row (FUR) EHW classifier of Glette and Torresen [127]. We
are particularly interested in the classification of non-stationary data sets, as adaptable
EHW architectures are inherently suited for this. In an additional experiment, we have
demonstrated run-time adaptation capabilities for both EHW classifier architectures.

– Hardware adaptation to radical changes. Related work on EHW adaptation typi-
cally considers two kinds of stimuli: defects in the reconfigurable fabric and adaptation
to environmental changes. Extending these scenarios, we have studied Evolvable Hard-
ware adaptation to run-time fluctuations in the resources. The ability to deal with
fluctuating resources can be used to support the optimization process by, for instance,
assigning more resources when the speed of adaptation is crucial. Additionally, energy
considerations and resource sharing may make resource adaptable solutions very useful.
For our investigation, we relied on the reconfigurable classification architecture of Glette
and Torresen [127]. We have shown that the adaptation rate is related to the available
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amount of resources and quick adaptation is always possible, provided that a minimal
amount of resources are present in the system.

– Processor evolution: An Evolvable Hardware cache. While the primary applica-
tion field of EHW is in autonomous adaptable embedded systems, in our last contribution
we have applied the Evolvable Hardware principle to processor evolution. To this end,
we have put the memory-to-cache address mapping functions of a modern, multi-level
cache, under optimization, heading for minimal execution time. The outcome of the
experiments is the insight that an evolved memory-to-cache mapping function built out
of a few Boolean gates can significantly reduce the overall execution time and energy
consumption of a processor.

Our contributions demonstrate that a holistic Evolvable Hardware approach can be realized, em-
ploying a unified adaptation method based on multi-objective evolutionary algorithms. This is an
important insight, because adaptation in related research has typically been investigated regarding
either changes in the environment, changes in the resource requirements, or degradation of the
computational resources. To our best knowledge, no research except ours has proposed Evolvable
Hardware adaptation to all cases at the same time.

The work presented in this thesis was conducted as part of the Priority Programme (SPP) 1183
“Organic Computing” of the German National Science Foundation (DFG) and as part of the
“Adaptive Prosthesis Sockets” (KF2071402-KM9) and “Adaptive Knee and Foot Prosthesis Joints”
(KF2071403-KM9) projects of the German Federal Ministry of Economics and Technology (BMWI).
The results have been summarized in [15–17].

1.4 Thesis Organization

This thesis is structured as follows.

Chapter 2 introduces the fundamentals, history, and terminology of Evolutionary Computation.
To prepare for our work on multi-objective optimizers, we also describe the SPEA2 and
NSGAII algorithms in detail. Finally, performance analysis methods for single- and multi-
objective algorithms are presented.

Chapter 3 begins with the basic idea and a historical overview of Evolvable Hardware. Before
introducing prominent digital EHW examples, today’s reconfigurable digital devices are illus-
trated. The chapter continues with analog Evolvable Hardware examples and concludes with
an overview of Cartesian Genetic Programming—the circuit encoding scheme we are using in
our thesis–and related representation models.

Chapter 4 describes our extensible MOVES toolbox, a framework for multi-objective evolution of
embedded systems. We use these tools and instruments in the following chapters to evaluate
our algorithms and approaches.

Chapter 5 starts with our work on structural and temporal evolutionary operators (cf. Section 5.1)
as well as the automatic acquisition and reuse of meaningful subfunctions (cf. Section 5.2) for
Cartesian Genetic Programming.

Chapter 6 continues outlining our work on improving CGP scalability, introducing fitness aggre-
gation schemes (cf. Section 6.1) and the periodization of local and global search algorithms
(cf. Section 6.2).

Chapter 7 evaluates our previously developed methods and compares them to conventional state
of the art solutions. The first use case demonstrates an Evolvable Hardware signal classifier
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based on the Cartesian Genetic Programming. That classifier is compared to an Evolvable
Hardware system tailored for signal classification and to state of the art pattern matching
algorithms (cf. Section 7.1). In the next use case, we give an example of functional recovery
after architectural reconfiguration: a signal classifier (cf. Section 7.2). Finally, Section 7.3
demonstrates Evolvable Hardware’s creating adaptable caches, a challenge that have not been
yet addressed in conventional engineering.

Chapter 8 concludes with an overview of our work and outlines some insights and potential future
research directions.
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Chapter 2

Evolutionary Algorithms

Within the family of heuristic optimizers, the “evolutionary computation” (EC) domain hosts meth-
ods inspired by biology’s way of adapting and evolving systems. EC divides roughly into the areas of
evolutionary optimization, design, learning, and theoretical foundations. Biological evolution, which
is commonly referred to as “the survival of the fittest,” was investigated by the English naturalist
Charles Darwin 1859 in his book, On the Origin of Species by Means of Natural Selection [88]. More
precisely, Darwin noted: “It is not the strongest of the species that survives, nor the most intelli-
gent that survives. It is the one that is the most adaptable to change.” Within EC, “evolutionary
algorithms” (EA) refers to a group of methods first introduced in the middle of the 20th century,
imitating biology’s evolutionary process. While the methods were initially subdivided according
to representation models and evolutionary-inspired operators, it is in the latter endeavor to unify
EA’s taxonomy with other search heuristics [279,395,397] from, e.g., operations research (OR) and
artificial intelligence (AI). A simplified mechanism, which is common to EAs and to, e.g., hill climb-
ing, Tabu search (TS) [132], and simulated annealing (SA) [60,191,246], is iterative generation and
testing. This mechanism is presented in Algorithm 1. When applying generate-and-test to EAs, it
becomes the scheme of perturbation-and-acceptation, where the first step comprises recombination
and mutation, and the second step selection and reproduction [295]. EA’s characteristic properties
are its population based approach and information migration among the individuals.

Algorithm 1: Generate-and-Test()—EA’s general perturbation-and-acceptation
scheme.

Output: set of solutions Q
1 initialize(P ) // initialize set of solutions
2 while true do
3 Q← perturb(P ) // recombine and mutate
4 if Q meets termination conditions then
5 return Q
6 P ← accept(P,Q) // select and reproduce

Table 2.1 presents the basic terminology of EAs and Table 2.2, the biological development space.
The terms are introduced best by describing an EA iteration according to Algorithm 1. An EA
starts with a randomly initialized population. A population is a set of candidate solutions and
each candidate solution is a container for a genotype. A genotype can be partitioned into multiple
chromosomes. The genotype’s unit elements are genes, which typically encode a single property of
a solution. A gene can be, for example, a floating point number, a graph vertex, or a single bit.
In this thesis, we refer to the logical structures encoded within a genotype as the representation
model. A genotype can be considered a construction plan. Building the actual solution from the
genotype is referred to as the genotype-to-phenotype mapping. Consequently, a phenotype is the
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Table 2.1: Common evolutionary algorithms terminology.

candidate solution element of the search space,
genotype container

individual a candidate solution
population a set of candidate solutions

parent candidate solution selected
for reproduction

offspring individual, child candidate solution, derived from
at least one parent

phenotype expression of the genotype,
individual’s observed properties
(morphology, behavior, . . . )

genotype a set of genes, construction
plan of a phenotype

representation model genotype
chromosome a subset of a genotype

gene substructure of a genotype encoding
a particular property

allele gene’s value
locus allele’s position within the genotype

crossover / recombination exchange of genetic material,
sexual reproduction

mutation alteration of genetic material
selection individual’s reproduction,

based on the objective function

objective function metric for comparing individuals
objective space objective function

fitness function / landscape biology inspired notion of
the objective function

fitness evaluation / assessment computation of
the objective function

decision space typically, real valued objective function
decision variable decision space dimension

elitism passing best individuals to the next
generation without any modification

Table 2.2: Biological development space.

phylogeny development through inherited changes
of the genotype, Mendel [245]

ontogeny / morphogenesis individual’s progress through cell growth
and differentiation

epigenesis individual’s progress through interaction
with the environment, learning, development
of a immune system, inheritance
of acquired characteristics

12



expression of a genotype. In the next step of Algorithm 1, candidate solutions or individuals get
recombined and mutated. Recombination is the sexual reproduction transferring information among
individuals. Thereby, a new individual is created by blending genes from a set of parent individuals.
Afterward, a mutation operator modifies some genes with a certain probability. The quality of the
newly created individuals is computed in the fitness evaluation step. If the optimization goal is
reached by some individuals, the EA terminates its execution. Otherwise a selection method, which
can be deterministic or randomized, picks some individuals regarding their fitness or objective values
for the next reproduction step.

Concrete EA variants will be presented in the next section. Before that, the following list presents
some important key properties of evolutionary algorithms.

• Evolutionary algorithms are exceptionally good at solving real world applications:
EA variants have been used to optimize the shapes of turbines [30, 114, 287] and cars [58], to
understand protein folding [224], to analyze and predict financial markets [42–44,115,169,226],
to calculate the chemical kinetics of fuels [206], and to solve many other applications. From
the user perspective, the attractiveness of EAs is based on the following properties:

– EAs are algorithmically simple: As shown in Algorithm 1, EAs consist of a single
loop containing a few operators. Thus, EAs are easy to understand, calibrate, extend,
and tailor to an application. In its simplest form, only the fitness evaluation has to
be specific to the application. A reference EA implementation can therefore be used
out of the box. Additionally, a vast number of EA software libraries exists for popular
engineering systems, such as the Matlab Global Optimization Toolbox [241].

– EAs can deal with incomplete specifications: EAs are sometimes considered as
black box methods: they can operate without any information about what the goal
function is modeling. Additionally, the goal function may only implicitly describe the
overall optimization challenge.
The ability to optimize unknown and complex goal functions opens up an additional
application case to EAs. When a new application is introduced with a parameter set
that is too complicated to be solved by a human designer, an EA can be used to explore
the topology of the solution space.

– EAs can be easily extended and customized: Because of algorithmic simplicity,
EAs are well suited for combination with other algorithms without an excessive imple-
mentation effort. Nested EAs and hybridizations of global and local search techniques
are quite popular for larger and hard optimization functions. Knowledge about the
optimized application can be incorporated into an EA’s representation model and evo-
lutionary operators to reduce the execution time. Optimization towards solutions with
specific properties can also be done by shaping the representation model, embedding de-
sign methodologies, and prioritizing candidate solutions with the desired characteristic
for reproduction.

• EAs are well suited for multi-objective optimization: The search spaces of applica-
tions often comprise multiple and sometimes contradictory trade-offs. As EAs are population
based approaches, optimizing multiple objectives requires basically only a redefinition of the
fitness function. With additional methods, such as Pareto based ranking and diversification
algorithms, multi-criteria EAs are able to evolve close coverings within the trade-off space in
a single run.

• EAs are inherently parallel: The computational costs of an EA are primarily defined by the
complexity of the fitness evaluation. As fitness evaluations are typically independent, they can
be efficiently parallelized. Thereby, the speed-up is often proportional to the population size.
Especially the optimization of complex functions benefits dramatically from parallelization.
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• Real world EAs are often difficult to analyze: The analysis of EAs by investigating
the effects of the evolutionary operator and the relations of the search space neighborhood
is typically complex. Particularly applications suffer from search space non-linearities and
discontinuities. Complicated operators additionally hamper the analysis. Thus, vast part of
the work on the convergence and computational effort of EAs concentrates on experimentally
demonstrating the worst-, average-, and best-case rates. Theoretical results are available only
for simple EA variants. For instance, Holland investigated the effects of evolutionary operators
in [167] and introduced the Schema Theorem, which gives a lower bound on the generational
propagation of some genotype patterns. The theorem, however, makes no statement on the
convergence behavior. A more recent approach is convergence analysis by modeling search
paths by Markov chains [106, 264, 288, 340, 395]. The analysis gets more precise, when allow-
ing the mutation rate to decrease over generations [296]. Here, ideas inspired by simulated
annealing (SA) convergence reasoning are reused [90,91].

A formal convergence analysis is important for understanding the mechanism of an algorithm.
For challenges, however, the estimation of the computational complexity is far more useful,
as it allows deriving concrete execution times and computational requirements.

• Evolutionary algorithms can handle incomplete and implicit goal functions: For
instance, the compression rate of an evolvable image encoder, as presented in Section 1.1,
can be explicitly expressed by the ratio of the sizes of the input data and the output data.
However, the fitness of an evolvable robot controller depends on non-deterministic environ-
mental factors. A robot control function may perform differently when evaluated at different
times and locations. A robot’s evolved behavior also influences its environment which, in turn,
may change its configuration and the way it interacts with the robot. While the handling of
an implicit goal function may not be simple, defining the goal function without a complete
knowledge of the optimized domain is one of the most important properties of EAs, allowing
an approach to complex and dynamic optimization domains.

• The genotype-to-phenotype mapping efficiency can be crucial for an EA’s per-
formance: A common way to improve an EA’s efficiency is the increase of the genotype’s
abstraction level and expressiveness. This allows reducing the search space more efficiently.
On the other hand, mapping a genotype that is expressed in a complex encoding to a simpler
phenotype level requires an elaborate transfer function. For instance, evolving circuits at the
level of n-bit wide mathematical operators and mapping them to the level of the Boolean gates
of a reconfigurable logic device needs the computationally complex step of logic synthesis (this
procedure will be described in more detail in Section 3.2.1.3). Thus, the distance and disparity
in the abstraction levels of the genotype and phenotype can necessitate a complex mapping
function, contributing significantly to the temporal performance of an EA.

The remaining part of this section will present popular variants of single- and multi-objective EAs.
Traditional single-objective EA families are evolutionary programming (cf. Section 2.1.1), evolution-
ary strategies (cf. Section 2.1.2), genetic algorithms (cf. Section 2.1.3), and genetic programming
(cf. Section 2.1.4), listed chronologically in Figure 2.1. Extending the objective function to the
concurrent evolution of multiple goals creates the family of multi-objective evolutionary algorithms,
presented in Section 2.2. The families of parallel and hybrid EAs are presented in Section 2.3.1 and
Section 2.3.2. An introduction to statistical methods for the comparison of heuristics concludes the
chapter in Section 2.4.

2.1 Historical overview

Barricelli is considered to have published the earliest work on artificial evolution according to the
principles observed by Darwin. Using a grid of numbers, he investigated two-dimensional patterns
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1955

1960

1965

1970

1975

1980

1985

1990

1995

2000
Zitzler: SPEA2 [417]
Deb: NSGAII [98]
Miller, Thomson: Cartesian GP (CGP) [257]

Koza: Automatic Discovery of Reusable Functions (ADF) [199]

Cramer: Genetic Programming (GP) [85]
Schaffer: VEGA [292]

Holland: Genetic Algorithms (GA) [167]

Rechenberg, Schwefel, Bienert: Evolutionary Strategies (ES) [282]
Fogel, Ownes, Walsh: Evolutionary Programming (EP) [121]

Barricelli [38], Box [51]

Figure 2.1: Evolutionary algorithms time line.

evolved by simple reproduction rules. Figure 2.1 gives a chronological classification of original work
on evolutionary algorithms starting with the work of Barricelli [38] in 1954. Box investigated evo-
lution inspired optimization for applications in [51]. He also proposed multi-objective evolutionary
optimization and mentioned the disadvantage of subsuming multiple factors under a single valued
goal function due to the different priorities of different components. We will focus our historical
overview on the four EA variants most commonly used today: the evolutionary programming (EP)
of Fogel et al. [121], the evolutionary strategies of Rechenberg et al. [282], the genetic algorithms
(GA) of Holland [167], and Cramer’s and Koza’s Genetic Programming (GP) [198].

2.1.1 Evolutionary Programming
Evolutionary Programming (EP) was introduced by Fogel, Ownes, and Walsh [121] in 1966. EP
is basically characterized by an application-specific representation model, reproduction only by
mutations, and the use of a probabilistic selection scheme. In the initial paper, EP was used to
optimize finite state machines (FSM) to predict non-stationary time series. Following the general EA
approach described by Algorithm 1, EP creates an offspring population by mutating all individuals
from the parent population. Thereby, the operator might add and delete states, change the initial
state and output symbols, and modify the transition function. Using tournament selection, the
new population is made up from parent and offspring individuals. The (k, p) tournament selection
scheme randomly picks k-subsets of individuals, sorts them from best fitness to worst, and selects
the ith individual with probability p(1 − p)i−1. In newer research, EP has become favored for
real-valued optimization [327].

2.1.2 Evolutionary Strategies
A (µ{+, }λ) evolutionary strategy (ES) derives λ offspring from µ parents and selects the new pop-
ulation either from the offspring or the offspring and the parent individuals for the “,” or the “+”
variant, respectively. Introduced by Rechenberg, Schwefel, and Bienert [282], ES were designed to
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push the optimization onto the levels of phylogenetic evolution and epigenetic learning. Learning
is implemented as a self-adaptive process of adjusting gene mutability factors.

An ES individual in the work of Rechenberg [282] comprises a set of real numbers representing the
parameters of the engineered object. To each parameter some strategy variables are attached, con-
trolling the step size of the mutation operator. While Rechenberg initially investigated a mutation-
only ES [282], Schwefel [297] added recombination to the scheme later on. Similar to EP, ES does
not restrict the genotype’s encoding. One difference from EP is the deterministic selection scheme.
ES takes the µ best individuals from either offspring, or offspring and parents, to the next generation
without any randomization.

2.1.3 Genetic Algorithms
Genetic algorithms (GA) were introduced by Holland in 1975 [167]. A pivotal feature of Holland’s
canonical GA—which distinguishes it from EP and ES—is that the genotype encoding is applica-
tion independent, consisting of a constant length bitstring. The genotype-to-phenotype mapping
relies on a bitstring partitioning into bit sets. Each bit set corresponds to a phenotype property.
With a generalized genotype, the evolutionary operators can also be defined independently of the
application.

Holland’s canonical GA was strongly inspired by the natural evolution cycle, comprising its major
elements, such as a restricted alphabet genotype, pairwise parent selection, mating, and mutation.
While for EP and ES, the mutation operator is considered to be the driving force of the evolution,
GAs rely on the crossover operator. In Fig 2.2, a 2-point crossover is presented. A general n-point
crossover for two genotypes is defined as the partitioning of the genotypes into n + 1 similarly
sized sets and swapping every second set. A uniform crossover designates an m − 1 crossover for
a genotype of length m. GA’s standard bit-flip mutation operator inverts every bit of a genotype
with some probability p. The biology inspired fitness proportionate selection, the so-called roulette
wheel selection, interprets the individuals’ fitnesses as intervals. The larger the interval, the more
likely the individual is to be selected for reproduction.

parent genotype parent genotype

off-spring genotype

Figure 2.2: Genetic algorithm: A 2-point crossover.

Holland’s book Adaptation in Natural and Artificial Systems explored in 1975 the question of why
genetic algorithms work [167]. He formulated and proved the “Schema Theorem” for the canonical
version of his GA, which traces the generational propagation of schemas (templates matching geno-
type substrings) under the mutation and crossover operators. As a consequence, Holland suggested
the “building block hypothesis,” which proposes that evolution should benefit from short, low order,
better than average performing schemata (building blocks, genes), and that schemata arrangement
within the genotype is of vital importance: related schemata should be placed near to each other.
In later analysis, the explanation of GA’s principle by the “building block hypothesis” has been
criticized, as the hypothesis does not necessarily follow from the Schema Theorem [27,142,143,387].

After the introduction of GAs in 1970, the algorithms have been extended to numerous new rep-
resentation models, such as directed acyclic graphs [252], neural networks [203, 410], LISP expres-
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sions [95], trees [179], and real valued vectors [256]. Different kinds of selection strategies and
mutation and crossover operators have been applied to improve their performance. The genetic
algorithm itself has been extended to hybrid variants [283, 370] combining global, local and non-
evolutionary approaches. An introduction to the area is given for example by Bäck et al. [36] and
Eiben et al. [107].

2.1.4 Genetic Programming

Genetic programming (GP) demonstrates two key elements: the evolution of programs mapping
some inputs to outputs and the automatic discovery of reusable subfunctions. Introduced by Cramer
1985 [85] and Koza 1992 [198, 199], GP’s motivation can be stated as: “How can computers learn
to solve problems without being explicitly programmed to do so” [59]. In its original form, GP
evolved LISP programs expressed by a tree structure. GP utilizes the common evolutionary op-
erators, such as selection, recombination, and mutation. The principle of the tree-type crossover
is presented in Figure 2.3. With an unconstrained genotype length, the tree based crossover may
induce uncontrolled genotype growth and the appearance of repetitive patterns, referred to as bloat.

The intriguing property of GP is its automatic definition and reuse of subfunctions (ADF), which
introduces a divide and conquer-like concept to heuristic search. The dynamic extension of the
functional block alphabet by new composite functions, which themselves are subject to evolutionary
pressure, allows increasing the functionality and complexity level of the alphabet.
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Figure 2.3: Genetic programming: Tree based crossover.
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2.2 Multi-objective Evolutionary Algorithms

Engineering solutions for g applications often require the balancing of multiple trade-offs and the
making of compromises. In this section we introduce the basic multi-objective optimization termi-
nology, present two state of the art multi-objective EAs, and outline their computational complexity
and methods for non-dominated set comparison.

2.2.1 Multi-objective Optimization Terminology
Before introducing the basic terminology for multi-objective optimization, we will clarify the basic
notion of optimization. Let X ⊆ Rn, n ∈ N, be the decision space. This could be, e.g., the parameter
space of a gas turbine model. Let Y ⊆ Rm, m ∈ N be the objective space. This is the space in
which the model’s performance characteristics are expressed. The function f : X → Y is a metric
assigning performance values to a potential solution, and is called the objective function. The goal
of an unconstrained optimization problem is, without loss of generality, to minimize f for all x ∈ X :

min
x∈X

f(x).

A constrained optimization problem additionally introduces equality constraints gi : X → R,
i = 1, 2, . . . , k:

∀i = 1, 2, . . . , k : gi(x) = 0,

and inequality constraints hj : X → R, j = 1, 2, . . . , l:

∀j = 1, 2, . . . , l : hj(x) ≤ 0.

In the case of a multi-dimensional objective function f(x) ∈ Y ⊆ R≥2, the optimization challenge
is called multi-objective.

Extending an EA to the multi-objective approach needs, in its simplest version, only a redefinition
of the objective function. As the EAs in the original definition were already designed to maintain
a set of candidate solutions, introducing multi-objective optimization typically does not require
any additional changes here. Related work on multi-objective optimization roughly splits into the
scalarization approaches and Pareto approaches [96]. The first reduces the multi-valued objective
function to the single objective case, often by rewriting it as a weighted linear combination. An
important detail here is that the algorithm designer has to decide how to aggregate the objective
function, which are the objectives interdependencies, and which weights to assign. In contrast to
this, the Pareto approach frees the designer from introducing the mentioned expertise and from
making assumptions about the search space, allowing for a more general objective function defini-
tion. In this thesis, we focus on the Pareto approaches, as they have proven to be very successful
in optimizing complex functions.

To minimize f in a multi-dimensional objective space Y, an order relation has to be defined. But
how to re-define the notion of a “best” solution, when multiple and sometimes even conflicting goals
have to be optimized at the same time? Francis Y. Edgeworth and Wilfredo Pareto gave an answer
to this question. Edgeworth noted that for some objective functions P and π: “It is required to
find a point (x, y) such that in whatever direction we take an infinitely small step, P and π do
not increase together but that, while one increases, the other decreases” in [104] 1881. Similarly,
Pareto indicated: “The optimum allocation of the resources of a society is not attained so long as
it is possible to make at least one individual better off in his own estimation while keeping others
as well off as before in their own estimation” in [267] 1906.

The formalization of the new concept of “best” can be done as follows: Let x1 ∈ X and x2 ∈ X
be two objective vectors and f = (f1, f2, . . . , fm) as previously defined. Then, x1 dominates x2, or
x1 ≺ x2, if:

x1 ≺ x2 ⇔ ∀i : fi(x1) ≤ fi(x2) ∧ ∃j : fj(x1) < fj(x2).
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Additionally, weak Pareto dominance, or x1 � x2, is defined as:

x1 � x2 ⇔ ∀i : fi(x1) ≤ fi(x2).

If x1 � x2 and x2 � x1, it follows that f(x1)
!

= f(x2). If neither condition holds, x1 and x2 are
incomparable or indifferent (denoted x1||x2).

The Pareto set X ∗ is defined as the subset of X containing all optimal solutions. “Optimal” means
that for any x∗ ∈ X ∗ there is no x ∈ X with x � x∗. The Pareto front is defined by the images of
X ∗ under f . The goal of a multi-objective algorithm is to calculate or approximate the Pareto set.

To prepare for the discussion of multi-objective algorithms, we need to introduce some further
terminology. For a subset P ⊆ X that denotes a population of a multi-objective algorithm, the
dominance count for p ∈ P , or count(p), is defined as:

count(p) = |{p′ ∈ P |p ≺ p′}|,

the number of individuals in P dominated by p. Dominance rank, or rank(p), is defined by the
number of individuals in P dominating p:

rank(p) = |{p′ ∈ P |p′ ≺ p}|.

P can be partitioned disjointly into subsets
.
∪qi=1 Pi = P , where all individuals from a certain

Pi are mutually indifferent. Additionally, the Pi’s are enumerated in such a way that for any
individual from Pi+1 there exists at least one individual in Pi dominating it. Thus, P1 “dominates”
P2, P3,. . . ,Pq; P2 “dominates” P3, P4,. . . ,Pq, and so on. Pi is called a non-dominated set and the
images of Pi under f a non-dominated front. The dominance depth of p ∈ Pi ⊆ P is the index of
its non-dominated set:

depth(p ∈ Pi) = i.

The notion of ε-dominance denotes the factor ε ∈ R in the objective space, by which one objective
vector is at least better or worse than another. Given x1, x2 and f as previously defined, f(x1) ≥ ~0,
f(x2) ≥ ~0, x1 ε-dominates x2, or x1 �ε x2, if:

x1 �ε x2 ⇔ ∀i : fi(x1) ≤ ε · fi(x2).

The additive ε+-dominance definition follows the definition of ε-dominance:

x1 �ε+ x2 ⇔ ∀i : fi(x1) ≤ ε+ fi(x2).

It is important to mention that there might be indefinitely many ε’s for particular x1 and x2
satisfying the equations. We are interested in the smallest ε, as with its help a “quality” relation
between two objective sets can be established. Assume that P ⊆ X and P ′ ⊆ X are two sets in
the decision space. The greatest lower bound for ε’s with p �ε p′ for all p ∈ P , p′ ∈ P ′ defines the
factor by which any element of P ′ is weakly dominated by at least one element of P . The function
computing the according ε is called a Quality Indicator (QI) [419] and is formalized as:

Iε(P, P
′) = inf

ε∈R
{∀p′ ∈ P ′ ∃p ∈ P : p �ε p′}.

The definition of the additive Iε+ QI follows the definition of the Iε QI:

Iε+(P, P ′) = inf
ε∈R
{∀p′ ∈ P ′ ∃p ∈ P : p �ε+ p′}.

With the help of a QI, the relation between two non-dominated sets can be mapped to a single
real number symbolizing the factor or distance by which one non-dominated set outperforms the
other. Additionally, the quality for a single non-dominated set can be computed by comparing it to
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a worst-case non-dominated set. Assuming Y = [0, 1]m, this would be the set holding the reference
point R = ~1. The according unary QI can now be formalized as:

I1ε (P ) = Iε(P, {R})

and
I1ε+(P ) = Iε+(P, {R}).

For a more detailed overview of the terminology, Zitzler et al. [419] and Knowles et al. [192] provide
a thorough introductions.

The discipline of multi-objective optimization goes back to Cantor and Hausdorff (1895–1906),
and Kuhn and Tucker (1951) [75]. Only in 1984 did Schaffer introduce the first implementation
of a multi-objective algorithm, which is called VEGA [292]. VEGA is a non-Pareto approach
differing from regular GA in the way the fitness function is defined. For k objectives, the fitness
function partitions the population into k subpopulations, selecting candidate solutions for the next
generation in the ith subpopulation with respect to the ith objective. The first generation of
Pareto based algorithms was introduced in the 1990s. Some prominent examples are MOGA [122],
NPGA [168], and NSGA [328]. Common to all these algorithms is the use of fitness sharing to ensure
the evolution of a diverse Pareto set approximation. Fitness sharing can be roughly described as
a function modifying the fitness of an individual according to its local population density [75].
Consequently, individuals in crowded regions are less likely to contribute to the next generation
than individuals in sparsely populated regions. Modern MOEAs, such as NSGAII [98], SPEA [48],
SPEA2 [417], PAES [193], PESAII [194], and µGA2 [277], extend the original ideas, employing more
elaborate selection and diversity preserving techniques, and using elitism and archive populations.
With the establishment of modern and successful generation of MOEAs, new challenges such as
many-dimensional optimization [420] and efficient constraint handling [76] got into the focus of
researchers. To prepare for discussing the multi-objective optimization of digital circuits, we will
briefly report on the NSGAII and SPEA2 algorithms. These algorithms and their basic principles
will be used in our thesis.

2.2.2 Non-Dominated Sorting Genetic Algorithm II
Presented by Deb et al. in [98], the non-dominated sorting genetic algorithm II (NSGAII) com-
prises two key methods: an efficient non-dominated set decomposition (non-dominating sorting)
and a selection operator considering the fitness and spread of the candidate solutions. The general
algorithm structure is presented in Figure 2.4. NSGAII iterates an archive population throughout
the generations. In every generation, a working population is derived from the archive by means of
regular GA operators. Afterwards, the archive and the working population are joined and a new
archive is filled by selecting elements from the union by means of the non-dominated sorting and
the density information.

The non-dominated set decomposition is detailed in Algorithm 2. It splits the input set P into
disjoint non-dominated sets {F1,F2, . . . ,Fl} = F ,

.
∪li=1 Fi = P , where any element of Fi+1 is

dominated by at least one element of Fi. The algorithm has following parts: the computation
of ranks and dominated sets, the assignment of dominance depths, and the segregation of non-
dominated sets. The ranks and dominated sets are computed by the code from line 1 to 8. This is
computationally the most complex part accounting for O(mN2) operations, where m is the number
of objectives and N is the number of elements in the input set. Additionally, the first non-dominated
set F1 is constructed during this phase. In the remaining part, the algorithm computes for an Fi
its proximate Fi+1 by looking at dominated sets of elements in Fi. Those elements in P \ ∪ik=1Fk
that are dominated only by elements of Fi define Fi+1. Non-dominated set aggregation is done by
the code from line 9 to 18 in Algorithm 2.

The second component of the NSGAII selection metric considers the local density information.
The density of an element is computed with the help of the surrounding hypercube bounded by
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Figure 2.4: The general structure of second generation multi-objective algorithms (NSGAII,
SPEA2).

Algorithm 2: Non-Dominated set decomposition [98].
Input: set of Pareto-points P
Output: F = {F1,F2, . . . ,Fl} non-domination set decomposition of P

1 for p ∈ P do
2 for q ∈ P do
3 if p ≺ q then
4 Sp ← Sp ∪ {q} // Sp contains elements of P dominated by p
5 if q ≺ p then
6 np ← np + 1 // np = rank(p), number of elements in P dominating p

7 if np = 0 then
8 F1 ← F1 ∪ {p} // detect non-dominated elements of P

9 i← 1
10 while Fi 6= ∅ do
11 H ← ∅
12 for p ∈ Fi do
13 for q ∈ Sp do
14 nq ← nq − 1
15 if nq = 0 then
16 H ← H∪ {q}
17 i← i+ 1
18 Fi ← H
19 return F ← {F1,F2, . . . ,Fl}
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the element’s neighbors. For corner Pareto elements that do not have bounding neighbors for at
least one dimension, the surrounding hypercube becomes infinitely large. The density rank dr(p)
is then computed as the sum of the hypercube’s side lengths. A small crowding rank indicates an
element densely enclosed by neighbors while a large crowding rank indicates a sparsely populated
neighborhood.

To fill a new archive population, NSGAII composes the selection metric as follows:

p ≥n q ⇔





depth(p) < depth(q)

OR

[depth(p) = depth(q)] AND [dr(p) > dr(q)]
(2.1)

The union of the archive and the working population is sorted in descending order with respect to
“≥n” and the new archive is filled with the first elements of the sorted union. The first condition
of Equation 2.1 ensures that the new archive consists foremost of the non-dominated sets with
lower depth indices (F1,F2, . . . ). If the last added non-dominated set does not fit entirely into the
archive, less-crowded elements of the set are added first. This is expressed by the last condition of
Equation 2.1.

2.2.3 Strength Pareto Evolutionary Algorithm 2
Introduced by Zitzler in [417,418], the Strength Pareto Evolutionary Algorithm-2 (SPEA2) handles
its archive and working population the same as NSGAII. Also similar is the idea of a two-component
fitness function comprising a Pareto- and crowding-based element. The SPEA2 density metric,
however, is able to detect cluster hierarchies in the objective space, unlike the NSGAII local crowding
metric. As SPEA2 differs from NSGAII only in the definition of fitness and in the way the archive
is filled, we concentrate on these steps. The fitness of an element p from the union of the archive
and the working population P is defined as

F (p) =
1

σkp + 2
+

∑

q≺p,q∈P
count(q),

where σkp denotes the Euclidean distance of p to its kth nearest neighbor. The second term sums
the domination counts of all those elements that dominate p. If p is in the first non-dominated set,
this term equal 0. The first term represents the density information. It takes values within (0, 0.5]
and becomes smaller when the distance to the kth nearest neighbor increases. k is set to the square
root of |P |. The new archive is filled from the union of the old archive and the working population,
sorted in increasing order with respect to F . In the first step, all individuals with a fitness below 1
(and therefore non-dominated) are inserted into the new archive. In the case the archive size allows
of inserting more elements, they are taken from the union according to their sorting. However, when
the archive’s size has been exceeded, its elements are sorted in increasing order with respect to a
new order relation “≤n,” which is defined as

p ≤n q ⇔





σip = σiq ∀i = 0, 1, . . . , |archive|
OR

[σjp = σjq ] AND [σip < σiq] ∀j = 0, 1, . . . , i− 1;

i ∈ {0, 1, . . . , |archive|}

(2.2)

The first condition of “≤n” indicates elements with identical objective space locations. The second
condition expresses a situation where two elements have identical distances to the first, second,. . . ,i−
1th neighbor, but have different distances to the ith neighbor. In this case the element with the
smallest distance to the ith neighbor consequently has a denser neighborhood and a smaller value
in terms of the “≤n” relation than its opponent. After sorting the new archive, the first element is
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removed. Sorting and removing is repeated until the regular archive size is reached. This is a unique
property of the SPEA2 cut-off operator as it assures an up to date sorting of the shrinking archive.
The working population is subsequently filled from individuals of the new archive employing binary
tournament selection and the previously defined fitness metric F (p).

2.3 Variants of Specialized Evolutionary Algorithms

The major classification of EA families as presented in the previous sections would be incomplete
without mentioning some relevant EA subfamilies. The first subfamily covers parallel EAs, which are
essential when optimizing complex engineering tasks. The distribution of computationally demand-
ing operations often reduces the execution time to acceptable levels. The second subfamily consists
of EA hybrids. Specialized heuristics are combined here with EAs to, e.g., improve the convergence
speed, enable multi-objective optimization, and introduce adaptivity to the search process.

2.3.1 Parallel Evolutionary Algorithms
Evaluating the fitness of individuals is typically independent and therefore distributable in a straight-
forward manner. There are two frequently applied concepts of parallel EAs. The first concept
utilizes a global population and evaluates the individuals on multiple computing nodes. This is
called the master–slave parallelization. In the second approach, multiple isolated EAs evolve their
own populations, while recurrently exchanging solutions. To this end, the regular EA operators
are extended by the migrant selection and replacement operators [80]. This so called island fam-
ily of evolutionary algorithms comprises a vast variety of different algorithm flavors, differing in
the time between migrations, what triggers the migration, and strategies of replacement as well as
selection [145,222,389,415].

An interesting island EA branch from the reconfigurable logic perspective are the cellular EAs. This
approach does not utilize a global population. Instead, candidate solutions are organized in a spatial
structure, defined by the candidate solution’s local communication rules. A common way to define
such a communication structure is by introducing north, south, east, and west communication
links [23]. This spans a toroidal mesh. The evolutionary algorithm is then executed from the
candidate solution’s point of view, considering a population gathered from its neighbors. One of the
characteristic elements of cellular EA’s is the isolation by distance. This allows having implicitly
defined sub-populations, operating as virtual islands.

The relevance of parallel and island EAs becomes visible with the numerous applications solved
by these methods. Parallel and island EAs have been used to design rotor blades [221], evolve
the aerodynamics of an airfoil [32, 180, 262], recognize objects [22], and find protein folding [229].
Additionally, aircraft [134,274], nuclear plants [270], processors [330], mobile communications [341,
385] and floor-plans [54] have been optimized by parallel EAs.

2.3.2 Hybrid Evolutionary Algorithms
Evolutionary algorithms are very successful on a large set of complex applications. However, when
leaving the domain of parameter-free black box-like methods, the performance can often be im-
proved by employing knowledge about the optimized application [89]. This can be done by some
specialized representation models, sophisticated genotype-to-phenotype mappings, and application
tailored evolutionary operators. Another way to improve EAs is their combination with non-EA
algorithms such as, e.g., simulated annealing [290]. This can be done either by merging the al-
gorithms into a monolithic method or by defining a periodization scheme [13]. In a periodization
scheme the algorithms remain largely unmodified and are executed rotationally according to some
ordering. Hybrid EAs are used to schedule jobs [344], create information retrieval models [84,342],
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model reservoir permeability [401], study inter-atomic potentials [55], simulate ecosystems [177],
implement FPGA segmented channel routing [290], and optimize process structures [402].

2.4 Performance Analysis

A formal analysis of heuristics such as an EA often suffers from pessimistic assumptions and incom-
plete models. Especially in the area of evolutionary algorithms, only for some of the simplest EA
variants do formal convergence criteria exist. In this context, computational complexity provides a
more useful measurement to estimate their behavior. Computational complexity is typically repre-
sented by the worst, average, and best case, established over a set of experiments. In the area of
EAs, computational effort (CE) [198] is a popular metric, giving an average lower bound of fitness
evaluations to reach some optimization goal. CE will be presented in the following section. We
additionally need a method to compare the evolved non-dominated sets. Section 2.4.2 shows two
ways of doing this.

2.4.1 The Computational Effort
A popular approach to compare EAs is the computational effort metric, as defined by Koza in [198].
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Figure 2.5: Computational effort: The idealized plot of the probability P (M, i) to reach the op-
timization goal by the ith fitness evaluation. I(M, i, z) shows the computational effort in fitness
evaluations when successively restarting the search after reaching the ith fitness evaluation. At
this, I(M, i, z) fitness evaluations are needed to reach the goal with a probability z. The compu-
tational effort is defined as the I(M,i,z) minimum. It is reached in the example after 18,000 fitness
evaluations.

It considers only the computational effort of the fitness evaluations, as they are assumed to be by far
dominant compared to the computational effort of the EA algorithm itself and its operators. For each
experiment with its executed number of fitness evaluations M per generation, a set of independent
runs is conducted. In each run, the optimization goal might be reached by some generation i. The
probability of reaching the optimization goal by generation i can then be expressed as follows:

P (M, i) = (#succeeded runs by generation i)/(#runs).
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From this, R(z) can be determined as the number of independent runs that have to be conducted
to reach the optimization goal with a certain probability z:

R(z) = dlog(1− z)/ log(1− P (M, i))e.

The estimated overall number of fitness evaluations required to reach the goal with probability z is
then

I(M, i, z) = M · (i+ 1) ·R(z).

For each experiment with given M and z, the minimal value for I(M, i, z) is referred to as the
computational effort of the experiment. Figure 2.5 illustrates the typical behavior of P (M, i) and
I(M, i, z). To conform with the related work and the work of Koza [198], we set z to 99% in this
thesis.

2.4.2 Comparing Non-Dominated Sets

To analyze the performance of multi-objective optimizers, we need to compare the evolved non-
dominated sets. There are two methods commonly used in related research: ranking by a quality
indicator, and the analysis of the average non-dominated sets attained during multiple algorithm
runs. Both methods are described by Knowles et al. [192] and are implemented in the PISA toolbox
by Bleuler et al. [49].

The first method uses a unary QI to reduce a sequence of non-dominated sets evolved by a benchmark
algorithm to a sequence of numbers. To compare the two sequences, we use the non-parametric
Kruskal–Wallis test [83]. It differentiates between the null hypothesis H0 = “The distribution
functions of the sequences are identical” and the alternative hypothesis HA = “At least one sequence
tends to yield better observations than another sequence.” In case the test rejects H0, the table
provides, for all sequence pairs, the one tailed p-value [83]. Table 2.3 presents an example: for an
algorithm pair (Arow, Acol) a p-value less than or equal to α indicates a lower mean for Arow.
Thus, one can conclude from Table 2.3 with α = 0.05 that A1 outperforms A2 and A3, and A3

outperforms A2.

Table 2.3: Example of the use of the Kruskal–Wallis test. The table entry is the one-tailed p-value
for comparison of algorithm arow with acol.

A1 A2 A3

A1 - 0.002 0.007
A2 0.97 - 1.0
A3 1.0 0.003 -

An additional way of interpreting the results of multi-objective optimizers is to take a look at the
Pareto points that are weakly dominated by solutions found in x% of multi-objective algorithm
runs. The set of non-dominated points that have been reached in x% of the runs are referred to
as the x%-attainment. The attainment allows for a direct graphical interpretation as shown in
Figure 2.6. In order to statistically compare the attainments, we use the two-tailed Kolmogorov–
Smirnov test [315]. It distinguishes between H0= “Sequences A and B follow the same distribution”
and HA= “Sequences A and B follow different distributions.” Table 2.4 contains exemplary results
for three algorithms A1, A2 and A3 evaluated by the Kolmogorov–Smirnov test. The results in
Table 2.4 can be interpreted as: A1 differs significantly from A2 and A3.
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Figure 2.6: Non-Dominated sets reached in at least x% of multi-objective algorithm runs.

Table 2.4: Interpretation of the Kolmogorov–Smirnov test: A dot denotes an acceptedH0 hypothesis
at given α. A star indicates significantly different non-dominated set distributions.

A1 A2 A3

A1 - * *
A2 * - ·
A3 * · -

2.5 Chapter Conclusion

In this chapter we described single- and multi-objective evolutionary algorithms, presented their ter-
minology, and introduced statistical analysis tools for comparing algorithms. We also gave detailed
implementations of some single- and multi-objective EAs relevant for our work. Having given this
background, we will next introduce some novel hierarchical evolutionary operators (cf. Section 5)
and efficient objective scaling (cf. Section 6.1) for digital circuits as well as a general scheme for
evolutionary algorithm periodization for better scalability (cf. Section 6.2).
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Chapter 3

Evolvable Hardware

The notion of Evolvable Hardware is composed of reconfigurable hardware, automatic circuit design,
and continuous circuit optimization. The concept is intriguing as it allows for solutions beyond
classical engineering, for insights into new circuit design rules, and for innovative, maintenance free
embedded systems able to withstand defects and adapt to varying goals and resources.

EHW’s idea of hardware adaptation became visible with the work of Higuchi et al. [163], published
in 1993. The authors proved that genetic algorithms could succeed in evolving a 6-input multiplexer
circuit for a reconfigurable logic device. While the function of a multiplexer is fixed, in later research,
similar methodologies were used to evolve circuits adaptable to environmental changes [289]. Driven
by technological and algorithmic progress, Evolvable Hardware’s birth, though, was also influenced
by fundamental questions of evolutionary biology. Inspired by the search for an understanding
of emerging complex behavior from basic building blocks [174, 223, 249], de Garis combined the
rising technology of reconfigurable hardware and biology-inspired optimization algorithms in his
attempt to build a “A Darwin Machine”: “a device which evolves its own architecture directly in
hardware” 1993 [93,163]. His idea of the “Cellular Automata Machine Brain” [94] was the evolution
of replication rules for a massively parallel cellular automata implemented on a reconfigurable
hardware device. The author expected his machine to discover complex design spaces, overcoming
a human’s limited creativity.

Since its introduction, Evolvable Hardware has proved its potential for innovative and astonish-
ing designs, creating oscillators based on transistors’ propagation delays [313, 353], more com-
pact circuits than human built solutions [73, 124, 201], radiation- and temperature-hardened cir-
cuits [333, 335, 405], and multifunctional and polymorphic gates [304]. In the autonomous and
self-adaptive domains, robot and cache controllers [189, 190, 351] [11], image compressors [343],
laser calibration circuits [159], pattern matching systems [182] [9], and error recovery [155,251,352]
have been within the focus of EHW. The many facets of EHW are accompanied by its paradigm
simplicity: the continuous evolution of reconfigurable hardware.

This chapter has five parts. Section 3.1 gives a detailed view of electronic Evolvable Hardware.
The second section starts with the introduction of digital reconfigurable hardware and presents
original and prominent experiments in this area. Section 3.3 illustrates work on analog Evolvable
Hardware showing two transistor- and a operational amplifier EHW architectures. Cartesian genetic
programming (CGP) and its extensions are presented in Section 3.4. Finally, Section 3.5 summarizes
the results and outlines the challenges of Evolvable Hardware.

3.1 The Basic Idea

Evolvable Hardware (EHW) is the continuous optimization of reconfigurable hardware. The classical
notion of EHW relies on evolutionary algorithms [163] for adaptation. The evolutionary cycle, as
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Figure 3.1: Evolving Hardware: Applying evolutionary algorithms to reconfigurable hardware.

illustrated in Figure 3.1, starts with a set of candidate solutions, encoding, e.g., a Boolean logic
circuit. In the first step, according to Algorithm 1, the candidate solutions are used to generate
offspring individuals. To this end, operators inspired by Nature, such as mutation operators and
recombination operators, are employed. In the world of Boolean logic circuits, mutation can be
interpreted as the modification of a connection or a function gene. Recombination is the making
of an offspring individual by blending genetic material from parents. When recombining Boolean
circuits, the offspring individual inherits its parents’ structures, such as wires, gates, and complete
subfunctions.

In the second step, the performance of the new population is evaluated. To this end, each candidate
solution needs to be evaluated regarding some objective functions. From the biological perspec-
tive, this function is often referred to as the fitness and is therefore subject to maximization. In
order to compute the fitness, the genotypes typically have to be transformed to the configuration
language of the reconfigurable hardware device employed. This step might be easy, when the geno-
type’s abstraction level matches the device’s configuration structures. Otherwise, finding an efficient
genotype-to-phenotype mapping and with it the right genotype abstraction level is of the utmost
importance for the computational complexity of the optimization algorithm. In Figure 3.1, the
Boolean logic circuit is mapped to an FPGA by undergoing logic synthesis. The fitness can also
be evaluated by simulation. Additionally, the genotype-to-phenotype mapping complexity can be
reduced by implementing reconfigurable architectures on top of FPGAs, matching genotype and
reconfiguration abstraction levels more tightly. It is important to mention that the behavior of the
individual’s hardware implementation typically corresponds to the behavior encoded in the geno-
type, but does not have to. This can be due to an incomplete modeling of the reconfigurable device.
Additionally, hardware defects might cause differences between the modeled and the actual hard-
ware. The intriguing property of EHW is that such inconsistencies do not have to be treated in a
special way. The nature of evolutionary algorithms allows us to handle properties of the optimized
domain which are not modeled, or only loosely and implicitly given, as it typically focuses solely on
the solution’s behavior and not on its structure. Whenever the hardware instantiation might not
exactly match the function described by the genotype, fitness evaluation has to be executed by the
very same hardware that is going to execute the future solution, to ensure the validity of the fitness

28



3.1. The Basic Idea

evaluation.

After the fitnesses have been evaluated in Figure 3.1, the evolutionary algorithm uses the perfor-
mance numbers to establish a partial order relation in the next step. According to this relation
and often combined with additional heuristics, individuals contributing to the next generation are
selected. This finishes the evolutionary algorithm cycle and the next EA iteration can be started
again.

The illustrated cycle of hardware evolution is a prerequisite for Evolvable Hardware. Generally,
hardware that is designed by evolutionary optimization algorithms is referred to as evolved hard-
ware. Extending evolved hardware by a continuous modus operandi and, as a consequence, by
reconfigurable hardware, defines the area of Evolvable Hardware. With the additional temporal
aspect, the scope of evolved hardware can be extended to adaptation tasks. The common EHW use
cases are indicated by:

• Input data distribution dependent functions: When considering a class of algorithms
that assumes that the input data obeys a specified distribution, later changes in the dis-
tribution of the data might have an impact on the algorithm’s performance. Two different
subclasses can be identified here: functions that can be solved perfectly given enough re-
sources, and functions with no known perfect solutions. A hashing function belongs to the
first subclass. It can be solved perfectly with the exact knowledge about the input data
distribution and sufficient resources. However, precise input data distribution is not always
known a priori. Additionally, a perfect hashing function may become very large and might be
dismissed in favor of a compact version that has an acceptably small functional loss from the
optimal case. A special case in this subclass consists of larger functions with behavior that is
independent of the distribution of the input data. While probably having a general solution,
compact and specialized implementations might restrict the considered input data to some
subsets, and therefore become distribution dependent.

A member of the second class is for instance the lossy image compression. Given a certain
image quality loss factor, to the author’s knowledge, there is no efficient method to compute the
smallest lossy image representation possible. The goal of an optimization algorithm searching
for an “optimal” image compressor is not to find “the best” but to find a “sufficiently good”
solution.

While probably identically formalized, the optimization goals for both subclasses can be in-
terpreted differently. When given enough resources, the functions from the first subclass have
optimal solutions. Hence, the objective function is bivalent, indicating whether an optimal or
correct solution has been found or not. However, restricting the resources makes it difficult
and probably impossible to reach the optimum. The optimization goal interpretation of the
second subclass, the approximation to some sufficiency level, can in this situation also be
applied to the first subclass.

With input data distribution changes coming from the environment, the general motivation
for EHW’s continuous optimization is the immediate reaction to these events. The search for
a perfect solution, if it exists, or a close approximation, is only secondary.

• Deteriorating effects within the computational resources: Faults in the computational
resources may have many causes: the shrinking chip structure sizes can make the electronic
components more sensitive to aging effects and disturbances from the environment. Radiation,
extreme temperatures, and power supply fluctuations may cause temporal and permanent
damages to a chip’s elements and make the complete device non-functional. Some of the
deteriorating effects can be elegantly compensated using the concept of Evolvable Hardware.
When assuming a reconfigurable chip area implementing an evolved solution, degradations
that induce an element’s malfunctioning can cause inconsistencies between the actual hardware
and its formalization. However, when having non-constructive evolutionary operators and a
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fitness definition based solely on the behavior of a candidate solution measured with the
very same computational resources as those experiencing the deteriorating effects, implicitly
given inaccuracies do not require the EA’s taking any additional measures. Non-constructive
EA operators do not have a concept about a correct and incorrect gene behavior. Instead,
changing the way some elements of the reconfigurable device work, even if not desired, can be
seen as a special kind of a mutation operator and has no impact on the general EA scheme.

• Changing system requirements: Sharing resources between multiple applications, energy
considerations and other system demands might motivate a change in, e.g., the solution’s re-
sources. Optimizing a circuit regarding, e.g., its size and speed, requires a redefinition of the
objective function and a multi-objective EA. Additionally, while changes in the environment
typically happen gradually, allowing for adaptation by the means of evolutionary optimiza-
tion, changes in system resources are single events in time with a potentially large impact on
a circuit’s configuration. When drastically reducing the maximal usable area or the maximal
propagation delay, the evolutionary process may need a substantial amount of time before
generating a new and valid solution. In this situation, the property of modern Pareto-based
MOEAs to evolve and propagate a general covering of the objective space helps to overcome
this issue. In case of an instantaneous requirement change, an individual respecting the re-
source constraints while showing the highest functional quality can replace the actual solution.

• Incompletely specified systems: This use case does not strictly rely on the continuous
modus operandi. When using EHW for compensating errors in the computational resources,
the genotype precisely describes the utilized hardware at system start. Differences between
the hardware and its model may occur later on. EHW can also be applied to situations where
the precise working of the hardware is unknown or its functioning is only approximately
modeled. A prominent application domain are analog reconfigurable circuits. Modeled by
idealized behavior, their actual parameters such as gain, slew rate, and frequency behavior
may vary significantly. Even so, as evolutionary algorithms typically are not constructive, this
application domain is well suited for EHW systems.

The presented use cases show an EHW classification by application scenarios. Torresen presented
a fine-grained taxonomy considering algorithmic elements, technical and technological details, and
the modus operandi in [363]. Gordon and Bentley [137] span the EHW space along three dimensions:
the level of abstraction, which describes the genotype’s building block granularity, the bias imple-
mentation, that specifies an EA’s application-specific and systematic knowledge, and the hardware
evaluation process, differentiating between hardware- and software-based fitness evaluations.

Figure 3.2 presentS a chronological overview of the most visible and original EHW publications. The
illustrations start with the work of Higuchi et al. [163] and de Garis [93] in 1993. The contributions
marked in bold represent surveys covering a coherent topic or the general development of EHW.
Initially, genetic algorithms and reconfigurable digital electronic devices encompassed the basic
notion of EHW [93,163,363]. While still predominant, in recent years, new hardware domains and
algorithms have been adopted by EHW. The common research directions of EHW are:

1. the creation of new EHW architectures with novel hardware building blocks and genotype
encoding models,

2. the improvement of digital EHW’s evolvability and scalability by

• the analysis of new algorithms, evolutionary operators, and general techniques, and

• the employment of hardware and application specific knowledge,

3. robustness enhancement of deteriorating and aging effects within reconfigurable fabrics, and
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4. the investigation of new hardware domains for their suitability for the Evolvable Hardware
paradigm.

The focus of our work lies on the first two mentioned topics.

3.2 Digital Logic Evolvable Hardware

To prepare for the discussion of Evolvable Hardware architectures, this section introduces reconfig-
urable devices for the digital logic domain.

3.2.1 Reconfigurable Logic Devices
Today’s popular reconfigurable logic devices can be roughly divided into the families of simple
programmable logic devices (SPLD), complex programmable logic devices (CPLD), and field pro-
grammable gate arrays (FPGA). These families are distinguished by properties such as the com-
plexity of the implementable circuits, the granularity of the functional blocks, input–output (IO)
capabilities, memory sizes, and programmability. The application range spans from simple com-
binatorial circuits to multi-processor systems. This chapter starts with the motivation for PLD
architectures from the perspective of digital logic design.

3.2.1.1 Simple Programmable Logic Devices
Any Boolean function has a unique representation by its minterms. To give an example and clarify
the definitions, let us consider the function f(a, b, c) = a(b + c). The corresponding truth table
identifies M5, M6, and M7 as the minterms of f :

a b c a(b+ c) minterm notion

0 0 0 0 āb̄c̄ M0

0 0 1 0 āb̄c M1

0 1 0 0 ābc̄ M2

0 1 1 0 ābc M3

1 0 0 0 ab̄c̄ M4

1 0 1 1 ab̄c M5

1 1 0 1 abc̄ M6

1 1 1 1 abc M7

Alternatively, f can be rewritten as

f = a(b+ c)

= ab+ ac

= ab(c+ c̄) + a(b+ b̄)c

= abc+ abc̄+ abc+ ab̄c

= M7 +M6 +M5.

The presented general sum-of-product representation has a regular structure of n-ary conjunctions
joined by a disjunction. The SPLD architecture is based on this structure, as shown in Figure 3.3.
For any of the n inputs and their negations, a 2n-input AND gate calculates a single minterm.
A subsequent OR combines the outputs of multiple ANDs. To define the function of an SPLD,
the interconnections on crossing points of the SPLD input lines and AND inputs, and the ANDs’
output lines and OR inputs are programmable. Interconnection fuses can be set at least once after
device manufacturing. Depending on the SPLD family, the device can also be manufactured with
a specific or fixed programming for either the AND-planes or the OR-planes. For more complex
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2006

2007

2008

2009

2010
Kaufmann et al.: Online Architecture Adaptation [14]
Kuyucu [205], Harding et al.: Developmental CGP [150]

Kaufmann et al.: Evolvable Caches [11]

Lakshmanan: Reconfigurable Sensors [207]
Kaufmann et al.: Cone- and Age-based CGP Operators [6]

Clegg et al.: Real-valued CGP [72]
Schnier et al. [295]
Kaufmann et al.: Multi-objective EHW [1]
Torresen et al.: Adaptable Architecture [365]
Greenwood et al. [141], Trefzer [369]
Glette et al.: Evolvable Classifier [127], Smith et al.: Enzyme CGP [324]
Trefzer et al.: Multi-objective Op-Amp optimization [367]
Stoica et al.: Radiation Circuit Recovery [335], Sekanina: Polymorphic Gates [304]
Gordon et al.: Developmental EHW [136], Sekanina: Evolvable Components [302]
Langeheine et al., Evolving DACs [214], Becker et al.: Hexagonal FPAA [39]
Torresen [363], Ali et al. [26], Zebulum, High Temperature Evolvable FPTA [405,405,406]
Walker et al.: ADFs for CGP [380], Lohn et al.: Evolvable Antennas [231]
Torresen: Training Set Partitioning [362], Application-tailored EHW [364]
Lohn [230], Vinger et al., FIR Filter Design [379], Sekanina: VRC EHW [300]
Hartmann: Failure Tolerant EHW [155]
Tempesti et al.: POEtic Tissue [345]
Gordon et al. [137], Sekanina: Image Filtering [306]
Langeheine et al.: Evolvable FPTA Ring Oscillator [211]
Torresen: Incremental Evolution [361]
Stoica, Extreme Temperature EHW [333]

Coello Coello et al.: Multi-objective Fitness Decomposition [73]
Torresen [360], Miller et al. [254,255]
Kalganova et al.: Two-stage Fitness Decomposition [184]
Chongstitvatana et al.: Sequential EHW [68]
Yao et al. [396], Yasunaga: Classifying Sonar Signals [398]
Murakawa et al.: IF Filter Synthesis [259], Damiani et al.: Evolution of Hashing Functions [87]
Kajitani et al.: EMG Signal Classification [181], Manovit et al.: Sequential EHW [237]
Miller et al. [257], Miller et al.: Cartesian GP (CGP) [252,253,257]
Tanaka et al., Data Compression [343]
Koza et al.: Sorting Networks [201], Sipper et al.: Firefly [320]
Zebulum et al. [404], Torresen [359], Sipper: Evolvable Cellular Machines [319]
Koza et al.: Low Pass Filters [200], Stoica: FPTA EHW [331], Salami et al.: Image Compression [289]
Keymeulen et al.: Autonomous EHW Robots [189], Higuchi et al.: FPU EHW Architecture [228,260]
Higuchi [165], Higuchi et al.: Pattern Recognition [160,161], Thompson: Unconstrained Evolution [353,354]
Thompson: Fault Tolerant Systems [352]
Grimbleby: Analog Filters [144]
Thompson: Autonomous EHW Robots, Sequential EHW [351]

Hemmi et al.: Evolution at HDL Level, Sequential EHW [157]
Marchal et al.: Embryological Machines [238]

Higuchi et al.: Sequential EHW [162]
Higuchi et al.: Evolvable Hardware [163], de Garis: The Darwin Machine [93]

Figure 3.2: Evolution of Evolvable Hardware: Some visible and original work on Evolvable Hard-
ware considering applications, algorithmic innovations, failure tolerant systems, and architectures.
Publications marked in bold provide surveys on EHW and its subfields.
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and sequential circuits, ORs outputs can be fed back directly or through clocked registers to serve
as inputs. Popular SPLDs, such as the 16V8, 20V8 and 22V10, are produced today by companies
such as, e.g., Atmel and Lattice Semiconductor.

OR

OR

&
&
&
&

&
&
&
&

inputs

registered feedback

combinatorial feedback

outputs

Figure 3.3: A simple programmable logic device consists of an AND-plane and an OR-plane eval-
uating a sum-of-product representation of a Boolean function. An SPLD is configured by setting
the fuses on the wire interconnections. OR outputs can be fed back directly or with an interposed
register to allow more complex and sequential functions.

3.2.1.2 Complex Programmable Logic Devices
Complex programmable logic devices (CPLD) extend the idea of SPLDs by introducing a more
flexible programmable interconnect and larger and multiple logic block arrays. Additionally, memory
elements allow for synchronous and state-full designs. Figure 3.4 presents the generalized structure of
a CPLD. The central element is the programmable interconnect. It is enclosed by blocks containing
multiple, SPLD-like structures called the macro cells. Macro cells connect to the chip’s pins through
buffering IO blocks. Today’s popular CPLD manufacturers are, e.g., Altera with the MAX II and
Xilinx with the Coolrunner II families.

3.2.1.3 Field Programmable Gate Arrays
First introduced by Xilinx Inc. 1985 [79], a Field Programmable Gate Array (FPGA) is an array
of logic cells placed in an infrastructure of interconnections [291] (Figure 3.5). Together with the
Input/Output blocks, the general FPGA structure remained the same while the complexity and
versatility of the components increased over time. The following sections describe the primary
components, architectural elements, and the design tool flow of an FPGA.

Configurable logic blocks (CLB) are the basic reconfigurable components of an FPGA, con-
taining one or multiple universal logic cells. Logic cells are implemented as look up tables (LUT).
That is, with n inputs, a LUT is a 2n bit memory where every bit is separately addressable. Thus,
any Boolean function with n inputs can be realized by an n-input LUT. A LUT can also be used
as a memory element and as a shift register. Additionally, LUTs can be cascaded to form deeper
and wider memories, deeper shift registers, and wide multiplexers [393,394]. The CLB structure of
the popular Virtex FPGA family from Xilinx divides into three levels: multiple LUTs are joined in
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Figure 3.4: A complex programmable logic device consists of a programmable interconnect joining
multiple macrocells. Each macrocell is composed of SPLD-like elements.
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Figure 3.5: Field programmable gate arrays: Array of logic cells placed in an infrastructure of
interconnections [291].
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a slice, while two slices form a CLB (Figure 3.6). The general structure of a Xilinx Virtex-5 FPGA
slice is shown in Figure 3.7. It contains four 6-input LUTs that can be configured to implement four
pairs of 5-input LUTs. In the latter case, a pair of adjunct LUTs share the same inputs. LUT out-
puts can be routed to CLB outputs directly or through registers allowing for synchronous behavior.
In addition to the slice structures shown in Figure 3.7, LUTs may employ a specialized interconnect,
called carry chains, to implement wide arithmetic operators and logic gates. Carry chains allow fast
signal propagation between adjacent CLBs (cf. Figure 3.6). However, as only vertically adjacent
CLBs are connected by fast carry chain lines, this also restricts the placing of circuits using these
particular resources.

Virtex-6 FPGA CLB User Guide www.xilinx.com 7
UG364 (v1.1) September 16, 2009

Virtex-6 FPGA CLB

CLB Overview
The Configurable Logic Blocks (CLBs) are the main logic resources for implementing 
sequential as well as combinatorial circuits. Each CLB element is connected to a switch 
matrix for access to the general routing matrix (shown in Figure 1). A CLB element 
contains a pair of slices. These two slices do not have direct connections to each other, and 
each slice is organized as a column. Each slice in a column has an independent carry chain. 
For each CLB, slices in the bottom of the CLB are labeled as SLICE(0), and slices in the top 
of the CLB are labeled as SLICE(1).

The Xilinx tools designate slices with the following definitions. An “X” followed by a 
number identifies the position of each slice in a pair as well as the column position of the 
slice. The “X” number counts slices starting from the bottom in sequence 0, 1 (the first CLB 
column); 2, 3 (the second CLB column); etc. A “Y” followed by a number identifies a row of 
slices. The number remains the same within a CLB, but counts up in sequence from one 
CLB row to the next CLB row, starting from the bottom. Figure 2 shows four CLBs located 
in the bottom-left corner of the die.

X-Ref Target - Figure 1

Figure 1: Arrangement of Slices within the CLB
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COUTCOUT

CINCIN

Slice(0)

CLB

ug364_01_040209

Figure 3.6: Xilinx FPGA configurable logic block [394].

The routing architecture of common island style FPGAs is presented in Figure 3.8. The
functional blocks are connected to the routing facilities by connect blocks (CB). A variant of a CB
structure is presented in Figure 3.8. The interconnect has the topology of a 2-dimensional grid
with programmable switching boxes (SB) on the junctions. To improve the propagation delays
for non-local connections, some of the horizontal and vertical lines connect distant SBs, skipping
intermediate SBs. Figure 3.9 presents an example for regular and long lines having lengths of 1 and
2, respectively.

A different approach for minimizing the propagation delay is the hierarchical routing approach
implemented by the historical Xilinx XC6200 FPGA family and by some newer FPGA devices. The
XC6200 implements a uniform hierarchical routing approach which is based on the assumption that
a well-routed circuit has mostly local connections [156]. Thus, the FPGA is divided into clusters of
4×4 CLBs or cells, where only local routing is available. Connections between clusters are organized
hierarchically: a 4 × 4 group of clusters implements cluster to cluster communications by wires of
length 4, connecting the cluster’s border cells. Similarly, on the next hierarchy level, a 4× 4 group
of 4 × 4 groups of clusters is connected by wires of length 16. This scheme is applied recursively
forming larger groups and using longer wires. Figure 3.10 illustrates the routing scheme.

Extended logic elements. In addition to CLBs, modern FPGAs provide specialized functional
elements such as, e.g., memories, arithmetic operators, and processor units. While such elements
can be implemented using CLBs, a dedicated circuit is faster and more resource efficient. The
following list summarizes some of the specialized functional elements of modern FPGAs:

• Block memory: FPGA’s on-chip memory is typically implemented in two ways: as dis-
tributed RAM using LUT memory cells and as block RAM (BRAM) using dedicated memory
elements. Xilinx’ BRAMs are realized as cascadeable and dual ported RAMs with parametriz-
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5-input LUTs.
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Figure 3.9: Local and global routing [141]: To minimize propagation delays, connections between
distant CLBs can be implemented by wires spanning multiple SBs.

cell

cell

cell

cell

cell

cell

cell

cell

cell

cell

cell

cell

cell cell cell cell

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

16x16

local intercellular routing 
and length 4 fastlanes chip-length fastlaneslength 16 fastlanes

Figure 3.10: XC6200 hierarchical routing.

able data port widths. Additionally, BRAMs can be used as FIFOs and content addressable
memories (CAM).

• Arithmetic/logical units: The realization of complex arithmetic functions, such as multi-
plication, using CLBs is not very efficient [156]. To speed up the computation and to reduce
resource costs, modern FPGAs provide arithmetic/logical units distributed on the chip. The
functional set of the so called DSP blocks is typically limited to addition and multiplication.
DSP blocks of recent Xilinx Virtex FPGA devices additionally compute some Boolean and
comparator functions [393, 394]. Connected by fast communication lines, DSP blocks can be
efficiently cascaded for wide arithmetic computations.

• Processors combine memories and arithmetic/logical units into a computational pipeline.
Some Xilinx Virtex FPGAs implement ARM and IBM PowerPC variants running at multiples
of 100 MHz. The processors contain instruction and data caches and are powerful enough
to run full-fledged operating systems. In addition, the FPGA internal configuration port
is accessible within the processor address space. This encourages the design of run-time
reconfigurable hardware systems.

• I/O blocks: An FPGA’s versatility is reflected by the broad range of I/O functions it im-
plements. From simple high-impedance pull-up and -down pins to differential buses and high
speed transceivers with dedicated serial/parallel converters, FPGA I/O blocks implement a
large number of different communication standards. Additionally, multiple clock interface pins
allow for external frequency sources.

• Clock networks: Modern FPGAs implement multiple clock distribution networks for co-
herent clock bases across the chip fabric. The clock networks can be driven by integrated
frequency synthesis components, external clock sources, and user defined logic.
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Hardware description languages (HDL). In contrast to procedural software programming
languages, which are inherently single-threaded, HDLs are able to model the parallelism and time
behavior of concurrent hardware components. While initially introduced to capture and simulate
circuit behavior, HDLs were quickly extended to the procedure of circuit synthesis for manufacturing
and configuring electronic devices.

A circuit is described in prominent HDLs such as VHDL and Verilog by its behavior and its structure.
The behavioral description notes the input–output relations without getting specific about the
underlying implementation, whereas the structural description specifies the functional elements and
their connections, typically expressed by a schematic or its textual equivalent. HDLs support a
hierarchical design and composition process: a circuit can be partitioned into modules at different
functional levels.

The design flow of FPGA circuits typically follows the sequence presented in Figure 3.11. After
specifying the requirements, a circuit can be described by its structure and behavior in a HDL.
Afterward, the synthesis step breaks the description down to basic elements such as gates and
registers while obeying some restrictions on, e.g., the circuit size. The logic function of the circuit
is also minimized during the synthesis step. For this, the circuit description is mapped to the
register-transfer-level (RTL) representation. In the RTL, the circuits are formalized as a transfer
function between register stages [156]. RTL captures Boolean equations, memories, and connectivity
elements [79]. After the synthesis is completed, a circuit’s building blocks are rewritten to match the
actual hardware components of the FPGA. The mapping allows also for restructuring the circuit for
an efficient use of FPGA resources. The subsequent place & route step tries to arrange the mapped
building blocks and route the wiring. The automatic procedure typically uses a heuristic, as the
mapping has to consider device limitations on, e.g., the amount of building blocks, their spatial
locations on the device, the routing capacity, and signal propagation delays. The designer may also
add additional limitations on timing, placement, and routing. In the final step, the FPGA binary
program, called the bitstream, is derived from the placed and routed circuit. Loaded into the FPGA,
the bitstream configures the FPGA to implement the goal function.
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Figure 3.11: FPGA design tool flow. In the logic synthesis step, a circuit description is transformed
into a netlist. This step often also includes logic minimization. Functional simulation can be
applied after logic synthesis to verify the circuit behavior. In the technology mapping step, the
netlist elements are mapped to functional elements of a concrete reconfigurable device. Afterwards,
the circuit gets placed and routed. At this stage, circuit analysis may also reveal temporal aspects
of the circuit. In the final bitstream generation step, the FPGA configuration string is created.

Reconfigurable computing. The intriguing property of FPGAs is their reconfigurability, al-
lowing for the implementation of arbitrary Boolean functions of an appropriate size even after an
FPGA has been manufactured. Initially used for prototyping and low volume productions, FPGAs
quickly gained attention as a general computation platform [302]. Their inherent parallelism and the
raw speed of a hardware implementation promoted their popularity. FPGA configuration methods
can be divided according to whether the reconfiguration and computing are mutually exclusive and
whether a device can be reconfigured completely or partially.

• The multi-context FPGA concept manages several configurations in the device’s shadow
memory to quickly switch the currently computed function. Having the drawback of additional
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configuration data storage and control, reconfiguration of multi-context FPGAs is very fast,
taking only few cycles [156]. Furthermore, the loading of a new configuration does not interfere
with the computing of the currently instantiated function. Especially, for high performance
applications with large functions, which are partitioned into multiple FPGA-sized procedures,
fast switching is essential. Despite the performance of multi-context FPGAs reconfiguration,
today’s major share of the FPGA market is covered by single-context FPGAs. Resource
efficient and therefore cheap, single-context FPGAs match the common use case of sporadic
reconfiguration, where timing constraints are not tight.

• Partial reconfiguration allows modifying a fraction of the FPGA configuration without
touching the remaining area. Along with the instantiation of new functions, the method is
also used to speed up the update of an existent solution by renewing only the area that must
change.

An early partially reconfigurable device was introduced 1990 by Algotronix [25, 188] and
developed further by Xilinx [71, 391] as the XC6200. It offers fine grained reconfiguration at
the CLB and wire level. The architecture details and the complete reconfiguration procedure
were made publicly accessible. Today, Xilinx supports partial reconfigurability for the Virtex
FPGAs. Details of the internal circuitry and the bitstream format are not fully available to
the public. However, Xilinx provides specialized tool flow chains such as PlanAhead [392] and
the early access partial design flow [235] to generate partially reconfigurable bitstreams.

Atmel is another manufacturer building reconfigurable logic devices. With the FPSLIC family,
Atmel combines an embedded processor and a reconfigurable fabric on a single die [34]. While
only incomplete information from the manufacturer is provided on the reconfiguration details
of the FPGA, the bitstream format is almost fully unfolded and published [243]. Similar to
the XC6200 devices, the FPSLIC family allows for fine-granular reconfiguration on the CLB
and wire level.

With partial reconfiguration, while being a comprehensible concept, there are multiple issues
to be considered: the configuration time is proportional to the size of the reconfigured area.
For applications where reconfiguration should be executed frequently and where the latency
of reconfiguration is restricted, this reconfiguration time, of up to some milliseconds, might
become significant. Additionally, generating partial bitstreams is computationally demanding,
requiring the preprocessing and storing of all the partial bitstream variants for potential future
floor-plans.

With the ability for reconfiguration, FPGAs became general under the functional aspect. Dy-
namic reconfiguration extends FPGAs coverage additionally to run-time adaptable functions. With
the internally accessible configuration interface, FPGAs allow creating self-contained and compact
adaptable hardware systems.

3.2.2 Programmable logic array Evolvable Hardware
Higuchi et al. [163] demonstrated one of the earliest works on combining reconfigurable hardware
devices with genetic algorithms to create on-line adaptable embedded systems. The authors em-
ployed an electrically erasable and reprogrammable sum-of-product GAL16V8 device from Lattice.
Introduced in Section 3.2.1.1, the device is capable of computing up to 8 sums of products on up
to 16 inputs and their negations [160]. The generalized structure of GAL16V8 is illustrated in
Figure 3.12. It consists of two switch matrices selecting the inputs for the intermediate AND gates
and the AND outputs for the closing OR gates. The GAL’s logic function is given by configuration
matrices, which are treated in [163] as genotypes and exposed to the effects of evolutionary oper-
ators. The authors verified their concept on a 4-bit multiplexer, a 3-bit counter, and a 4-bit state
machine. In follow-up work [181], a streamlined custom chip EHW implementation was presented,
comprising a hardware GA, two larger programmable logic arrays with their associated input vector
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Figure 3.12: Generalized programmable logic array architecture employed in the experiments of
Higuchi et al. [163]

memories, and a NEC V30 processor. The device was used to evolve a muscular activity classifier for
a motorized upper limb prosthesis control. An even more sophisticated concept was introduced by
the authors in [160]: a fully parallelized hardware GA with a pool of reconfigurable PLAs, allowing
for a substantial reduction in computation time.

3.2.3 Unconstrained Evolution
Digital circuits are perceived predominantly from the deterministic perspective. However, Boolean
gate circuitry is build upon regular transistors with unique analog switching behaviors, connected
by wires of different lengths, capacitances, and propagation characteristics. A design space consid-
ering the analog facets of digital circuit elements is by far more complicated than its synchronous
counterpart and would hardly be considered by human designers. However, when using automatized
design tools, this domain becomes more accessible.

Thompson presented, in a series of publications [351–355], his work on unconstrained evolution.
Initially motivated by the construction of an evolvable robot controller, he focused on circuits that
derive their frequency domain behaviors from unique transistor properties and propagation delays
in latter publications.

We start with Thompson’s earliest work. Figure 3.13 presents the concept of an evolvable robot
controller. The controller comprises two ultrasonic sonars, catching echos of continuously trans-
mitted ranging impulses with a frequency of 5Hz. The detected signals propagate through two
genetic latches (GL) and a behavior state machine directly to the motor drivers for the left and
right wheels. An evolvable frequency generator provides the system clock. Evolution takes place at
three locations: the basic robot behavior is realized by an finite state machine (FSM) implemented
by a memory device. The memory content is subject to evolution. The GA also determines whether
a signal wired through a genetic latch will be clocked or proceed directly to the GL’s outputs. The
third entity that is subject to the genetic algorithm is the evolvable clock generator.

The focus of Thomson’s earliest publications is the evolution of wall avoidance [351, 352]. Based
on the introduced simulative results for the evolvable frequency generator, Thomson implemented
the idea on a real FPGA in [353]. The configuration bitstream of a Xilinx XC6212 [391] FPGA
became the subject of GA operators, acting at the bit level. As presented in Section 3.2.1.3, the
XC6200 FPGA family allows this kind of bitstream manipulation without consequences for the chip
integrity. In the first experiment, the author studied the evolvability of 1 kHz, 10 kHz, 100 kHz, and
1 MHz frequency generators. To this end, 10 × 10 cells in the upper left FPGA corner were used
to implement candidate solutions. The fitness was determined by evaluating the output frequencies
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Figure 3.13: Evolvable robot controller [351,352]: The robot comprises two ultrasonic range sensors,
two genetic latches (GL), a transition state memory, and an evolved clock generator. The ultrasonic
signal generator pings at 5 Hz asynchronously to the remaining robot circuitry. Sonar return echos
are wired through GLs and the behavior memory directly to motor drivers. Evolution may configure
the GL latches to wire-through and latching modes.

for a period of one second. Similar to results from the initial publications, no secondary frequency
sources were used. The behavior of the evolved frequency generators was based solely on signal
propagation delays and transistor properties. The experiments showed convergent behavior for all
four settings.

For the second experiment, Thompson extended the previous circuit setup by an input pin, as
shown in Figure 3.14 (a). The GA’s objective function was redefined to differentiate between 1
kHz and 10 kHz input frequencies. To this end, one of the frequencies was applied to the input
pin for one-half second and a candidate solution’s frequency response was measured on the output
pin. The measurement was repeated in random order for both frequencies, so that every frequency
was measured five times. Figure 3.14 (c) shows the input frequencies and their responses for the
best solutions in the denoted generations. The analysis of the best evolved tone discriminator is
done by Thompson et al. in [355, 357]. The circuit is presented in Figure 3.14 (a). To identify
the nodes contributing to the discriminator’s function, in the first step all nodes are excluded that
do not lie on the signal propagation paths connected to the output pin. The result is presented in
Figure 3.14 (a). In the next step, a search algorithm tests all nodes as to whether they contribute
to the circuit’s output, by setting their function to a constant. Figure 3.14 (b) shows nodes that
cannot be clamped without affecting the computed function. Gray colored nodes are relays.

Figure 3.15 presents a schematic equivalent to the circuit in Figure 3.14 (b). The schematic can
be divided into three parts. The authors discovered that output changes happen only after the
input signal switches low. Thus, they focus their investigation on this time window. During an
input “1”, the gates of parts A and B become non-oscillating, configuring part C multiplexer to
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Figure 3.14: Evolving a 1 kHz / 10k Hz tone discriminator [353, 354]: Evolution takes place in
10 × 10 cells in the upper left corner of the XC6212 FPGA. Figure (a) shows the best solution
wires and nodes connected by a path to the output pin. Cell functions, while being also subject to
evolution, are omitted for clarity. Figure (b) pictures constant function nodes in gray that cannot
be clamped without affecting the circuit’s fitness. Figure (c) illustrates the fitness development for
the best individual in the initial, the 1400th, and the 3500th generation.

choose input’s “1”. Part C inverter chain realizes a 9 ns non-inverting time delay, forming during
a high-going input circuit’s output. The authors also observed that the circuit responds correctly
to short (200 µs) high-going pulses setting the output to “1”, while long high-going pulses reset the
output to “0”. The circuit “decides” in roughly 200 ns after a falling edge of the input, how long the
high-going pulse was. This can not be explained exclusively by Boolean logic behavior, as during
an input ‘ ‘1”, Parts A, B, and C as well, are in static states. After exhaustive PSPICE simulations
and a circuit reimplementation by discrete elements, the authors found the initial dynamics of part
A occurring after a falling input edge as decisive. They assume that some FPGA implementation
details such as “slow charge/discharge,” “unknown parasitic capacitances,” and “subtle property
of the VLSI medium” might relate to the length of the high-going input and therefore affect the
circuit’s decision.

In following work [356], Thompson and Layzell refined the tone discriminator experiment by di-
versifying the fitness evaluation. To this end, a candidate solution was evaluated by four FC6212
FPGAs, bonded in different packages, powered by different kinds of power supplies and at different
voltages. Additionally, the location of the reconfigurable area was altered and a 6 MHz clock pro-
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Figure 3.15: Evolving a 1 kHz / 10 kHz tone discriminator [353, 354]: Boolean logic equivalent
schematic of the solution shown in Figure 3.14 (b).

vided an external frequency source. The goal of the experiment was to evolve a robust design that
would be independent of the underlying hardware platform. In fact, the authors successfully evolved
a tone discriminator circuit that was operable on all FPGAs and could be correctly simulated by
PSPICE. However, while being a design lying completely in the Boolean logic domain, the circuit
has utilized variable delay components with an implementation that had not been fully understood
and analyzed by the authors. Additionally, the simulation showed the existence of transient spikes
in the circuit.

The initial tone discriminator experiment shows impressively the potential of circuit evolution. The
aspects are two-fold: An innovative circuit of only 32 cells was evolved, able to differentiate be-
tween events from a 200,000 times slower time domain. However, as all the degrees of freedom on an
FPGA were open to evolution, transistor properties, circuit placement, the FPGA’s technology and
manufacturing process, the kind of power supply, the interaction with the connected instruments,
the temperature and electromagnetic interdependencies with the environment, are unique and may
play a pivotal role for the evolved function. The solution evolved in the second tone discriminator
experiment, while still able to explore the unconstrained design space, is much closer to conven-
tionally engineered solutions. Still, the circuits from both experiments demonstrate properties and
design principles a human engineer is not yet able to employ efficiently.

From the conceptual point of view, the authors outline the following conclusion. In both tone dis-
criminator experiments, the evolution was able to explore the complete and unconstrained design
space. The genotype used by the GA modeled the deterministic world of an FPGA configuration
bitstream. However, for the complete genotype definition, implicitly given properties of the evalua-
tion platform and its environment had to be considered. In the first experiment, the evolution found
a solution in the unconstrained search space while in the second experiment, where the evolution
was also able to explore the search space beyond Boolean logic circuits, the evolution discovered a
deterministic solution. This solution, however, employed design elements a human designer would
avoid. The authors concluded that the discovered circuit might lie in a Boolean logic region that
is “beyond the scope of conventional design rules” [356] and that unconstrained evolution does not
necessarily require new design domains in order to create innovative solutions beyond the world of
human creativity.
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3.2.4 The POEtic Tissue Project
The POEtic Tissue Project (the ‘P,’ ‘O,’ and ‘E’ come from the concepts of phylogeny, ontogeny,
and epigenetics, to be explained below) is a joint project of the universities of York, Barcelona
(UPC), Glasgow, and EPFL, and extends the idea of evolutionary electronic hardware with the
aspects of organic growth and learning. The Evolvable Hardware principle is understood basically
as the development through inherited changes of the genotype. The ways biological entities such as
viruses, single- and multi-cellular organisms, and other life forms develop through time can roughly
be specified by three mechanisms:

• Replication and specialization of cells, creating larger structures such as organs and complete
organisms. This process is known as ontogeny and morphogenesis.

• Learning, as the interaction with the environment creates immunological, cognitive, and be-
havioral patterns. Learning is also the non-genetic inheritance of acquired characteristics.
The area of learning is subsumed under the category of epigenetics.

• Development through inherited changes of the genotype is summarized under the category of
phylogeny.

Phylogeny, ontogeny and epigenesis span the biologically inspired POEspace of development. The
goal of The POEtic Project is to investigate all these mentioned biological development principles
on an electronic platform. Consequently, POEtic tissue is realized by a grid of regular cells. Pop-
ulations, organisms, and organs are composed within the POEtic world from these cells, as shown
in Figure 3.16 (a). A single cell itself divides into “molecules,” as illustrated in Figure 3.16 (b),
universal and reconfigurable POE elements are able to implement the function of a LUT, a shift
register, a memory element, a configuration bitstream pipe, and an intercellular communication
interface.

The POEtic tissue classification within the POE space is shown in Figure 3.17. It is a logic sub-
division partitioned by the cellular separation. Each cell is a self-contained system able to carry
the genotype of the entire tissue. The creation of an individual begins with the selection of a set of
genes. This is done in the “genotype” layer, shown in Figure 3.17. The following step of organism
growth by differentiation and specialization is realized in the “mapping” level. Finally, “learning” as
the acquisition of knowledge during the cell’s lifetime is applied in the “phenotype” level.

The cellular reconfigurable architecture of the POEtic tissue project was used to investigate bi-
ologically inspired design principles in the examples of self-healing and repair [141, 227], organic
growth [372], and routing [349,350]. More information can be found in [197,285,345,346].

3.2.5 Evolvable Components
One of Sekanina’s main research subjects in the area of Evolvable Hardware is that of virtual
reconfigurable architectures. In his book, Evolvable Components: From Theory to Hardware Imple-
mentations, he proposes a component-style view and the decomposition of Evolvable Hardware to
allow circuit designers to use and benefit from modularized and self-contained adaptive elements.
To this end, general EHW building blocks such as the genetic algorithm, evolution control, input
data memories, and a computation model are encapsulated in a component, leaving non-general
elements such as the fitness evaluation and calculation as well as the triggering of the re-evolution
to the expertise of the application designer. To demonstrate his approach, Sekanina presented a
universal evolvable component implementation and verified it on multiple benchmarks from the
image processing domain.

The basis for Sekanina’s evolvable component is an adopted computational model of a generalized
FPGA. It comprises a two-dimensional array of functional nodes embedded into an interconnect.
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Figure 3.18: Evolvable components [300]: Adoption of a general FPGA as a computational model. In
a pipelined architecture, Configurable Functional Blocks may use results from the previous column
and values of the primary inputs. The primary outputs are taken from the CFBs in the last column.

Only feed-forward connections are allowed, restricting the design space to combinatorial logic. Any
node might connect to primary inputs and nodes in the previous l columns. Primary outputs might
connect to any nodes and to primary inputs. The precise formalization is done with the help of the
Cartesian genetic programming (CGP) model, described in Section 3.4.

Sekanina’s concrete implementation of a virtual reconfigurable circuit (VRC) is shown in Figure 3.18.
It is a pipelined realization with 29 configurable functional blocks (CFB), each operating on two 8-
bit wide inputs. The architecture comprises nine 8-bit primary inputs and one 8-bit primary output.
A CFB in column i might operate on the results computed in column i − 1 and on the primary
inputs. The architecture’s output is provided by the CFB in the last column. The pipelining stages
are defined by CFBs columns. The primary inputs are pipelined synchronously to the stages by
auxiliary register banks. The functional set of a CFB is presented in Figure 3.19.

The combination of the general genetic unit and the VRC with application-specific circuitry for
image processing application is presented in Figure 3.20. The genetic unit comprises an evolutionary
algorithm with a mutation unit, genotype memory, and a random number generator. Additionally,
a state machine controls the configuration and pipelined fitness evaluation of the VRC.

When considering image filtering to, e.g., reduce noisy pixels, a filter’s quality is typically quantized
by the visual difference between a noise free image and its filtered version, to which noisy pixels
are added beforehand. Image differences are measured in Figure 3.20 by accumulating the absolute
differences between the original noise free and the filtered pixels. Figure 3.21 helps clarify the input
data processing of Figure 3.20. For a given pixel, the image filter model uses its neighbor pixels to
compute the filtered pixel value. As illustrated in Figure 3.21, to filter the central pixel of a region
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Figure 3.21: Evolvable components [300]: Image processing with the reconfigurable functional array.
The filtered value for the central pixel of the input image is computed considering the pixel values
of its neighbors.

in the left-hand input image, six directly neighboring pixels are provided to the VRC, which then
computes the filtered value. When the image is stored linearly, pixel by pixel and row after row,
accessing it in the same order requires the introduction of row buffers, to be able to extract and
provide a contiguous image area to the VRC. In Figure 3.20, the extraction of a 3 × 3 image area
is therefore realized by two line buffers.

Figure 3.22: Evolving a salt and pepper filter [240]: The upper row shows original images after
randomizing 5% of the pixels to black and white. The lower row shows the filtered images. The
filter was trained on Lenna image.

The presented VRC and the complete architecture from Figure 3.20 can operate at 134.8 MHz. With
a pipelined VRC configuration and a fitness evaluation time for a 254× 254 pixels image of roughly
(254 − 2)2 · 134.8MHz−1 ≈ 0.48 ms, the genetic unit in Figure 3.20 has enough time to produce
offspring individuals in parallel to the fitness evaluation. Thus, the complete architecture can run
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the evolution at the highest frequency possible. The system clearly shows the performance benefits
of a register-reconfigurable architecture. While built upon generalized components, adaptation to
application domains is possible just by defining the data interfaces, the fitness metric computation,
and the re-evolution triggering.

Sekanina and his coauthors applied the presented architecture to evolve a wide range of image
filters [299,306,310,312,322,377]. Figure 3.22 illustrates noised and filtered images from [240]. The
evolvable filter was trained using the Lenna image and tested on the remaining images. Apart from
the image processing applications, Sekanina applied the concept of evolvable components to sorting
networks [301,303,305] and arithmetic circuits [307].

3.2.6 The Functional Unit Row Architecture
Glette and Torresen presented a run-time reconfigurable EHW architecture tailored to signal clas-
sification [127]. To facilitate online evolution, the classifier architecture can be controlled in its
function through configuration registers, similar to Sekanina’s VRC approach [309]. A GA has
been developed for the execution on a PowerPC 405 core of the Xilinx Virtex-II Pro FPGA fam-
ily [127] and on a MicroBlaze soft processor core available for a greater number of Xilinx FPGA
devices [131]. A more hardware-specific implementation, which saves resources by utilizing lower
level FPGA reconfiguration abilities, has been explored in [366].
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Figure 3.23: High level structure of the functional unit row architecture.

Glette’s Functional Unit Row (FUR) architecture has a general high level structure illustrated in
Figure 3.23. The input pattern is presented to a number of subfunctions called classifier circuits
(CCs). A CC is a function with a binary output indicating for an input vector a match or a
mismatch to the trained category. Several CCs classifying the same category are grouped into a
category detection module (CDM) and their outputs are fed into a counter summarizing the number
of matches. The FUR’s global decision is made by selecting the category with the highest number
of matches. In case of a tie, the category with the lower index wins.

The FUR architecture belongs to the family of ensemble classifiers. The idea of an ensemble classifier
is to train a set of diverse classifiers on the same training set and to combine the predictions. The
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Figure 3.24: Category classifier (CC) and functional unit architectures. CC outputs (Figure (a))
are connected to an n-input AND gate. Multiple CCs with a subsequent counter for activated CCs
make up a category detection module (CDM). The CDM with the highest number of activated CCs
determines the FUR classification decision. A CC consists of multiple functional units (FU), which
are the basic pattern matching elements of the FUR architecture (Figure (b)). An FU uses a data
MUX selecting which of the input data to feed to the functions “>” and “≤”. The constant c with
which the selected input data is compared, is given by the configuration lines. Then, a result MUX
selects which of the function results to output.

FUR architecture can also be seen as an extension of the early EHW architectures of Kajitani
(cf. Section 3.2.2) and Torresen [361]. Kajitani has used a single Boolean sum of products (SOP)
function to realize a CDM, while Torresen has utilized a two stage scheme of multiple SOPs and a
SOP subset selector for CDM implementation. The maximal number of activated SOPs in Torresen’s
architecture defines the global decision.

CCs in the FUR architecture decompose into multiple basic pattern matching elements—the Func-
tional Units (FU) (cf. Figure 3.24(a)). The input data is presented to each FU on a common input
bus. The outputs of FUs of a certain CC are fed into an AND gate. Thus, a CC reports a “hit” to
the according CDM counter only if all its FUs indicate a “match.”

The FUs are the reconfigurable elements of the architecture. Their configuration is captured by
the genotype. As illustrated in Figure 3.24 (b), the FU configuration encodes the input vector
and function selection as well as the function parametrization. The choice of the FU function is
not restricted, however, “>” and “≤” are selected as these functions have been shown to work well
throughout a set of experiments [127]. Altogether, the FU transfer function for an input data a, a
constant c, and the function selection bit s is defined by:

FU(a, c, s) =

{
s : if a > c
s̄ : else.

In this specific FU configuration, FUR’s classification principle is closely related to the classification
principle of decision trees. Decision trees realize decision boundaries with sections of straight lines
that must be parallel to the axes of the input space spanned by all input data elements. FUR replaces
DT’s hierarchical decision trees by enumerable decision forests. In Section 7.2, the similarity of both
classification principles will be demonstrated by similar recognition performances.

The FUR architecture implements n-point recombination and mutation schemes. For an efficient
implementation, the mutation operator first selects the number of mutations n and then randomly
selects n mutation locations within the genotype. The probability distribution of n is given by
Table 3.1.

The authors propose a specialized evolution scheme for the FUR architecture. Each CDM is evolved
separately, allowing for parallel execution. The evolution of a CDM is done incrementally. That
is, a single CC is evolved from scratch until it reaches some classification accuracy or a maximal
generation number. After that, the first CC is fixated and a randomly initialized second CC is
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Table 3.1: Mutation probability distribution for the FUR architecture [127].

number of mutations 0 1 2 3
selection probability 0.1 0.6 0.2 0.1

added to the CDM. The evolution now tries to improve the CDM’s overall classification accuracy
by evolving the second CC and stops if some classification accuracy or a maximal generation number
is reached. This scheme is repeated until the evolution of a complete CDM is finished. The authors
motivate the incremental evolution scheme by its faster convergence due to the reduced genotype
size undergoing evolution and the FUR’s ability to operate already after even one CC in each CDM
has been evolved.
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Figure 3.25: The FUR hardware implementation structure [127].

Figure 3.25 displays the FUR run-time adaptation architecture. The architecture splits into a CPU
running the evolutionary algorithm and two FUR implementations. The first implementation is used
by the EA to evaluate the fitness of candidate solutions while the second implementation runs the
best solution on real world data. The FUR architecture has been evaluated on different benchmarks
such as face recognition [128, 130, 131], sonar return classification [129], and the categorization of
electromyographic signals [7, 9]. Its performance has been proven to be similar to that of state of
the art methods such as neural networks and support vector machines.

In our work, we use the FUR architecture as a reference EHW system for comparison with our
methods (cf. Section 7.1). Additionally, we use the FUR architecture to investigate run-time
resource adaptation techniques in Section 7.2.

3.3 Analog Evolvable Hardware

Field programmable analog arrays (FPAA) are the analog world equivalent of FPGAs. Modern
FPAAs share with FPGAs the basic structure of functional blocks embedded in a configurable
interconnect. The functional nodes, the Configurable Analog Blocks (CAB), contain an amplifier,
which can range from a single transistor to a complex operational amplifier. For some architectures,
as will be presented later in this section, the node characteristics are configured by selecting the
amplification element from a pool of amplifiers with different configurations. More popular, however,
is the amplifier parametrization by tuning the surrounding circuitry, consisting of adjustable resistors
and capacitors. FPAA manufacturers produce CABs tailored to some applications such as high
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Figure 3.26: Evolution of the FPAA: Time-line combined from [99, 207] and [209]. Work marked
by bold is described in this section. Acronyms. FPMA: Field programmable mixed-signal arrays,
FPTA: Field programmable transistor arrays, PSOC: Programmable system on chip, OTA: Opera-
tional transconductance amplifier, and FPAD: Field programmable analog device.

precision and linear sensor processing and power efficient and high speed arithmetic calculations.
Applications subject to rough conditions such as high radiation doses and temperature changes
are an intriguing area for FPAAs. Here, radiation hardened FPAAs reduce the certification costs
by providing a platform for analog designs. Custom circuits on the contrary need to undergo
the complete qualification process for every new design. Additionally, circuitry that is capable
of compensating for large temperature changes can be placed outside a temperature stabilized
electronics box, next to the sensors and actuators, saving on wiring and weight.

The evolution of configurable analog devices is presented in Figure 3.26. It covers different flavors
including gain amplifiers, filters, potentiometers, capacitors and mixed signal devices. The following
sections present three architectures with functional elements consisting of single transistors, transis-
tor arrays, and operational amplifiers. Each section also summarizes the architecture’s application
within the EHW domain.
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3.3.1 Heidelberg Field Programmable Transistor Array

The architecture developed by Langeheine et al. [211] belongs to the family of the Field Pro-
grammable Transistor Array (FPTA) devices. It consists of 16 × 16 CABs surrounded by 64 I/O
blocks, as shown in Figure 3.27. The chip supports only local routing, thus, CABs are connected
to each other and to the I/O cells through ports on their north, east, south, and west borders. A
CAB implements a pool of transistor geometries from which one transistor is selected. Transistors
may be 0.6, 1, 2, 4, and 8 µm long, and 1, 2,. . . , 15 µm wide. A transistor’s gate, source, and
drain can be connected to, respectively, any of the CAB’s routing channels, to Vdd, and to GND.
In addition, each CAB has a unity gain buffer for monitoring the east, south, drain, and source
voltages. CABs implementing P- and N-channel transistors are arranged in a checkerboard order.
The routing matrix of a block uses six switches to implement a parametrizable interconnect be-
tween cardinal communication ports. The architecture of a CAB is presented in Figure 3.28. Its
configuration requires 22 bits: 7 bits for the transistor geometry selection, 3 × 3 bits for transistor
terminals routing, and 6 bits for the routing matrix. The complete configuration stream sums up
to 768 bytes, when using 3 byte for configuring a single CAB.
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Figure 3.27: Heidelberg FPTA [211]: The architecture consists of 16 × 16 CABs implementing
P- and NMOS transistors. For local routing, CABs connect on their north, east, south and west
borders.

Creating solutions for analog circuit domain needs is typically more complicated than designing
digital circuits. Moreover, tools for analog design are not as versatile and powerful as their digital
world counterparts. This lies in the complexity of the design space where the component properties
depend on a large set of factors, such as the manufacturing process, component geometry, tolerances,
parasitic influences, temperature effects, and aging. Therefore, analog circuits often require, for their
initial and recurrent calibration, compensation for such drifting factors. Human designers compose
complex solutions typically from catalogs of well known circuits with widely understood behavior,
for instance, filters, amplifiers, frequency multipliers, and synthesizers. While one of the goals of the
Heidelberg FPTA is raising the evolvability of analog designs by means of sophisticated algorithmic
methods [367, 368], its central motivation is the search for surrogate solutions for fundamental
engineering designs and for new design principles [210–212,214,367].
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Figure 3.29: Heidelberg FPTA evolving operational amplifiers [367]: Evolved N- and PMOS op-
erational amplifiers. Gray transistors are clamped inactive. The evolution succeeded in evolving
understandable and device independent circuits.
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The Heidelberg FPTA has been used to evolve ring oscillators [211], Boolean gates such as AND,
NAND, OR and XOR [212, 213, 368], DACs [214], and operational amplifiers (OA) [367, 369]. We will
introduce this last, as it includes elements relevant to our work.

Operational amplifiers are basic elements in analog circuit design. While there exist multiple im-
plementation variants, the authors aim in their work at the discovery of new operational amplifier
circuits [367]. An important condition is the creation of generalizable circuits, which behave the
same in the simulation as in the real physical devices. The complexity of analog circuit design is
reflected in the selected optimization algorithm. An OA is described by a vast set of parameters. It
contains, e.g., the maximal operating frequency, slew rate, harmonic distortion, and phase shift. The
authors note nine different OA parameters and formalize them as the optimization objectives for
a Pareto based MOEA. To apply a general GA scheme, the authors define mutation and crossover
operators acting on the two-dimensional FPTA grid. An additional enhancement of their NSGAII
based [98] MO Turtle-GA is the specialized selection scheme. The authors divide the objective set
into two subsets. While the non-domination set decomposition follows the NSGAII scheme, the
differentiation within a non-dominated set prioritizes those individuals excelling in the objectives
from the subset of the primary objectives.

Figure 3.29 shows the evolved N and PMOS operational amplifiers. The table in the upper left
corner presents that transistor’s geometries. Transistors drawn in grey are clamped inactive. The
evolution’s success is measured by the number of objectives in which the best evolved solution
outperforms a human designed reference OA. In 20 runs, the evolution was able to evolve one
NMOS and one PMOS operational amplifier that were better in 5 and 6 objectives than the reference
OA, respectively. In further work, Trefzer raised the number of evolutionary runs to 50, finding
solutions better than the reference OAs in 9 and 6 objectives for the NMOS and PMOS cases,
respectively [369].

3.3.2 NASA Field Programmable Transistor Array
Originally developed by Stoica [331, 332, 336], the NASA FPTA has a similar architecture to that
of the Heidelberg FPTA. It is a reconfigurable analog device comprising a two-dimensional mesh
of transistor cells. Reconfiguration is done by setting conductive switches between the transistors
and passive elements of a cell. Extracellular routing connects the cardinal neighbor blocks on their
north, east, south, and west borders bidirectionally. Altogether, three versions of the NASA FPTA
were developed [338]. The essential difference from the Heidelberg FPTA, apart from the number of
active transistors employed simultaneously by a CAB, is the realization of the reconfiguration, which
for the NASA FPTA is based on the programmable routing and adjustable passive element nominals,
leaving the transistors immutable. The versatility of the NASA FPTA originates in its topology,
allowing for the implementation of a set of common analog circuits, such as two- and three-stage
operational amplifiers, logarithmic photo detectors, and Gaussian computational circuits [406].

In 2007, Stoica et al. [334] presented a successor reconfigurable adaptable architecture for analog
circuits tailored for space applications. By analyzing the existing solutions, the authors created
an architecture comprising coarse granular building blocks such as high voltage and low-offset op-
erational amplifiers, high speed comparators, and current sources able to implement a wide range
of popular circuits. The authors propose that their device demonstrate in the −180◦C to 125◦C
temperature range a component drift of less than 1% to 5%. Additionally, the architecture allows
tuning the component parameters online, emphasizing its adaptable behavior.

The motivation for the NASA FPTA is two-fold: At first, the creation of robust electronics for
harsh environments is a complicated task with a costly certification procedure. Optimizing the
weight of airborne and space vehicles requires placing the sensory front-end electronics outside
a central and temperature stabilized box to reduce the cabling. With a potentially very large
temperature spectrum, the circuit components have to have mutually agreed upon characteristics to
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compensate for each other’s temperature drifts. Such a design task is cumbersome but can be solved
by automatic tools. An optimization process typically uses simulation to derive the characteristics of
the candidate solution. Precise simulation, however, tends to become complex and computationally
expensive. Opting for a universal reconfigurable analog circuit device offers two crucial benefits:
A candidate solution can be evaluated directly on the target hardware. This is often much faster
than a simulation, and is perfectly precise. Additionally, a universal reconfigurable device needs to
pass mechanical, structural, and some other tests only once, reducing the time and costs of the final
certification procedure. Stoica reports in his initial work [331,332] that the evolution of circuits for
the FPTA-0 was carried out on 256 computing nodes running a parallel genetic algorithm package
PGAPack and a SPICE 3F5 circuit simulator. Later on, a board-level streamlined evolvable system
comprising a TI 320C6701 DSP running a genetic algorithm and an FPTA-2 reconfigurable device
reduced the computation time by roughly four orders of magnitude [337].

The second motivation for the NASA FPTA is the potential to create circuits with the ability to
compensate, using the very same and uniform method, for degrading effects in silicon and component
characteristic drifts during the complete system life time. Long term (100+ years) space missions
face, apart from ionizing radiation, also silicon aging. Additionally, exploration missions to the
surfaces of, e.g., Neptune, Triton, and Pluto, need to cope with temperatures as low as -220◦C
and even lower. The surface temperatures of Venus, in contrast, climb as high as 470◦C [405,
406]. A system that uses the very same adaptation method to autonomously compensate for these
challenges and to approach situations that have not been considered before the mission starts, offers
an intriguing adaptivity concept.

Designed for space applications, the NASA FPTA device family has been evaluated in experiments
investigating functional recovery under temperature drifts and radiation effects. The experimental
scheme commonly used in the published work starts with an engineered or evolved solution created
at regular temperature and radiation dosages. Afterward, the temperature is changed dramatically
or the radiation is set to a high dosage. Then the evolutionary process is started, to recover
the circuit functionality. In [333, 338, 405, 406] the authors report on high- and low-temperature
experiments evolving Gaussian shape curve generators, low and high pass filters, half-wave rectifiers,
operational amplifiers, controllable oscillators, NANDs, and NOTs. Figure 3.30 illustrates an example
of an evolvable NOR. Engineered to operate at 27◦C (Figure 3.30 (a)), the temperature is increased
to 326◦C, causing the circuit to fail (Figure 3.30 (b)). After starting the evolutionary optimization
process, the behavior of a NOR is restored (Figure 3.30 (c)). The authors mentioned, however, that
the solutions might become inoperable when the initial conditions are re-established and might
therefore need re-evolution [338]. Besides experiments with temperature resistant circuits, the
corrosive effects of radiation has been investigated on the examples of drivers, inverters, half-wave
rectifiers, NAND gates, and 4 bit DACs [335]. In all the experiments, evolution successfully restored
the functionality.

3.3.3 Lattice ispPAC
The lattice in-system programmable analog circuit (ispPAC) devices [216] offers reconfiguration on
the super-transistor level. The chip family employs configurable elements, the PACblocks, com-
prising instrumental, wide band linear and rail-to-rail amplifier gain stages, precision active filters,
and DACs. The on-chip building blocks can be cascaded by the means of the analog routing pool
(ARP). Moreover, ARP allows routing PACblock signals to various chip pins. The PACblocks
themselves have a fixed topology composed from PACells—amplifiers and programmable passive el-
ements such as resistors, switches, and capacitors. Figure 3.31 (a) presents an exemplary ispPAC-10
architecture [217]. The chip implements four identical PACblocks. Each PACblock comprises two
differential instrumental amplifiers, a summation amplifier with a switchable feedback resistor, and
a programmable capacitor. Figure 3.31 (b) illustrates the PACblock architecture. The gain of the
input amplifiers is adjustable from -1 dB to 10 dB in 1 dB steps and the capacitor is tunable within
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Figure 3.30: NASA FPTA-0 [338]: Figure (a) and (b) show the input and output behavior of a
regular NOR gate implemented on the NASA FPTA-0 device at 27◦C and 326◦C, respectively. After
observing degradations at 326◦C, a genetic algorithm is started, recovering the NOR function. This is
demonstrated in Figure (c). The corresponding FPTA-0 circuit is presented in Figure (e). Figure (d)
shows the general NASA FPTA-0 transistor cell architecture [332].

the 1 pF to 62 pF range in 128 steps. The analog routing pool allows cascading the PACblocks
to higher-order transfer functions. Figure 3.31 (c) shows an example of the routing of a bi-quad
bandpass filter [217].

The ispPAC-10 device has been used by Greenwood et al. [140] to investigate aging and fault
injection effects on a third-order linear system possessing low-pass characteristics. To this end,
the filter circuit, together with a subsequent reconfigurable compensator transfer function, were
implemented on the device and connected to a computer driven signal generator and spectrum
analyzer. While the transfer function’s structure was fixed, the nominals of the capacitor and resistor
were subject to evolution. In two separate experiments, the authors investigated the compensation
of large and small bandwidth changes potentially caused by single but cardinal and continuous but
marginal events, respectively. The fitness was defined as the square distance between the frequency
responses of the reference and the evolved solutions. The differences are sampled at five frequencies,
modeling the general frequency response shape. In the first experiment, the 44.25 kHz -3dB point
of the reference low-pass was shifted to 53.0 kHz and 44.25 kHz, respectively. After 200 generations,
the evolution found for the first case a compensating circuit with a frequency response similar to the
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Figure 3.31: Lattice ispPAC 10 [216]: The architecture in Figure 3.31a is hierarchically decomposed
into four PACblocks, which itself are combined of PACells—programmable amplifiers. PACblocks
and chip pins are interconnected by an analog routing pool. Figure 3.31c shows an example of the
routing for a bi-quad bandpass filter [217].

original. The bandwidths of the original, defect, and compensated filters are shown in Figure 3.32.
It was also possible to find a compensating circuit for the 44.25 kHz case. In the second experiment,
the aging effects are simulated by successively changing the low-pass’s -3 dB point from 44.25 kHz
to 51.0 kHz and 57.0 kHz. While it was possible to find a solution for the first change, the filter’s
re-evolution when changing the -3 dB point from 51.0 kHz to 57.0 kHz did not succeed.

The authors conclude that architectural restrictions of reconfigurable analog devices in general and
of the ispPAC-10 device in particular had been selected carefully to give human designers and their
methods powerful and versatile platforms. Evolution, however, might benefit more when able to
utilize as many degrees of freedom as possible to find innovative solutions. Thus, it is argued,
the experimental setup complexity could be reduced and the quality of the discovered circuits
improved when stepping back from making architectural restrictions for reconfigurable devices based
on assumptions of human creativity and engineering design principles.

3.4 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a variant of regular genetic programming and has the
distinctive feature of utilizing a restricted directed acyclic graph (DAG) for genotype encoding.
Introduced in 1998 by Miller, Thomson, and Fogarty [257], CGP was motivated by digital logic
design for a generalized FPGA model that locates its functional nodes on a two-dimensional grid.
To reduce the simulation complexity, only combinatorial circuits are considered by CGP. Routing
cycles are avoided by only allowing feed-forward connections between the nodes. The term CGP
comes from its initial node numbering scheme, indexing nodes by their Cartesian coordinates [252].
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Figure 3.32: Compensating bandwidth changes with ispPAC-10 [140]: The evolution’s goal is to
evolve a compensating circuit tightly matching the frequency response of the original low-pass filter.
The -3 dB point at 44.25 kHz of the original filter was shifted due to injected faults in the discrete
component nominals to 53.0 kHz. The bandwidth change was successfully reverted by an evolved
compensatory circuit.

While CGP is primarily a formalization for a specialized computational model, it is also commonly
associated with a simplified, mutation-only version of evolutionary strategies. This has two reasons:
the crossover implementation acting on the genotype’s logical structure cannot be realized straight-
forwardly, as it has to consider the nonfunctional restrictions of the phenotype. Additionally, the
fitness landscape of digital circuits is often rough, favoring local-search related techniques.

This section presents CGP and its major revisions, as illustrated in the time line of Figure 3.33.

3.4.1 The Representation Model
Formally, CGP consists of nc×nr nodes, ni primary inputs, and no primary outputs. A node has nn
inputs and implements one out of fn = |F | different combinatorial functions on these inputs. While
the primary inputs and outputs can connect to any of the node’s inputs and outputs, respectively,
the connectivity of the node’s inputs is restricted. The input of a node at column c may only
connect to the outputs of nodes in columns c − l, . . . , c − 1 as well as to the primary inputs. The
levels-back parameter l restricts wiring to hardware friendly local connections. More importantly, as
only feed-forward connections are allowed, the creation of combinatorial feedback loops is avoided.
Figure 3.34 shows an example for a CGP model together with its parameters. The model in this
example has five columns, four rows, four primary inputs, and two primary outputs.

The CGP genotype consists of ncnr node genes and no primary output connection genes. The genes
are stored linearly, as shown in Figure 3.35. A node gene divides into nn connections and a function
selection gene. When configuring a phenotype’s grid node, the first connection gene configures the
first node input, the second connection gene configures the second node input, and so on. Linearly
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1998
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2008 Kaufmann and Platzner: cone- and age-based CGP operators [6]
Harding, Miller and Banzhaf: self-modifying CGP [152]
Clegg, Walker and Miller: real-valued CGP crossover [72]

Smith, Leggett and Tyrrell: Enzyme CGP [324]
Walker and Miller: automatic acquisition and reuse of subfunctions for CGP [380]

Miller, Thomson and Fogarty: Cartesian GP (CGP) [252,253,257]

Figure 3.33: Evolution of Cartesian genetic programming.
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Figure 3.35: A CGP genotype and its mapping to a spatial structure. Nodes colored gray contribute
to the primary outputs.

stored node genes are mapped to the two-dimensional grid columnwise. That is, the first node gene
configures the upper left node of the grid. The second node gene configures the next grid node
in the same column. When the configuration for all nodes in the first column has finished, the
following columns are configured in the same way. After finishing the grid configuration, the first
primary output connection gene configures the first primary output, the second primary output
gene configures the second primary output, and so on. An example of such a mapping is shown in
Figure 3.35.
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Figure 3.36: CGP upper size bound. Example of the different CGP genotype sizes when varying
the number of columns (nc) and rows (nr). This CGP was configured with eight primary inputs,
four primary outputs, an unrestricted levels-back parameter, and 4-input LUTs.

Genotype size. The length of a genotype is constant and given by ncnr(nn + 1) + no integer
values. The search space defining the bit length of a CGP genotype is estimated as follows: the
node numbering, as presented in Figure 3.35, uses global addresses. However, the actual coding
space of the node connection genes might capture only a subset of it. An input of a node in column
i, 1 ≤ i ≤ l, address ni primary inputs and (i − 1) · nr nodes in the preceding columns. Thus, its
effective coding requires dlog2(ni + (i − 1)nr)e bits. Single connection genes in other columns are
encoded by dlog2(ni+ lnr)e bits. A primary output is encoded by dlog2(ni+ncnr)e bits. A function
selection gene accounts for dlog2(fn)e bits. Altogether, when partitioning the CGP’s encoding into
ncnr(nn + 1) + no integers, the complete genotype, apart from non-coding sequences, is

|CGP(ni, no, nc, nr, nn, l, fn)| = nodlog2(ni + ncnr)e+ ncnrdlog2(fn)e
+nrnn

[
(nc − l)dlog2(ni + lnr)e

+
l−1∑

j=0

dlog2(ni + jnr)e
]

bits long. Some exemplary CGP genotype size developments depending on nc, nrr and nn are
presented in Figure 3.36.

Evolutionary strategies for CGP. Miller uses throughout his work a variant of a (1 + λ)
evolutionary strategy that allows the parent to proceed to the next generation only if it is strictly
better than all offspring. The offspring population typically amounts to either λ = 1 or λ = 4
individuals. The selection scheme is sketched in Algorithm 3.

An often used mutation operator for the CGP model is the one-point mutation, which randomly
selects a node and modifies either the node function or one node input. If the function is mutated,
a new function is randomly chosen from the function set. If an input is modified, one of the node’s
inputs is ripped up and reconnected to the output of a randomly chosen node in the previous
columns or to a primary input.
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Algorithm 3: CGP-ES-Selection(p,Q) - (1 + λ) ES variant used by Miller [252]
Input: parent individual p, offspring individuals Q
Output: new parent individual

1 Q′ ← select-best(Q) // select best offspring individuals
2 if p better than q, q ∈ Q′ then // is p better as some q ∈ Q′ ?
3 return p // parent strictly better than all offspring individuals
4 return random q ∈ Q′ // return random best offspring individual

General DAG equivalency. The CGP model defines a directed acyclic graph. In reverse, any
DAG G = (V,E) can be mapped to an appropriately configured CGP model. To do this, one first
has to identify all nodes in V that start and end a path. This set can be formalized as I ⊆ V ,
∀v ∈ V : (i, v) /∈ E, i ∈ I and O ⊆ V \ I, ∀v ∈ V : (v, o) /∈ E, o ∈ O. The nodes of I and O
are associated with the CGP’s primary inputs and outputs, respectively. The nodes on paths of
length 0 are associated without loss of generality to primary outputs. For the remaining nodes, a
distance is computed reflecting the maximal length required to reach a node on a path started from
a node in O. This distance establishes a partial order by grouping nodes with equal distances into
independent sets. Additionally, nodes with a distance i might only have edges to nodes in I and to
nodes with distances greater than i. G can now be mapped to CGP with nc = n = |V \ {I ∪ O}|
columns, nr = n rows, ni = |I| primary inputs, no = |O| primary outputs, and a levels-back
parameter l = n − 1. This mapping places nodes with a distance i into column nc − i + 1. This
mapping scheme requires n×n grid nodes and can be improved by reducing the number of rows to
one. The new mapping scheme places nodes with distance 1 into the highest and rightmost positions
in the nc × 1 CGP grid. Nodes of distance 2 are placed next to the previously placed nodes. This
procedure is iterated until all n graph nodes are placed in the n× 1 CGP grid.

Single-line CGP. The CGP’s orientation at the two-dimensional grid of a general FPGA entails
fragmentation when evolving n to m functions with m << n. For instance, the computation of a
general single-output function with 8 inputs requires a binary tree of depth 3. Such a tree would
fit onto a grid with 3 columns and 4 rows. To avoid inhibiting the evolution, the actual grid
size used during the optimization is configured to be slightly larger, comprising 4 columns and 5
rows. The search space describes 20 nodes, which is nearly three times as much as required to
describe the tree. However, the CGP can be configured as a one-row only model with a levels-back
parameter l = nc−1. The genotype length with a 50% overhead is now almost twice as small as the
previous configuration. The one-row CGP is popular as it has proved to be less computationally
complex [251, 399]. The drawback is the introduction of potentially non-local wiring, making the
mapping of an evolved solution to hardware devices more complex.

Differences from GP. When comparing CGP with the regular GP, three differences are essential:
A CGP’s graph size is restricted by the genotype’s length. While the actual fraction of the graph
contributing to the primary outputs might acquire and release functional nodes and has therefore
a variable size, the total graph size has a fixed upper bound. Avoiding excessive bloat in CGP
(defined as the genotype’s rapid growth in size over time), which is a common challenge in GP, here
needs no measures to be taken. Miller investigated in [250] the existence and effect of bloat in CGP.
He found that when using the standard CGP model and a one-point mutation, the presence and
effects of bloat were negligible. The second cardinal difference from GP lies in the way CGP reuses
partial solutions. While subtrees in standard GP may be referenced only once, no such restriction is
imposed on subgraphs in CGP. A subgraph may be referenced multiple times, making the automatic
reuse of partial solutions an inherent property of CGP. The last difference lies in the absence of a
canonical CGP recombination operator. Moving genotype substructures in CGP needs to respect
the non-functional phenotype restrictions. This makes the recombination complex and introduces
limitations on the transferable grid areas. The straightforward recombination that swaps nodes
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at the same positions between genotype does not correspond to the subfunction transfer of a GP
recombination. Attempts to create a GP-like crossover will be presented later on in this section. In
Section 5.1 we will introduce a GP-like CGP crossover that transfers coherent subgraphs.

Non-functional genotype properties. An important property of CGP is its implicit coding
of non-functional phenotype attributes. Genes within the CGP genotype do not explicitly encode
their spatial position in the two dimensional grid. Their location is given by their order within the
genotype and the corresponding mapping scheme specified by the CGP’s parametrization. Moving
a node’s gene within the CGP genotype so that it is mapped to a different column might violate
the levels-back parameter and introduce cycles. The main conceptual aspect of CGP that makes
genotype manipulation difficult is that the CGP blends a general DAG representing a function with a
spatial structure that expresses the non-functional phenotype characteristics. These non-functional
properties introduce massive redundancies within the functional graph space. Additionally, the
phenotype’s spatial characteristics limit the graph space, and therefore limit the space of encodable
functions. A criticism of CGP is that the encoding of non-functional phenotype characteristics
might be a source of inefficiency. This has led to the development of a placement-free representation
model [232,233], which will be presented later on in this section.

Neutrality. The function computed by a Cartesian genetic program usually does not use all
the grid nodes. The active nodes that lie in a subgraph indexed by some of the primary outputs
may become inactive after mutation and then return to being active during evolution. While
inactive nodes do not affect the computed function, their effect on the evolution and evolvability is
pronounced. The point mutation modifies all genes with an equal probability, without considering
their activity states. Mutations of active and passive genes are nevertheless treated differently, as
active genes’ mutations are subject to selection pressure while passive genes’ mutations may pass
without any restrictions. Therefore, guided search and randomization are the effects of active and
inactive gene mutations, respectively. As the evolution progress, inactive nodes may also belong
to clamped-off partial solutions. Hence, aside from being a source of randomness, inactive genes
represent also an “evolutionary memory.”

The interdependency of active and inactive genes in the context of a point mutation and the spe-
cific ES implementation have an additional aspect. A point mutation can be seen as a neighbor
relation. For the flat fitness landscape regions typically found near local and global optima, the
direct neighborhood under the mutation operator does not provide sufficiently diverse fitness values
to determine an uphill fitness direction. Deprived of any orientation, the search benefits more from
a forced yet unguided walk through the neighborhood, as implemented in Algorithm 3, than from
the regular (1+λ) ES with a more local search horizon. The unguided walk has proved to be highly
beneficial for CGP’s evolvability [252] and has been referred to by Miller et al. as “neutrality.” The
random genetic drift on a equipotential fitness plateau has multiple mechanisms. In an analysis by
Yu and Miller [400], the neutral mutation mechanism has be en decomposed by the redundancy
types employed. Mutating active genes without changing the fitness demonstrate two types of re-
dundancy. Semantically redundant elements such as OR(false,x) and AND(true,x) may be safely
introduced and removed without affecting the fitness. Mutation may also switch between func-
tionally redundant elements such as OR(x,y) and NAND(x̄,ȳ). These implicitly given redundancy
types are exploited by the evolution [400]. Inactive genes form the explicitly given syntactically
redundant elements. The evolution explores this space without an immediate impact on the fitness.
The authors extended the selection scheme presented in Algorithm 3 by a customizable neutral
drift and showed that the evolution reaches the optimization goal faster and more frequently when
opening the bounds of neutral drift as much as possible. In this context, the authors have classified
evolutionary search as “a sequence of neutral walks and fitness improvement steps.”

Hardware aspects of CGP. CGP’s versatility originates from its concept of a two-dimensional
functional block arrangement including a directed data flow. Two properties make CGP particu-
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larly suitable for FPGA based autonomous adaptive systems. CGP can be parametrized to precisely
match LUT-based FPGAs. Additionally, CGP encodes placement that reduces the mapping com-
plexity of a candidate solution to routing and bitstring generation. There are, however, some draw-
backs. On-chip evolution is a challenging task as autonomous systems have limited resources for
circuit synthesis [130,190]. With the lack of open FPGA bitstream architectures, custom routing and
bitstream generation tools are research challenges on their own. For that reason, several researchers
have resorted to virtual FPGAs: architectures with configurable registers [127,300,308,413,414]. For
reasons of resource efficiency, virtually reconfigurable CGP architectures utilize coarse granular and
application tailored functional blocks and routing elements [271,371]. Higher level functions such as
adders and multipliers have been used for data compression [289], cell scheduling [228], and robot
navigation [252]. Fine granular CGP is used mostly for benchmarking and for some applications
such as pattern recognition [153] [6, 9, 10], signal processing [240, 289, 299, 311, 322, 343], computer
design [87] [11] and robot navigation [151].

Challenges of CGP. CGP has three major challenging points:

• Scalability: For larger and real world applications, the CGP model in combination with a
fine grained logic lacks scalability. The excessive chromosome lengths lead to extremely large
search spaces. To tackle scalability, a number of approaches have been proposed, which can
be classified along three dimensions: The first dimension corresponds to the level of the hard-
ware representation. To improve scalability, we should give up structural models that are
too hardware friendly, and move towards behavioral models. Orthogonal to that, we see the
dimension of object granularity. We can evolve hardware using gates and wires, arithmetic
functions and buses, and eventually complete intellectual property cores and networks on
chip [228, 289, 306]. The third dimension relates to incorporating knowledge into the evolu-
tionary process. We can either evolve in a blind manner or try to leverage general, domain,
or application specific knowledge [74,362,380].

• Implicit genotype coding: The phenotype’s implicitly coded spatial structure introduces re-
dundancies and hampers structural evolutionary operators. In the next section we will present
an attempt to redefine CGP for a context free genotype encoding. In Chapter 5 we will also
present our work on structural operators for CGP.

• Genotype-to-phenotype mapping complexity: While this is not exactly a challenging point of
CGP, the absence of efficient and open synthesis tools for mapping CGP genotypes to the LUT-
based FPGAs required for virtually reconfigurable architectures reduces CGP’s attractiveness
fro compact and autonomous adaptable systems [127,302].

3.4.2 Enzyme Cartesian Genetic Programming
The drawback of implicit position encoding within the CGP genotype motivated Smith et al. [324] to
adopt the context free GP idea of Lones [232]. Lones’s Enzyme GP mimics the “metabolic pathway,
and the role of enzymes which express computational characteristics” by employing two concepts.
The inputs and outputs of a functional node carry signatures as illustrated in Figure 3.37 (a). If
an output signature of a node A closely matches an input signature of node B, then A and B may
establish a connection. The output shape of a node is a linear combination of inputs and function
shapes, as presented in Figure 3.37 (b). Consequently, the output shape represents to some extent
a node’s subtree. The primary input and output nodes lack function shape elements. Additionally,
the primary input nodes have no input shape components, and the output nodes, no output shape
components. The second concept concerns phenotype creation. Starting with the primary outputs,
the primary input and free nodes with output shapes most tightly matching the primary output
nodes’ input shapes are identified and docked. This is iterated until no dangling inputs remain. An
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Figure 3.37: Enzyme GP [233]: Figure (a) presents a functional node within Enzyme GP. Evolu-
tionary operators act on node shapes—signatures assigned to inputs, outputs, and the computed
function. A node’s output shape is a linear combination of inputs and function shapes. The compu-
tation is illustrated in Figure (b) [57]. The primary input and output nodes lack the function shape
elements. Additionally, the primary input, respectively, output nodes have no input, respectively,
output shape components.

example is shown in Figure 3.38. A mutation operator changes the function and inputs shapes of a
node.

Enzyme CGP adopts from Enzyme GP the way connections are established. Placed in Cartesian
ordering, functional nodes posses, similar to Enzyme GP, shapes characterizing the inputs and
outputs. The node inputs connect to the best matching outputs of nodes in the previous l columns
and to the primary inputs. The resulting graph may have nodes and primary inputs with dangling
outputs and nodes and primary inputs supplying multiple successive nodes and primary outputs.
An Enzyme CGP genotype can be mapped to an identically parametrized CGP genotype. While
Enzyme CGP is still not completely context free, it enables drawing wires in a more meaningful
way establishing a similarity metric on the function and wiring of a subgraph.

Smith et al. [324] verified Enzyme CGP on a denoising image filter application, obtaining similar
performance to that of regular CGP.

3.4.3 Recombination for Cartesian Genetic Programming
The structural GP crossover has no direct equivalent in CGP. The reasons lie, as described in
Section 3.4.1, in the implicit coding of non-functional genotype properties by the phenotype. A
GP-like crossover for CGP would have to operate only on graph structures.

There have been some attempts to introduce GP-like crossover for CGP. In [184] Kalganova and
Miller compare the performance of three types of recombinations: swapping i) single connection
and function selection gene, ii) all genes of a node, and iii) genes of all nodes in a row or column.
The authors found that there are no pronounced differences between the recombination types.
In later work, Miller et al. [252] questioned the general effectiveness of this kind of geometrical
recombination.

In a later work, Clegg and Miller [72] adopted the recombination principle from floating point GA by
computing a gene of an offspring individual as a linear combination of parent genes at the very same
genotype position. Although this recombination type still does not operate on graph substructures,
the authors could show that this kind of recombination significantly improves the convergence in
the initial evolution phases.

Cai et al. [57] present a study on crossover effects in the Enzyme CGP model. Enzyme CGP qualifies
wires by similarity signatures, reflecting to some extent the functions and wirings of the indexed
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Figure 3.38: Enzyme GP [232]: Phenotype creation starts with the primary outputs showing un-
matched inputs. Elements with the best matching output shapes are identified and connected to
the dangling inputs. This scheme is repeated until no unmatched inputs remain.

subgraphs. The signatures are also used to establish connections between matching outputs and
inputs. When transferring nodes of different parents to an offspring, the similarity signatures of a
node indicate to what kind of functions and subgraphs the node likes to be connected to. While
this crossover type does not operate on coherent substructures, it introduces a “soft” notion of
subfunction transfer. The authors show on the example of even-3 parity benchmark and a 2-point
crossover significant reductions of computational effort compared to regular CGP.

The search for an efficient CGP crossover operator is essential, as it opens the doors for global search
algorithms. Conventional genetic algorithms rely on information drift among individuals. This is,
e.g., a prerequisite for efficient Pareto based multi-criteria optimizers. In Section 5.1, we define
structural CGP crossover. To this, we select functionally connected nodes from parent individuals
to compose an offspring.

3.4.4 Automatic Acquisition and Reuse of Subfunctions in
Cartesian Genetic Programming

Automatic acquisition and reuse of subfunctions was applied to CGP by Walker and Miller in
2004 [380]. The modules within CGP are defined as compositions of regular grid nodes and extend
CGP’s functional set F . In order to avoid potential bloat, hierarchical modules are not considered
by the authors. The description of a module follows the syntax of CGP. Modules may have a variable
number of inputs and outputs with at least two inputs and one output. Similar to CGP, the module
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size has an upper bound. The syntax of the CGP genotype has been extended to embed a list
of module descriptions. Additionally, grid nodes indicate whether they are computing a regular
function or referring to a module. The method relies on a single-row formalization of CGP. The
authors called this model “Embedded CGP” (ECGP).

The automatic acquisition and reuse of modules is governed by three operators: compress, expand,
and module mutation. Compression replaces a number of nodes by a newly created module. All
inputs to module nodes that originate from non-module nodes or primary inputs become module
inputs, and all outputs of nodes in the module that target non-module nodes or primary outputs
become module outputs. The function and routing of nodes within the module remain unchanged.
Hence, applying the compress operator to a chromosome neither changes its fitness nor its function.
Importantly, nodes with subsequent node numbers in the one-row CGP configuration are selected
to form a new module. As a node can connect to any previous node and to the primary inputs (l =
nc− 1), the compress operator selects nodes randomly. Expand is the reverse process, and replaces
a module with its primitive nodes, again leaving the node functions and the routing unchanged. To
leverage the evolution of useful modules, expand is twice as likely to occur as compress.

Module descriptions are treated as separate and self-contained sub-genotypes or chromosomes which
are stored in a list at the end of the CGP genotype. When creating a module, the compress operator
transfers the module’s description to the modules list. The contributing grid nodes are replaced by
a single type I node referring to the module. Regular grid nodes that do not refer to a module are
referred to as type 0 nodes. Additionally, modules can also be introduced by a point mutation. While
mutation cannot create a new module description, it can replace a node’s function with a reference
to one of the already created modules. Such nodes are referred to as type II nodes. Only type I nodes
can be expanded and only type II nodes can be mutated by the point mutation operator. Modules
that are not referred to are removed from the modules list. The module descriptions themselves are
modified by the module mutation operator, which is essentially a standard CGP mutation operator
except that it operates on module descriptions rather than on the overall chromosome and can also
add and remove modules’ inputs and outputs. As no direct input to output connections within
a module are allowed, a module’s number of outputs are bounded by the number of the module’s
nodes, and its inputs, by nn times the number of the module’s nodes. Whenever unconnected inputs
appear during the alteration of a module’s inputs and outputs, they are reconnected by applying the
appropriate mutation operator. That is, unconnected inputs when adding an input and removing
an output of a module are fixed by the regular point mutation. Unconnected node inputs within
a module may occur when removing a module’s input. In this case, the module mutation reroutes
the dangling input within the module.

ECGP’s performance has been extensively compared to that of CGP and other kinds of evolutionary
algorithms. In [380], Walker and Miller demonstrate, with the example of an even parity function,
that with increasing input sizes, ECGP dramatically outperforms CGP. In a follow-up work, those
authors applied ECGP to the Hierarchical if-and-Only-if (H-IFF) and the Lawnmower benchmarks.
While for the Lawnmower benchmark, ECGP scales by a factor of up to 1.8 better than CGP,
on the H-IFF benchmark, CGP outperforms ECGP when the benchmark size increases. ECGP’s
module size became an additional focus in this work. The authors showed that ECGP is sensitive to
the modules’ sizes and that slight variations may lead to significant differences in the performance.
This was confirmed in subsequent work [382] on the H-IFF and symbolic regression benchmarks.

The introduction to CGP of the automatic acquisition and reuse of subfunctions provided dramatical
improvements in evolvability when applied to the evolution of Boolean circuits [380–382]. The
benchmark set comprising even parity functions, adders, and multipliers, is considered to have a
reasonable quantity of redundant structures that can be capsuled and reused. Despite its success,
module acquisition in ECGP is done without considering the inner structure of the genotype. From
the circuit design perspective, useful modules compute one or few results. A module’s inner nodes,
hence, contribute to a common output function and are therefore connected. Additionally, modules
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group related nodes in order to minimize routing. A new ECGP module creation scheme grouping
functionally related nodes into modules may come closer to how human designers decompose and
construct a circuit. The extraction and reuse of sub-DAG modules also becomes more similar to
GP’s subtree crossover.

In Section 5.2, we introduce automatic subfunction acquisition for CGP acting on meaningful sub-
structures. To this end, we consider compact subgraphs as cones and fan out-free cones for module
creation. Once structured module acquisition has been implemented, these methods can also be
used to realize a structural crossover operator.

3.4.5 Self-modifying Cartesian Genetic Programming
Self-modifying CGP (SMCGP) is a developmental form of CGP [152]. The SMCGP genotype differs
from a CGP genotype by using relative indexing and regular, primary input, primary output and “self
modifying” node types. The latter encode an instruction telling the genotype expression operator
to, e.g., add, delete, move or duplicate nodes, shift connections, and change node functions. Relative
indexing allows relocating genotype regions efficiently while preserving the routing. The original
genotype is considered as a generator element, which needs to be expressed. To this end, fitness
evaluation can be divided into a development phase and an evaluation phase. In the first phase, all
self modifying nodes are expressed once and a partial fitness is calculated. This is repeated until
no more self modifying nodes remain, or until the maximal number of iterations has been reached.
In the following phase, the fitness is obtained by combining the previously computed partial fitness
values.

The motivation for SMCGP is the evolution of generalizable solutions. That is, solving some
benchmark for a concrete n, where n is the input width, the hope is to be able to generalize
the solution for case n + 1. SMCGP facilitates this by initially solving a small instance of the
given benchmark and successively increasing and solving the next bigger instance, while using the
previously found solution. For the example of an even n parity function, SMCGP evolves first an
even 2 parity, then reuses the solution and evolves an even 3 parity. This is continued until a solution
for a concrete even n parity function is found. During the evolution the generalization is partially
verified, as for increasingly large n testing all input combinations becomes impractical. The general
behavior is later verified symbolically by induction. To this end, the “generator” genotype needs to
be simple enough to be processed by a computer algebra system or to be understood by a human.

Using SMCPG, general solutions for the even parity, adder, and π approximation have been
found [150]. For unstructured benchmarks, such as the classification of proteins, SMCGP is on
a par with CGP.

3.5 Chapter Conclusion

In this chapter we have illustrated the paradigm of Evolvable Hardware and presented some of the
most astonishing and dominant work in this area. We have also selected some examples showing
the challenges of EHW and helping us motivate our work, and putting our work in perspective.
This chapter also motivates our choice of Cartesian genetic programming. CGP closely mirrors,
with its two-dimensional node arrangement embedded into a feed-forward network, the architecture
of today’s fine- and coarse-granular reconfigurable devices.

To realize our idea of an EHW system able to react both to gradual and radical changes (cf.
Section 3.1), we will not only introduce new algorithmic methods, as described in Section 2.5, but
also create a novel and adaptable EHW pattern matching architecture (cf. Section 7.1), introduce
architectural adaptation for the compensation of resource requirement fluctuations (cf. Section 7.2),
and validate our approach with the optimization of processor caches (cf. Section 7.3).
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Chapter 4

Digital Logic Evolution Framework and Experimentation
Toolbox

Continuous hardware evolution is a rather novel research area without established experimental
tools. We have therefore created our own set of instruments allowing us to carry out experiments
and to develop new models and algorithms. We have created our tools to have versatile yet simple
software interfaces and equipped the tools with the flexibility to modify all major algorithmic and
architectural elements. From the algorithm engineering perspective, the toolbox facilitates a clear
decomposition of evolutionary algorithms, evolutionary operators, and genotype encodings, so as
to emphasize code reuse. To verify circuit evolution in a computationally limited environment, we
have implemented a subset of our methods for an embedded processor without an operating system.
All experiments in this thesis, except the experiments with the Functional Unit Row Architecture,
have been carried out using our toolbox.

Our toolbox has two parts: an algorithmic part and a tools parts. Within the algorithmic part,
programming interfaces for the creation of generate-and-test optimizers, evolutionary operators, and
genotype encodings are defined. This is described in Section 4.1. Programs from the tools section
help illustrate the search process, plot the results, carry out a step by step algorithm analysis, tune
parameters, and distribute the execution of the experiment. This part is presented in Section 4.3.
Section 4.4 concludes this chapter.

4.1 Framework Core Architecture

Once the concept of a novel evolutionary algorithm has been found, the algorithm performance needs
to be compared with established methods. This is required since today’s formal analysis tools cover
only a subset of generate-and-test schemes. To demonstrate an EA’s performance empirically,
it first has to be formalized within an optimization framework. For sound statistical results, the
algorithm then needs to be applied to a benchmark for a sufficient number of rounds. While
our research focuses on hardware evolution, we have created a general framework for evolutionary
optimizers. In designing this framework, we have put an emphasis on the following elements:

Simplicity: To minimize the implementation effort, we keep the data structures and the algorithm
interfaces easy to understand and as simple as possible. Additionally, logging, experiment execution
control, and the experiment save and restore mechanism are transparent to the algorithm designer.
The framework’s architecture, which is mainly defined by the data structure dependencies of a
generic evolutionary algorithm, is presented in Figure 4.1. It has the following parts.

• Controller class: Loads the configuration files and instantiates the population as well as the
evolutionary algorithm classes. After the initial steps, Controller executes the generate-and-
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ea: EvolutionaryAlgorithm
p: Population
generation: int

generate-and-test()

Controller

c: Chromosome[][]

Population

EvolutionaryAlgorithm

evolve(Population)

m: Mutation
r: Recombination
s: Selectionf: Fitness

Chromosome

Mutation Recombination Selection

op(Chromosome)
op(Chromosome, Chromosome)
op(Population)

rate: double

EvolutionaryOperator

Fitness

rate: double[]

Multi-objective Fitness

Figure 4.1: Framework core architecture.

test loop until a termination condition holds. The termination condition can be specified by
time, generation number, or a functional quality threshold.

• Population class: Stores a two-dimensional field of Chromosomes. The Population class
implements sorting, finding the best individual and logging.

• Chromosome class: This is a container class for the genotype data structures. It also holds a
reference to the Fitness class. Chromosome also implements the Fitness comparable inter-
face, allowing Population to sort a set of Chromosomes according to, for instance, the Pareto
dominance metric. The genotype-to-phenotype mapping is implemented by Chromosome.

• Operator class: Defines a template for evolutionary operators acting on single genotypes,
pairs of genotypes, and sets of genotypes. It also implements a real valued rate variable. The
following operators inherit the Operator class:

– Fitness: This class has the task of keeping the performance values for its Chromosome
valid. That means that the Chromosome class invalidates its fitness each time the genotype
is modified. The very next time the fitness of Chromosome is accessed, the Fitness class
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reevaluates it. While in its basic version the Fitness class supports only a single real
valued fitness metric, the multi-objective Fitness implementation supports also Pareto
based, ε-dominance, hyper-volume, kth nearest neighbor, and lexicographic ordering.
Any new performance metric definition typically need only extend the Fitness operator.

– Selection: This class picks a single or a set of parents from the parent population accord-
ing to the selection strategy. Popular selection schemes are, e.g., the fitness proportional
and tournament selections.

– Recombination: This operator typically takes a pair of individuals and returns their re-
combined offspring. The Recombination class is independent of a genotype’s encoding in
the genetic algorithm scheme, as the genotype is represented by a plain bitstring. How-
ever, when improving the recombination efficiency, the operator is often applied to the
genotype’s logical structures. In this case it becomes dependent on the implementation
of the Chromosome class.

– Mutation: The Mutation class takes a parent individual and returns its mutated version.
Similarly to the Recombination operator, Mutation is independent of the implementation
of the Chromosome class but may become dependent when acting directly on a genotype’s
inner structures.

Algorithm 4: Example of the (1 + 1) evolutionary strategy implementation.
01 public class OnePlusOneES extends EvolutionaryAlgorithm {
02
03 public Population evolve(Population parent_population){
04 LinkedList<Chromosome> child = new LinkedList<Chromosome>();
05 Population child_population = new Population();
06
07 // create new child by cloning and mutating the parent
08 child.add(m.op(parent_population.get(0)));
09
10 // offspring individual selection: do not use the
11 // selection operator, compute directly
12 // return child if it has the same or better fitness than the parent
13 if (child.get(0).getFitness() >= parent_population.get(0).getFitness())
14 child_population.add(child.get(0));
15 else
16 child_population.add(parent_population.get(0).clone());
17
18 return child_population;
19 }
20 }

• Evolutionary Algorithm class: For each iteration of the
generate-and-test scheme, Controller calls EvolutionaryAlgorithm with a Population
as argument. EvolutionaryAlgorithm has the task of creating and returning a new offspring
population by means of the Selection, Recombination and Mutation operators. Algorithm 4
presents an implementation of the (1+1) evolutionary strategy. The algorithm uses a mutation
operator to create a new offspring individual and implements the selection scheme directly.
The fitness evaluation for the offspring individual is triggered in line 13.
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# evolve a 2x2 bit adder using (1+1) Evolutionary Strategies

evolutionaryAlgorithmClass=moves.logic.OnePlusOneES
mutateClass=moves.CGP.CGP_Mutate
mutationRate=0.015

populationClass=moves.logic.Population
populationsize=100

chromosomeClass=moves.CGP.CGP_Chromosome
# CGP domain parameter
ni=4
no=3
l=2
nn=2
nr=4
nc=6

initChromosomeClass=moves.CGP.CGP_InitChromosome
init=random

fitnessClass=moves.CGP.Testfunctions.bool.CGP_BoolFitness
expression=(i & 0x03) + ((i & 0x0C) >> 2)
fitnessType=reciprocal_square_error

# terminate when correct solution is found, i.e., fitness >= 1.0
bestFitnessClass=moves.logic.BestFitness

Figure 4.2: Configuration file for the (1 + 1) evolutionary strategy evolving a 2× 2 adder.

While the architecture presented in Figure 4.1 determines the core structure of our optimization
framework, it does not illustrate the complete architecture. Hidden from the algorithm designer, the
framework implements a configuration file parser, framework composition by dynamically loading
the algorithm classes according to the configuration file, logging functions, snapshot management
for a step by step execution, a replay functionality, a versatile graphical user interface, and a remote
network control.

Versatility: The data and algorithm dependencies presented in Figure 4.1 are implemented in
such a way that they can be instantiated independently from each other. For situations like dis-
tributed experiment execution and incremental evolution, the ability of partial architecture instan-
tiation facilitates adapting a framework to nonstandard operation modes.

Reusability: The basic architecture of our framework emphasizes a clear decomposition of evolu-
tionary algorithms, genotype encodings, and evolutionary operators. With a strict decomposition,
the implementation effort for novel methods can be dramatically reduced since the remaining com-
ponents can be reused without any adaptation. Isolation is however not mandatory. For instance,
efficient evolutionary operators often act on logical genotype structures and therefore need precise
information about the genotype encoding. Within our framework, algorithm designers may freely
decide how rigorously the component subdivision is implemented.

Configurability: Simple and self-explanatory configuration methods accessible to text manipu-
lation tools like sed and awk are essential for the efficient and flexible generation of experiments. In
particular, large scale algorithm comparisons employing multiple benchmarks make automatic setup
generation a valuable method. With this in mind, we selected a plain text file format as the config-
uration method for our framework. Figure 4.2 gives an example of setting up the previously defined
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1 + 1 evolutionary strategy (cf. Algorithm 4). Each line of the file can either be a comment, an
attribute definition, or empty. A comment starts with a “#”, and “<attribute>=<value>” defines
an attribute and its value. At first, the configuration file is loaded and parsed into a list of attribute
names and keys. When the framework’s default EvolutionaryAlgorithm class is instantiated, it
checks whether the re is an “evolutionaryAlgorithmClass” attribute specifying a user defined EA. In
this case, the user defined class is loaded, instantiated, and returned. During the instantiation, the
user defined class finds its own class name in the “evolutionaryAlgorithmClass” attribute, skips the
loading of itself, and proceeds with loading and configuring its variables. It also tries to instantiate
the framework’s default Mutation, Recombination, and Selection classes.

Since each of the framework’s core classes implements the presented configuration scheme, the com-
plete architecture illustrated in Figure 4.1 creates itself automatically by instantiating the default
Controller class, parametrized with a configuration file.

Portability: The need to execute our framework and the developed algorithms on a wide range
of platforms, caused us to select Java as the programming language. Available for high performance
embedded, desktop, and cluster systems, Java also has a lot of additional benefits. It facilitates the
use of sophisticated and efficient algorithms by providing extensive standard libraries, simplifying
dynamic memory management, and allowing for the platform independent creation of graphical user
interfaces. All of this helps produce simpler code and significantly reduces programming errors and
development time.

4.2 Representation Models and Algorithms

One of the design goals presented in the previous section was the decomposition for code reuse
of genotype representations, evolutionary algorithms, and evolutionary operators. However, de-
pendencies between the these areas are often induced for reasons of efficiency. Figure 4.3 shows
the genotype representation models implemented and the encoding independent evolutionary algo-
rithms and operators. The dependencies in Figure 4.3 occur only between evolutionary algorithms
and evolutionary operators. For instance, the OMOEAII implements its own cutoff, selection, and
recombination operator, while the µGA algorithm relies on a special combination of population sets.
Additionally, almost all multi-objective optimizers implement their own fitness metrics, typically
differing in their techniques for calculating diversity and dominance.

Most frequently, the dependencies occur between genotype encodings and evolutionary operators.
That is, operators such as mutation, crossover, and module aggregation, may work directly on
genotype structures and cannot be reused without modification on representation models with a
different topology. Figures 4.4 and 4.5 are grouped by genotype encoding and show which operators
are implemented specifically for the corresponding representation model.

In the following two sections, we describe the methods shown in Figure 4.3 as well as in Figures 4.4
to 4.5 in more detail.

4.2.1 General Methods
Our framework implements the lookup table and Xilinx DSP48E based versions of Cartesian genetic
programming. Additionally, it implements and extends the embedded Cartesian genetic program-
ming model. The Java class dependencies for these representation models are illustrated in the
upper left corner of Figure 4.3. The model implementations will be discussed in the next section.
The remaining classes in Figure 4.3 are independent of the genotype encoding.

The evolutionary algorithms are the central components in Figure 4.3. We have implemented the
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Figure 4.3: Representation models and representation model independent operators and algorithms.
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• generic GA and ES schemes: Both methods realize the generate-and-test procedures presented
in Sections 2.1.2 and 2.1.3 without relying on a specific genotype encoding.

• SPEA2, TSPEA2, NSGAII, and IBEA: These algorithms have identical architectures. The
major difference between SPEA2 and TSPEA2, presented in Sections 2.2.3 and 2.2.2, is the
density metric. While SPEA2 uses the Euclidean distance to the kth nearest neighbor, NSGAII
relies on the hypercube volume bound by the very next neighbors to establish a density index.
TSPEA2 extends SPEA2’s selection scheme and will be presented in Section 6.1.
IBEA eliminates density estimations based on the value of the objective function. But SPEA2,
TSPEA2, and NSGAII do compute their density rankings using objective values such as
functional quality, area, and delay. The latter metrics are often defined in a non-linear way.
Thus, the density values computed in different objective areas are difficult to compare. The
IBEA algorithm family therefore relies only on Pareto based ranking for parent selection.
Zitzler et al. presented IHD and Iε+ IBEA variants in [416].

• µGA and µGAII: Presented in [78, 277], these algorithms follow the original idea of Gold-
berg [133], who observed that a small number of individuals in a population are often sufficient
for a convergent optimization process. [78] combined the idea of Goldberg with the Pareto
front diversity technique of Knowles and Corne [194]. The µGA algorithm was later extended
to adaptive exploration and exploitation balancing in [277].
The µGA and µGAII algorithms rely on three populations: an external population for non-
dominated and diverse individuals, a working population, and an immutable population with
randomized solutions. Additionally, a small short-term population is made up from the work-
ing and random population to serve as an input to a genetic algorithm. The µGA and µGAII
population architecture is implemented by the µGA-Population class in Figure 4.3. The di-
versity technique of Knowles and Corne, which subdivides the hyperspace into a grid and
adaptively refines it, is implemented by the AdaptiveGrid class.

• The OMOEAII scheme: Presented in [408], OMOEAII defines an orthogonal grid on the origi-
nal fitness surface and computes a reduced fitness landscape by evaluating the solutions on grid
junctions. With this, OMOEAII is able to minimize the number of fitness evaluations and has
been demonstrated to be efficient for applications with independent objectives. The OMOEAII
algorithm also implements specialized OMOEAII-mutation and OMOEAII-linear-crossover as
well as the OMOEAII-orthogonal-crossover operators.

The remaining classes in Figure 4.3 are the general Tournament,
FitnessProportional and Best selection classes, a Reference fitness class and the optimization
algorithm specific IBEAII, NSGAII, OMOEAII, SPEA2 and µGA fitness classes.

4.2.2 Methods Specific to a Genotype
Cartesian genetic programming Based on Lookup Tables. Figure 4.4 shows the fitness,
mutation, and recombination evolutionary operators implemented specifically for Cartesian genetic
programming. One-point mutation as well as one-point, two-point, and uniform mutation operators
are described in Section 3.4. Additionally, we have implemented multiple fitness evaluation classes.
The first fitness evaluation class, the Boolean method, is able to realize a general mathematical
function c∗() given by a text string in the configuration file. With this, for an input range I ⊆ Bni ,
an evolved circuit c, and employing the Hamming as well as the weighted Hamming functions h()
and wh(), the Boolean class implements the following fitness evaluation methods:

• Hamming distance:

fh(c, c∗, I) = 1− 1

no|I|
∑

i∈I
h(c(i), c∗(i)),
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Figure 4.4: Evolutionary operators for lookup table based Cartesian genetic programming.

• squared Hamming distance:

fh2(c, c∗, I) = 1− 1

n2o|I|
∑

i∈I
h(c(i), c∗(i))2,

• weighted Hamming distance (i.e., the difference between two bit strings at position i is
weighted with 2i):

fwh(c, c∗, I) = 1− 1

(2no − 1)|I|
∑

i∈I
wh(c(i), c∗(i)),

• absolute numerical distance:

fn(c, c∗, I) = 1− 1

(2no − 1)|I|
∑

i∈I
(|c(i)− c∗(i)|),

• fitness counter (special case of fh):

fc(c, I) =
1

|I|
∑

i∈I
c(i),

• reciprocal square Hamming error:

fr(c, c
∗, I) =

1

1 + 1
no|I|

∑
i∈I h(c(i), c∗(i))

.

In our experiments, we preferred the reciprocal square error scheme, as it continuously decreases
the selection pressure towards the final optimization phase, thus reducing the impact of stagnation.

The Classifier class uses the fitness counter function fc of the Boolean class and additionally
implements a parametrizable cross validation scheme, a loader, and efficient memory management
for labeled feature vectors. To improve the overall evolution time for classifier architectures, the
class also supports classifier architecture decomposition and distributed fitness evaluation.

The Damiani class realizes the evolution of hashing functions. At first presented by Damiani,
Liberali, and Tettamanzi in [87], the goal of the class is to evolve a function build upon 4-input
lookup tables organized in an 8× 8 grid targeting the most uniform mapping of k keys to i indices
with k >> i.
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Figure 4.5: Evolutionary operators for embedded Cartesian genetic programming.

For evolving efficient memory-to-cache mapping functions, the SimpleScalar class implements an
interface for the SimpleScalar systems simulator [35]. The SimpleScalar class is able to execute a
remote SimpleScalar instance via ssh and to filter the output of SimpleScalar for execution cycles,
miss- and hit-rates, memory access values, and any other computed metric. For cluster experiments,
we extended SimpleScalar by Linux’s true randomness source /dev/random. We also added the
ability to load and use up to four CGP functions for computing memory-to-cache address mappings,
covering all split and uniform configurations for a two leveled cache.

Finally, the Xilinx-EDIF-Interface class implements a realistic area and propagation delay esti-
mate using the Xilinx place and route tools. To this end, the class creates for a CGP description a
JHDL [40] class hierarchy, which is then exported as an EDIF netlist to a file. Afterward, Xilinx’s
ngdbuild, map, par, and trce tools estimate the circuit size and delay. Compared to the straight-
forward area and delay computation presented in Section 6.1, the higher precision when using the
Xilinx tools comes at the price of high computational complexity. The Xilinx-EDIF-Interface
class is also able to transform a CGP genotype into a bitstream using bitgen and promgen. We
have implemented the EDIF exporter specifically for the CGP genotype model, as ECGP and other,
LUT-based genotype encodings can be mapped to the plain CGP genotype.

Embedded Cartesian genetic programming. The ECGP model implements the compact and
extract operators for the automatic acquisition and reuse of subfunctions in addition to the regular
evolutionary operators. We have created new recombination and module acquisition methods,
which we will present in Chapter 5. In Figure 4.5, these classes are represented by the cone–
base recombination as well as the cone- and age-based selection classes. The remaining classes in
Figure 4.5 have implementations similar to the corresponding CGP classes. The module mutation
class has the additional functionality of adding and removing module inputs and outputs and is
described in Section 3.4.4.

4.3 Experimentation Support and Tools

The creation of new evolutionary methods is typically an iterative process with interleaved phases
of designing and testing. Handy experimentation tools including automatic performance evaluation
are key to this phase. The efficiency of the experimentation tools is even more essential when
comparing multiple algorithms on numerous and large benchmarks, exploring fitness landscapes,
and tuning parameters. We have therefore created a visual tool that helps analyze the dynamics
of novel methods as well as command line tools for efficient experiment generation and distributed
execution.

We have already presented the configuration file format of our framework. In the next two sections
we will introduce the graphical user interface for experiment tuning and analysis and the command
line interface for unsupervised and distributed experiment execution.
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Figure 4.6: Graphical user interface: Configuration pane.

4.3.1 Visualization and Analysis

The graphical user interface of our framework comprises the views Calculation, Snapshot, and Statis-
tics. Figure 4.6 presents the Calculation view. It becomes visible after a user loads an experiment
configuration file. In this view, the user can modify the parameters, save the configuration back
to the file, and start the experiment. When starting an experiment, some of the parameters will
become immutable, while others can still be modified. The reason for this is that the user can stop
an experiment at any time to change, for instance, the mutation and the recombination rates. How-
ever, changing CGP’s grid geometry would require the reinitialization of all dependent components,
and is therefore locked. An experiment can be started to run continuously by pressing the “Start”
button or can be executed to stop after the creation of a new generation by pressing the “Step”
button. Once a button has been pressed, the Snapshot and Statistics views become visible.

In the Snapshot view, presented in Figure 4.7, the user can plot and test evolved individuals. An
individual can be selected from the complete experiment history, the last generation, and from
the periodically made backups. When an individual is selected, a helper class extending the
GuiChromosomePanel gets the task of rendering the genotype into a two-dimensional picture. If
no such helper class for a particular genotype is implemented, the genotype’s textual representa-
tion is shown in the view. For the CGP model, we have implemented a visualization illustrated
in Figure 4.7. The user can select between plotting all, only the active, and no wires at all, in
addition to being able to toggle the node’s coloring scheme, indicating to which primary inputs and
outputs a node is connected by a path. Furthermore, the graphical user interface relays the user
inputs to the helper class. With this, the user is able to toggle the primary input pins, highlighting
the signal propagation through the CGP network. Finally, the Snapshot view allows exporting the
visual genotype representation to a graphics file.

The Statistics view, presented in Figure 4.8, filters the experiment output log and plots variables
such as the fitness and the most recent non-dominated set online. Any other variables within the
log stream identifiable by a keyword can be added to the plot.
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Figure 4.7: Graphical user interface: Genotype view.

Figure 4.8: Graphical user interface: Statistics plot of an experiment.
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The handling of the graphical user interface has been tailored to minimize the time a user spends
preparing and configuring an experiment. Once a configuration file has been loaded, it can be
reloaded and saved as a modified version by a single “click.” With the selection of an experiment
file, the user also defines the base directory for the experiment log files. For every run of the
experiment, the graphical user interface automatically creates a unique log directory storing all
configuration and log files in it. With this, an a posterior analysis will find all the necessary files
in one place. The graphical user interface also allows replaying the statistics of previously executed
experiments and illustrating the evolved individuals.

4.3.2 Command Line Tools and Distributed Simulation
When the implementation of a new method has been completed and the first parametrization has
been set, the next steps require testing the new method on a larger scale. For this purpose, our
framework implements multiple tools. The ConfigCreator tool allows creating a set of experiment
files with algorithm parameters, determined within some intervals and discretized with a given
granularity. The tool is also able to prepare all experiment files for the Condor [113] batch processing
system to distribute the computation on a cluster.

Our second tool, CalculationConsole, implements its own job scheduler using standard Unix
command line tools, avoiding any additional software. This dramatically simplifies the execution of
an experiment on a large and heterogeneous compute network, as neither installation privileges nor
specialized programs are required. Similar to the first experiment distribution tool, the second tool
takes a set of experiment configuration files, the benchmark executables, and a list of computing
nodes. It determines for every computing node the number of computing cores and distributes the
experiments so that every core processes one experiment. The tool is able to monitor processing
activity and to react properly to machine losses by reinserting broken experimental runs into the
job queue.

Once all experiments have completed running, the next set of tools can help evaluate the results.
The evaluate_results tool extracts the average, best, and worst fitness developments from a
set of experiments and creates the appropriate GNUPlot data and drawing files. Similarly, the
evaluate_ce tool generates GNUPlot drawings for the computational effort (cf. Section 2.4.1). For
pattern recognition experiments, an additional set of tools can merge the partial classification results,
create cross validation tables, and generate GNUPlot drawings showing the overfitting effects.

4.4 Chapter Conclusion

This section presented our framework’s software architecture and tools for efficient experimentation
with evolutionary hardware design and optimization. Our goal in creating this framework was
a flexible and efficient implementation of new hardware representation models and evolutionary
algorithms and an automatic and distributed experiment execution. All experiments presented in
the following sections, except the experiments on the functional unit row architecture in Section 7.1,
were conducted using our framework.
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Chapter 5

Evolvable Hardware Abstraction Models and Operators

The choice of a suitable hardware representation model, i.e., the encoding of a hardware circuit by
a chromosome, is paramount for successful evolutionary design techniques. The selection depends,
as presented in Chapter 2, upon multiple factors. At first, the application and representation
model abstraction levels need to be phased. For instance, the design space of a pattern matching
application operating on binary encoded numbers typically consists of arithmetic functions able to
process binary encoded data types. Matching this application to a gate based representation model
without data type conversion adds an additional complication to the evolutionary search. The
harmonization of the abstraction levels for this concrete case can be made in two ways: either by
demultiplexing the binary encoded data types or by extending the representation model by buses and
arithmetic functions for binary encoded number processing. The representation model abstraction
level may be raised further if this helps reduce the search complexity. And this is the second trade-
off: lower level representations, while often having a rather simple genotype-to-phenotype mapping,
suffer early on from exponential growth of the design space. Higher level representations, on the
other hand, have a more complex genotype-to-phenotype mapping but are often more tractable for
EA operators. In summary, the selection of an appropriate representation model needs to balance
the abstraction level and the correlative search efficiency against the complexity of the genotype-
to-phenotype mapping.

The next crucial point when opting for a representation model is its ability to incorporate context
and general knowledge. The incorporation can be done constructively by shaping the representation
model and the evolutionary operators. Knowledge can also be implemented implicitly by letting
the selection operator favor candidate solutions with the desired properties. Context knowledge can
be divided into application and application domain specific areas. An example of the first case is
Torresen’s attempt to evolve a multiplier [364] by restricting the functional set of nodes connecting
to primary inputs to the AND function, favouring the computation of all input bit products. Ex-
amples for the second case are the multi-chromosome and multi-objective approaches for input and
output decomposition [73, 383] and cone based structural operators [6], presented later on in this
chapter. Approaches for general knowledge incorporation are the developmental and modularization
techniques presented by Walker et al. [380] and Harding et al. [150].

We selected Cartesian genetic programming (CGP) for our work because of three major factors: first,
CGP closely reflects the nature of the data flow of combinatorial circuits. Secondly, it is versatile in
capturing fine granular LUT- and wire-based elements as well as highly complex buses and IP cores.
And the third factor is CGP’s simplicity in expressing directed acyclic graphs. Obviously, these
factors can be criticized. CGP’s focus on combinatorial circuits requires additional architectural
elements to implement sequential circuits. Its generality necessitates a greater effort to tailor it to
a concrete application and probably a larger search space. The representational simplicity comes
with the drawback of complex structural operators. However, the combination of all three factors
makes CGP an excellent choice for autonomous embedded systems.
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The complexity of structural evolutionary operators is in our view the most substantial criticism
of CGP. The difficulty involved with the structural operators for two-dimensional CGP is that
modifying and transferring the subgraphs of functionally related nodes requires the rearrangement of
the entire genotype. Thereby, the geometrical and interconnection limitations have to be respected.
When switching to a one-dimensional model consisting of a single row and dismissing the levels-back
parameter, CGP emphasizes structural operator implementations. However, this also shifts CGP’s
focus away from hardware friendly local connections towards a general DAG oriented model.

Our first contribution is the formalization, implementation, and evaluation of a structural crossover
for one-row Cartesian genetic programming in Section 5.1. The goal is to establish a meaningful
information drift among individuals by considering subgraphs of functionally dependent nodes.
The second contribution of this chapter is the extension of meaningful subfunction extraction to
the concept of automatic discovery and reuse of (sub)functions (ADF) and its comparison with age
based module creation. The first method shares the idea of structural crossover, that encapsulating
meaningful substructures may be more beneficial than selecting modules out of random nodes. The
second method is motivated by the creation of biological organs as structures persisting without
significant modifications for a long period of time, and thus implicitly contributing to an individual’s
success. Both methods are presented and compared in Section 5.2.

5.1 Structural Crossover for Cartesian Genetic Programming

The straightforward implementation of a CGP crossover acts on the geometrical structure of the
phenotype. The drawback is, as described previously and in Section 3.4.3, that the phenotype’s
geometry only indirectly reflects the underlying communication structure. To simplify the GP
like graph based CGP crossover implementation, we define our method only for the one-row CGP
model and allow wires of any desired length. This also extends the applicability of the operator to
the ECGP model. When implementing a CGP crossover naively, the resulting operator randomly
selects a continuous block of nodes and transfers it to the offspring genotype. This is shown

167

14

node indexnode index for the first input

node index for the second input

Figure 5.1: Cone based CGP crossover: Node legend.

in Figure 5.2 (a). A block of 5 nodes is randomly selected for the transfer. As connections in
the CGP genotype are created randomly, nodes in a block are not necessarily connected, and
from point of view of the underlying graph the naive crossover transfers randomly sampled nodes.
Figure 5.2 (b) highlights the corresponding subgraphs. The basic idea of our method is to select
a connected subgraph of a specific shape and rearrange the genotype so that the naive crossover
becomes effective in transferring meaningful subfunctions. As a subgraph shape we select cones for
two reasons: cones are a widely used concept in circuit synthesis, especially in the area of LUT
mapping for FPGAs (cf., for example, [82]). Given a node nr in the DAG, a cone rooted at nr
consists of nr itself plus some predecessor nodes, such that for any node ni in the cone, there exists
a path from ni to nr that is entirely in the cone. Note that while a cone has a distinct root node
nr, it can have several outputs. The rationale behind cone based crossover is that many useful
substructures in classically engineered circuits are cones, e.g., the sum and carry functions of a full
adder. The second reason for selecting cones is their efficient computation. To define a cone, its
root node is selected randomly in the first step. Next, all nodes lying on paths between primary
inputs and the root are collected by a depth-first search or breadth-first search. When sorting the
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Figure 5.2: Naive CGP crossover implementation: Random selection of a continuous block of nodes
as shown in Figure (a) does not reflect the underlying graph structure, shown in Figure (b).

node list in decreasing order with respect to node indices, the first n − 1 nodes together with the
root node define a cone of size n. One subtlety in generating cones is that we have to avoid what
is called reconvergent paths in logic synthesis. Returning to the previous example, this would be
a path between a cone node ni and the root nr which is not entirely in the cone. This can not
happen when applying the presented cone creation strategy, as otherwise there would exist a node
nj , i < j < r, with nj being outside the cone. But as all nodes lying on a path to nr and having an
index k, i < k < r, are added to the cone before adding ni, no such nj exists.

5.1.1 The CGP Crossover Algorithm
Our crossover implementation comprises the following steps:

• We first select a donor and a recipient individual. Then, we form cones by randomly selecting
root nodes and a common cone size between nmin and nmax. Depending on the actual DAGs,
the resulting recipient cone can be smaller than the donor’s cone. Additionally, selected cones
can contain modules. Figure 5.3 illustrates the selection of a donor cone of size n = 5 using a
graph (Figure 5.3 (b)) and a CGP representation (Figure 5.3 (a)).

• In the next step, both genotypes are rearranged so that the cones form compact blocks. To
this end, cone nodes are moved directly after the cone node with the smallest index. In
Figure 5.3 (a), the first cone node has index 7. Therefore, cone nodes 10, 11, 14, and 16 are
placed directly behind node 7 in Figure 5.3 (c). The cone node order remains unchanged. The
rearrangement does not introduce feedback wires, as non-cone nodes (nodes 8, 9, 12, 13, and 15
in Figure 5.3 (a)), lying in the original genotype between the first and last cone nodes (nodes
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Figure 5.3: Cone-based (E)CGP crossover, the rearrangement of the genotype: Figure (a) shows
the CGP genotype and Figure (b) its graph representation. Cone creation starts in this example
with the selection of a random root node, node 16 on our case, and the cone size of, e.g., 5. Then,
cone nodes are rearranged by placing them directly after the first cone node without changing the
relative order, as shown in Figure (c). No feedback wires are introduced in this step. After this,
the correct indexing is reestablished in Figure (d). The naive CGP crossover can be applied on this
cone transferring a meaningful subfunction.

7 and 16), may have inputs connecting to cone nodes but do not contribute to any cone node
input. The rearrangement finishes with reestablishing the correct indexing. Figure 5.3 (d)
shows the resulting genotype containing a compact block of functionally related nodes ready
for the naive crossover. The recipient genotype undergoes a similar rearrangement, preparing
the target for the transfer.

• The third step is the formation of two sets, set p that contains those nodes of the donor’s cone
which have output connections to nodes outside the cone, and another set q that contains
those nodes of the recipient which contribute to nodes within the recipient’s cone. Then, all
inputs of donor cone nodes connecting to non-donor nodes, and all inputs of recipient genotype

84



5.1. Structural Crossover for Cartesian Genetic Programming

nodes connecting to recipient cone nodes, are set dangling.

• The fourth step transfers the donor cone to the prepared location of the recipient genotype,
forming a new recombined individual. This process preserves all node types. Specifically,
nodes in the donor cone which are modules remain modules. The relevant module descriptions
are copied to the offspring individual’s modules list. The modules list is updated as recipient
modules may become inactive during the transfer.

• In the final step, the dangling inputs of the transplanted cone, respectively, the recipient
genotype, are randomly connected to the nodes in list q, respectively, p. If the resulting
genotype still contains unconnected inputs, they are connected randomly to preceding nodes.

While the mechanism of our cone based crossover is defined the same way for CGP as for ECGP,
the effects are slightly different. For the CGP model, the cone based crossover transfers only the
selected subgraph to the offspring individual. In contrast, in the ECGP model, the cone based
crossover may also migrate module descriptions, creating a new way of informational drift among
individuals.

5.1.2 Evaluation
We evaluated our cone based crossover on the design of even parity, multiplier, and classification
circuits. While the first two benchmarks do not strictly match the application profile of EHW
functions, they are commonly used to verify and compare the performance of new methods [199,
380,381]. Additionally, we included classifiers for electromyographic signals as a benchmark. In this
application, sensors attached to the skin collect the electric signals of contracting muscles to control
a prosthetic hand [183, 361] [7, 9]. The test data was recorded from four muscles of a volunteer’s
forearm. A sequence of eight contractions (movements), each with 20 repetitions, was measured.
The typical signal for a movement is composed of a nine seconds relaxation phase and a five seconds
contraction phase. From the last two seconds of the contraction phase, we removed the DC offset
and applied RMS smoothing to obtain the feature vectors. The resulting dataset consists of 144
strings of 200 bits each. Based on that data, we evolved a classifier circuit for the movement “open
hand.” As we want to investigate and compare the computational effort for evolving a classifier and
not the generalization capabilities of the representation model, we measured the classifiers’ fitnesses
on the training data set and defined it to be sufficient when the classification rate on training data
exceeds 85% and 95%. A more detailed description of EMG signal classification architecture, the
signal acquisition setup, and the feature extraction scheme is presented in Section 7.1.2.

The ECGP model parameters, including the genotype length, the number of inputs and outputs,
and the functional set for the nodes, are shown in Table 5.1. We chose ECGP for the experiments as
it is faster for the selected arithmetic benchmarks than the one-row CGP [380,381]. For the parity
function, we used 2-input LUT nodes but restricted the functional set to a few Boolean functions.
For the multipliers, we used 4-input LUTs but again restricted the function set to the functions AND,
OR, XOR, as well as ANDinv, which is an AND with one input inverted. Finally, for the EMG classifiers,
we used 4-LUTs without any restriction on the node function.

The regular EA method of CGP and ECGP is a variation of the 1 + λ ES with λ = 4 [252]. We
presented the exact algorithm in Section 3.4. For a comparison of ES with EAs employing a crossover
operator, we implemented a standard elitism based GA with binary tournament selection. The
elitism rate is 5%, but at least one individual is picked. We executed two GA configurations, using
population sizes of 5 and 50. This covers a population size identical to, and another significantly
larger than, that of the reference ES. In the first case (GA-5), the best individual proceeds directly
to the next generation. For a population size of 50 (GA-50), the three best individuals proceed
directly to the next generation which leaves us with 47 remaining fitness evaluations.
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Table 5.1: ECGP, mutation, and crossover parameters for the parity, multiplier, and classification
benchmarks. M denotes the number of fitness evaluations per generation.

parity multiplier EMG classifier
genotype length 50 nodes 200 nodes
number of inputs ni 3/4/5 4/6 200
number of outputs no 1 4/6 1
functional set 2-LUT 4-LUT 4-LUT

AND AND any function
NAND ANDinv
OR OR
NOR XOR

M for 1 + 4 ES / GA-5/ GA-50 4/4/47
mutation rate 0.03
one-point mutation probability 0.6
compress/expand probability 0.1/0.2
module mutation probability 0.1
module size 2. . . 8 nodes 2. . . 10 nodes
crossover probability 0.01
crossover cone size 2. . . 20 nodes

Mutation is applied with a probability of one, but splits into three cases. We either apply one-
point mutation, module creation/deletion, or module mutation. The mutation rate denotes the
percentage of mutated nodes in a circuit (or in a module). Modules are twice as likely to be
dissolved as created, something which increases the pressure towards useful modules. The actually
used rates and probabilities can be found in Table 5.1. The cone based crossover operator considers
cones with a size of up to 20 nodes (primitive nodes and modules). The application probability is
1%. Higher mutation rates have had negative effects on the convergence speed.

Table 5.2: Computational effort for cone based crossover: 1 + 4 ES versus GA with populations of
5 and 50 individuals. Bold numbers indicate improvements over the 1 + 4 ES.

1 + 4 ES GA, |population|=5 GA, |population|=50
absolute absolute relative absolute relative

2×2 mul 66, 623 64, 111 −3.8% 102, 593 +54.0%
3×3 mul 8, 840, 574 2, 518, 964 −71.5% 39, 064, 742 +341.9%
3-parity 81, 122 382, 036 +470.9% 186, 898 +130.4%
4-parity 477, 880 6, 294, 678 +1217.2% 6, 482, 504 +1256.5%
85% EMG 18, 260 19, 859 +8.8% 28, 825 +57.9%
95% EMG 510, 147 576, 988 +13.1% 695, 794 +36.4%

The experimental results are presented in Table 5.2, which shows the computational effort both
in absolute numbers and relatively to our reference implementation of the 1 + 4 ES. A negative
relative effort denotes an improvement. From the experimental results, we can make the following
observations: comparing the 1+4 ES to a GA with a population size of 5, we conclude that the GA
is better for 3× 3 multipliers, on par or slightly worse for 2× 2 multipliers and for EMG classifiers,
and dramatically worse for the parity function. This points to the effectiveness of the cone based
approach for multipliers and to its inefficiency for single-output as well as random logic circuits.
Increasing the population size to 50 increases substantially the computational effort for every case.
It has to be noted that a GA with a population size of 50 also evolves correct circuits but needs far
more fitness evaluations.
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5.2 Automatic Acquisition and Reuse of Structural and Age Based
Modules

In Section 3.4.4, the mechanism of the original ECGP compress operator is described as the random
selection and compaction of a contiguous node interval within the one-row CGP genotype. As
argued in Section 5.1, the corresponding graph structure is basically random. This is illustrated in
Figure 5.2. Our implementation of CGP subgraph selection for the recombination operator can be
adopted for the automatic acquisition and reuse of modules. This follows more closely Koza’s original
idea of functionally related substructures for module acquisition in GP. Additionally, inspired by
the biological principle of organs, we compare structural with age based module creation.

5.2.1 Age Based Module Creation
Age based module creation aggregates primitive nodes (i.e., nodes not referring to a module) that
have persisted in the genotype for a larger number of generations. The rationale behind age based
module creation is that aged nodes are likely to contribute directly or indirectly to an individual’s
success, and should therefore be preferred over randomly selected nodes.

We assign to each primitive node ni an attribute age(ni). The age is incremented by one in each
generation, and set to zero when the node is selected for mutation or compression. The age of
primitive nodes within modules remains unchanged: modules themselves do not have an age.

We form module candidates by aggregating primitive nodes, restricting the number of nodes by
lower and upper bounds nmin and nmax. The average age of a module candidate mj is then given
by

age(mj) = |mj |−1
∑

ni∈mj

age(ni).

In our implementation we use two-stage binary tournament to select which module will actually
be created. That is, we generate a module candidate by the following procedure: first, we select
a random primitive node ni and a number of primitive nodes n, nmin ≤ n ≤ nmax, also randomly.
Then, we extend the module from ni to nodes with smaller node numbers until we hit a module or
aggregate exactly n primitive nodes. We create another module using a different random primitive
node nj and draw the one with higher average age. If both modules have the same average age, we
draw one module randomly. This step is repeated once to derive the final module.

We also experimented with module candidate selection demonstrating maximum average age. This
requires the formation and evaluation of a larger number of module candidates. However, picking
the module with maximum average age proved inferior to the two-stage binary tournament scheme
for all benchmarks. An explanation for this is the fact that maximizing the average module age
tends to generate small modules with nodes of great age.

5.2.2 Cone Based Module Creation
Our cone based module creation strategy targets, similar to the cone based crossover, the reordering
of the genotype in such a way that the regular ECGP compress operator becomes effective in
selecting meaningful graph substructures to form a module. To this end, we adopt the genotype
reordering scheme used by the cone based crossover and described in Section 5.1 and illustrated in
Figure 5.3. The scheme decomposes into following steps:

• Similar to the cone based crossover scheme, a cone root node nr and size ns are randomly
selected in the beginning. As ECGP does not capture hierarchical modules, nr may only have
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a primitive type. Additionally, the module size ns is restricted to values between nmin and
nmax.

• In the next step, the predecessor list of nr is determined and sorted with respect to node
indices in descending order. The list is cut after the ns − 1 node or directly before the first
appearance of a module node. Together with the root node, up to ns nodes are now selected
to form a module. All selected nodes are primitive and no reconvergent paths can arise, as
shown in Section 5.1.

• The genotype rearrangement is identical to the scheme employed for the cone based crossover.
All module nodes are moved directly behind the node with the lowest index without chang-
ing the relative order (Figure 5.3 (a), Figure 5.3 (c)). Afterwards, the correct indexing is
reestablished (Figure 5.3 (d)).

• In the next step, the regular ECGP compress operator puts the module’s genes in a separate
genotype within the modules list and replaces the former module nodes in the ECGP genotype
by a single node of Type I. As the indexing of the ECGP genotype becomes inconsistent again,
the node numbering is recomputed.

5.2.3 Evaluation
We compare the age- and cone-based module creation on the same benchmark set and under
the same conditions as employed for the cone based crossover experiments in Section 5.1.2. The
parametrization of the ECGP representation model, the ES, the mutation operator, and the bench-
marks are summarized in Table 5.1. We additionally extend the parity benchmark with the 5 even
parity function.

The experimental results are presented in Table 5.3. The table shows the computational efforts and
the ratio between our techniques and the regular, random module creation, for random-, age-, and
cone-based module creation. A negative relative effort denotes an improvement.

Table 5.3: Computational effort for random-, age-, and cone-based module creation for ECGP. Age-
and cone-based module acquisition is compared to random module acquisition.

random aging cone
absolute absolute relative absolute relative

2x2 mul 66, 623 51, 961 −22.0% 49, 052 −26.4%
3x3 mul 8, 840, 574 6, 001, 917 −32.1% 3, 638, 120 −58.9%
3-parity 81, 122 49, 160 −39.4% 87, 915 +8.4%
4-parity 477, 880 494, 295 +3.4% 265, 796 −44.4%
5-parity 1, 825, 645 1, 385, 244 −24.1% 1, 112, 691 −39.1%
85% EMG 18, 260 14, 743 −19.3% 23, 855 +30.7%
95% EMG 510, 147 314, 311 −38.4% 873, 319 +71.2%

Age based module creation is highly effective. For six out of the seven benchmarks, age based module
creation lowers the computational effort from the previous method, with improvements ranging from
some 20% and 40%. The one exception is the 4-parity function, where the computational effort
increased slightly by 3.4%.

The overall results for the cone based module creation technique are somewhat inconclusive. How-
ever, looking at the different benchmarks we note that for the evolution of multipliers and for larger
parity functions, cone based module creation proves highly beneficial. In contrast, for evolving
EMG classifiers, the cone based approach does not work at all. Intuitively, the identification of
cones as useful subcircuits is hampered if the function is rather small, is a single output function,
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or consists potentially of random logic functions. In the first case, there is no sufficient potential
for creating cones, in the second case, there is no re-usability of a cone for different outputs, and
the third case has an insufficient amount of repetitive structures. Multipliers are highly regularly
structured functions that are neither particularly small nor single output. From the experimental
data, it is clear that cone based module creation is effective for multipliers, in particular, it is more
effective than age based module creation.

5.3 Chapter Conclusion

In the introduction of this thesis we proposed a unified adaptation method for Evolvable Hard-
ware that relies on modern Pareto based multi-objective algorithms such as NSGAII and SPEA2.
Information drift among candidate solutions, typically implemented as a recombination operator,
is a prerequisite for these algorithms. While a meaningful recombination operator can be imple-
mented in a straightforward manner for genetic programming, in Cartesian genetic programming,
the implicit genotype coding makes it a challenging task.

In this chapter, we introduced cone based structural crossover for Cartesian genetic programming.
With this, we are able to use Pareto based multi-objective evolutionary algorithms to adapt hard-
ware to both gradual and radical changes. Furthermore, we extended the structural CGP operators
by cone based automatic acquisition and reuse of subfunctions, which proved to be very effective
for regularly structured multiple output circuits such as multipliers. Finally, we introduced age
based automatic subfunction acquisition and reuse. This operator proved to be very successful
for functions with a more randomized inner structure, such as the pattern matching elements of a
classifier.
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Chapter 6

Efficient Multi-Objective Optimization for Cartesian
Genetic Programming

Adapting to radical resource changes as well as to slowly emerging environmental changes by the
very same method is an intriguing idea. It can be solved elegantly by modern, Pareto based
multi-objective evolutionary optimizers, as described in Section 1.1 and illustrated in Figure 1.2.
We reprint that figure in Figure 6.1. Multi-objective optimization has been previously applied to
Evolvable Hardware basically to explore aspects of scalability and digital circuits design principles.
For instance, Coello Coello et al. [73,77] uses a circuit input space decomposition to define a multi-
objective function. To this end, for a circuit with n inputs, the population is subdivided into
2n subpopulations. Each subpopulation has a separate goal, evolving solutions satisfying a single
input–output relation of the target function. Once a candidate solution achieves this, the fitness
function starts to count the overall number of correctly mapped input–output relations. In the last
stage, when a candidate solution matches the goal function completely, the fitness function tries to
minimize the number of functional blocks. Their approach does not scale as the population grows
exponentially in the number of inputs. However, the authors do not promise the evolution of large
circuits but focus on revealing design principles employed by human and automatic designers.
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Figure 6.1: Adaptation to radical changes by the means of Pareto based multi-criteria optimization.

A multi-stage fitness definition, as previously presented, is a common approach for multi-objective
circuit evolution. The intuition behind this is the evolution a functionally correct circuit first before
optimizing for the remaining secondary objectives, such as size and delay. Similar to the method
of Coello Coello, Kalganova and Miller [184] define a two-stage fitness function accounting for a
solution’s number of gates after the goal function has been implemented correctly. While multi-stage
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fitness for multi-objective evolution can be implemented with minimal additional effort, it has two
drawbacks. Compensating for radical resource changes needs a pre-evolved and an up to date set of
solutions with diverse system-related objectives. The design of efficient diversification scheme is a
nontrivial task. The second issue reflects the characteristics of EHW applications domains that do
not have a correctness property but rather define an optimization goal as a continuous metric. In
this case, the task of the optimization is the quick compensation for functional quality degradations.
Radical requirement changes are compensated for by reselecting a system behavior with respect to
secondary objectives, such as a circuit’s size and operation frequency. Both arguments encourage the
evolution of functional and system-related objectives simultaneously. Coincidentally, modern multi-
objective EAs incorporate sophisticated diversification techniques, allowing them to implement the
adaptation to gradual and radical changes by the very same method.

In this chapter we investigate multi-objective evolutionary optimization for Cartesian genetic pro-
gramming. In Section 6.1 we focus on objective prioritization, mimicking the 1 + 4 ES selection
scheme by a genetic algorithm. In the following section (cf. Section 6.2), techniques based on the pe-
riodization of the population helps us to blend the efficiency of local search with the multi-objective
optimization of global search techniques. Finally, Section 6.3 concludes the chapter.

6.1 Selection Schemes for Multi-Objective Cartesian Genetic
Programming

For our experiments, we qualify digital circuits with regard to three objectives: their functional
quality, their speed, and their required hardware area. As in this section we rely on a benchmark
set of logic and arithmetic functions with a completely defined behavior, we determine the functional
quality for input vectors I as the reciprocal of the mean square error between the output vectors of
an evolved individual c and a correct function c∗:

f(c) =
1

1 + 1
|I|
∑

i∈I ham(c∗(i), c(i))2
, (6.1)

where ham(c1, c2) refers to the Hamming distance between two bit vectors c1 and c2. A correct
circuit receives a functional quality of one.

We estimate the delay of a circuit by the number of logic blocks on its longest path. Given the
CGP model, the delay is in the range {0, . . . , nc + 1}. A delay of zero means that the longest path
of the circuit connects an input directly with an output. A delay of nc means that the longest path
traverses all logic blocks of the model, whereas a delay of nc + 1 indicates that none of the outputs
are connected to an input. The fitness with respect to circuit speed is determined as:

speed(c) = 1− delay(c)

nc + 1
(6.2)

The speed metric equals one for the fastest possible circuit (a circuit that maps primary inputs
directly to primary outputs) and zero for a circuit that has no connection at all from primary
inputs to primary outputs.

We quantify the size of a circuit not by the number of transistors required to implement its Boolean
gates but by the number of uniform, reconfigurable functional blocks it uses. The number of logic
blocks used by a circuit c, denoted by used_blocks(c), is in the range {0, . . . , nc · nr}. Based on
this value, we define a circuit’s fitness with respect to area as:

area(c) = 1− used_blocks(c)
nc · nr

(6.3)

A circuit of minimal size, i.e., a circuit not using any logic block, receives an area of one, a circuit
that utilizes all available logic blocks has an area of zero.
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6.1.1 Objective Prioritization
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Figure 6.2: Development of the average functional quality: Comparing GA, SPEA2, TSPEA2, and
NSGAII on evolving even 6 parity (Figure (a)) and a hashing function (Figure (b)). While SPEA2,
TSPEA2, and NSGAII optimize additionally for small circuit size and delay, the plots show the
development of functional quality only.

When comparing the efficiency of single- and multi-objective optimizers, intuition suggests that
the simultaneous optimization of multiple and potentially contradictory goals may result in slower
convergence. While this is not always the case, as we will show later on, Figure 6.2 illustrates

93



6 Efficient Multi-Objective Optimization for CGP

two examples where the functional quality develops far better when optimized by a single-objective
EA. The diagrams compare, for the even 6 parity and a hashing function, the average functional
quality development shown by a regular, elitism based GA and the multi-objective SPEA2 and
NSGAII. In addition to functional quality, SPEA2 and NSGAII optimize also for area and speed.
The benchmark and the algorithm configurations will be given in detail in the next section.

Figure 6.2 allows the following observations: the choice of an MOEA is critical and may result in a
dramatically different performance. That is, while in Figure 6.2 (b) the difference in the functional
quality developments between NSGAII and SPEA2 is substantial but seems to be constant, for
the parity benchmark NSGAII is far better than SPEA2 (Figure 6.2 (b)). Apart from mutual
differences between MOEAs, both fall significantly behind GA regarding the functional quality.
Particularly for the parity benchmark, the gap is dramatic. While this was anticipated, poor MOEA
performance may render these methods infeasible for situations where the rate of change of the input
data distribution exceeds an algorithm’s adaptation capability and the overall computational effort
becomes too large.

An efficient and general method of improving the performance of multi-objective EAs for CGP needs
to be independent of the selected algorithm and the target application. Consequently, the repre-
sentation model itself and the evolutionary operators are potential places for the implementation.
For a constructive approach, we need to know which structural elements of a circuit are common
to solutions with outstanding functional quality, small circuit size, and low delays. However, this
properties typically depend on the function optimized. We therefore selected a non-constructive
approach, guiding the multi-objective search to preferred solution subspaces by means of increased
selection pressure.

In single-objective optimization, selection pressure is typically regulated by rating candidate solu-
tions regarding some desired properties. This information is combined with the functional quality
to select individuals for reproduction. When optimizing multiple objectives, a canonical way to
improve the convergence of some objectives is to prefer individuals with the corresponding above
average objective values for reproduction. In our case, to put an emphasis on functionally fit CGP
circuits, area and speed are taken less into account when selecting parents. The potential drawback
is that the functionally fit individuals may demonstrate larger circuit sizes and propagation delays
than the individuals evolved by regular, Pareto based MOEAs. As we will show in the next section,
the opposite is the case for CGP.

We select SPEA2 to demonstrate our method, as it possesses a standard structure common to
many modern MOEAS, such as , e.g., NSGAII. Both algorithms are described in Section 2.2.2
and Section 2.2.3. A suitable place for implementing a selection pressure technique is the fitness
metric definition employed to fill the working population. The archive is explicitly used to store
nondominated and diverse individuals. Changing the archive filling scheme would modify the Pareto
and diversity based dynamics of SPEA2. In contrast, modifying the parent selection scheme changes
only the direction of search in the objective space.

The selection scheme for SPEA2’s working population relies on a fitness definition which takes into
consideration the sorting of nondominated sets and the diversity of the objective space. To increase
the selection pressure towards individuals with above average functional quality, we replace the
original fitness function by a linear combination of objective values. For every objective oi, a weight
wi, 0 ≤ wi ≤ 1,

∑
j wj = 1, denotes oi’s contribution to the overall fitness value. The complete

fitness function is defined as f =
∑

j ojwj . More pressure towards functionally fit individuals can
now be realized by increasing the appropriate weight and decreasing the weights of the remaining
objectives.

Prioritizing individuals for reproduction by linearly weighting the objectives is a fundamental idea
of first generation MOEAs [96]. In [367], Trefzer et al. applied a related scheme to a Pareto based
algorithm. The authors modified NSGAII’s reproduction scheme to select parents using a primary
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objective and a randomly chosen secondary objective. The algorithm was namedMO-Turtle GA and
was used to evolve analog circuits. In our initial experiments, we observed that functional quality
develops best when experiencing the highest selection pressure. We have named this specifically
configured SPEA2 variant, similar to the work of Trefzer et al., Turtle SPEA2 (TSPEA2).

In the next section we investigate whether TSPEA2’s observed behavior generalizes to other appli-
cations, and how the remaining objectives evolve.

6.1.2 Evaluation
We evaluate TSPEA2’s performance on a common CGP benchmark set comprising even parity
functions, binary adders, and multipliers [184, 253, 257]. Additionally, we employ a hashing func-
tion [87] as a circuit design benchmark. TSPEA2’s behavior is compared to GA, SPEA2, NSGAII,
IBEA Iε+, and IBEA IHD. The two latter algorithms were designed by Zitzler and Künzli [416]
to eliminate the implicit search emphasis introduced by diversity techniques operating on nonlinear
objective space definitions.

The hashing function had been defined previously by Tettamanzi et al. [87]. The goal was to find a
function h : B16 → B8 which maps a set M of 212 keys to a set N of 28 indices in the most uniform
way possible. The fitness function is defined as:

f(h) =
1

1 + 1
|N |
∑|N |

i=1(|{j|j ∈M, h(j) = i}| − |M ||N | )2
. (6.4)

Similar to the classification benchmark in the previous chapter, the hashing fitness function is a
graded metric with an optimum which might be unachievable when resources are limited. We
configure the CGP model to conform to the parameters of the original paper [87] except for the
functional set F , which may use any Boolean function with four inputs. The key set is created
randomly.

Table 6.1: Benchmark configurations. S is the termination number, measured in fitness evaluations.
GA may terminate earlier when finding a correct solution for the parity, adder and multiplier
benchmarks.

6-parity 7-parity 2 + 2 2× 2 3 + 3 3× 3 hashing
|P | 100
nc 12 14 50 200 8
nr 1 8
ni 6 7 4 6 16
no 1 4 6 8
nn 2 4
l ∞
F AND, NAND, OR, NOR AND, ANDinv, OR, XOR any
P (mut.) 0.03 0.01 0.002 0.004
P (rcmb.) 0.9
rcmb. type two-point uniform
S 14 · 106 20 · 106 6 · 106 106

Table 6.1 summarizes the benchmark configurations. For the parity, adder, and multiplier exper-
iments, we configured the CGP model as a single line of two-input gates (nodes). An 8 × 8 CGP
array of 4-input nodes is used for the hashing function. All algorithms rely on a one-point muta-
tion. Two-point crossover is employed for the arithmetic operators, and for the hashing function,
a uniform crossover both with a recombination probability of 0.9. The function set for the nodes
is not restricted for the hashing function experiment, i.e., the node function can be an arbitrary
function of four inputs. For the parity benchmarks the function set is limited to AND, NAND, OR, and
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NOR. In particular, the XOR logic function is excluded, as otherwise the evolution of correct parity
functions is not a challenge at all. The remaining benchmarks may use AND, ANDinv, OR, and XOR.

As we are interested in the asymptotic behavior of the functional quality of the algorithm’s evolved
circuits, we conducted several optimization runs for each benchmark. We stopped the evolution
after a predefined number of fitness evaluations. For the parity function, this limit was set to
14 · 106 fitness evaluations; for the 3 × 3 multiplier, to 6 · 106 fitness evaluations; for the hashing
function, to 106; and for all other experiments, to 20 ·106. The single-objective GA may stop earlier
in case it finds a correct solution.

Results
We compare two aspects of the benchmarks. The functional quality performance is evaluated using
Koza’s “computation effort” (CE) metric [198], presented in Section 2.4.1. To be able to apply
CE to the hashing benchmark, we terminate an evolutionary run when the fitness exceeds 0.1.
The second aspect covers the development and shape of the nondominated sets. To compare the
nondominated sets, we employ the methodology presented in Section 2.4.2. Thereby, we map a
sequence of nondominated sets evolved by a particular algorithm and benchmark combination to
quality numbers and n-attainments. In a second step we compare different sequences of qual-
ity numbers and n-attainments by nonparametric tests revealing the significance of differences in
distribution. For every benchmark, we have compared the nondominated sets for all pairwise com-
binations of algorithm using Zitzler’s Iε+, I1ε∗, and I1HD indicators [419], Hansen and Jaszkiewicz’s
R1, R2, and R3 measures [149] and Pareto attainments [419]. The outcomes of the first six meth-
ods are inspected regarding distribution differences by the Mann–Whitney [236], Fisher [120], and
Kruskal–Wallis (KW) [202] tests. The attainments are compared using the Kolmogorov–Smirnov
(KS) test [196, 323]. As every test is applied to 20 algorithm pairs, the complete evaluation for all
benchmarks amounts to 133 5× 5 tables of significance numbers. We therefore present only the I1ε+
indicator analyzed by KW, and the Pareto attainments evaluated by KS. The details of these tests
are presented in Section 2.4.2. We will indicate whether other tests confirm or disagree with the
outcome of these two tests.

In the previous section, Figure 6.2 illustrated the development of the average functional quality
for the even 6-parity and hashing function and the SPEA2, NSGAII and GA algorithms. The
diagram demonstrates the dominance of the single-objective GA over the MOEAs. A counter-
example is presented in Figure 6.3. It displays the average functional quality development for the
3 × 3 multiplier. For this benchmark, TSPEA2 has the fastest convergence, followed by NSGAII,
GA, IBEA IHD, IBEA Iε+, and SPEA2. Table 6.2 confirms the results, attributing to TSPEA2 a
97% probability of evolving a correct solution. NSGAII follows with 73%, GA with 38%, IBEA Iε+
with 27%, and IBEA IHD with 25%. This result clearly shows that some multi-objective optimizers
can outperform the standard single-objective GA in evolving functionally correct circuits. GA’s
convergence performance shown in Figure 6.3 is very common to global search algorithms. Global
search methods often possess fast rates of evolution in the initial exploration phases, but stagnate in
the final search phases. The steeper convergence gradients of MOEAs in their advanced search stages
for this particular benchmark may be caused by diverse populations, preserving the effectiveness of
their EA operators.

The complete set of results for CE is presented in Tables 6.2 and 6.3. Apart from CE, the tables
show the probability of correct circuit evolution and the number of experimental runs executed by
each algorithm. SPEA2 did not succeed in evolving a sufficient number of correct circuits within the
predefined number of fitness evaluations. Therefore, we did not compute its computational effort.
Bold values indicate the best performing algorithm for a particular benchmark.

From the results, we observe that except for the hashing benchmark no algorithm has a higher
probability of finding a correct solution than TSPEA2. Among the multi-objective optimizers, the

96



6.1. Selection Schemes for Multi-Objective CGP

Table 6.2: Computational effort and number of correctly evolved circuits for standard GA and
some MOEAs. The computational effort (CE) is given in multiples of 106. SPEA2 could not
evolve a sufficient number of correct circuits to determine the computational effort. Ps denotes the
probability of evolving a correct solution during n runs. Bold numbers indicate the best performing
algorithms.

2× 2 add 3× 3 add
CE Ps n CE Ps n

GA 3.35 0.74 43 2.35 0.53 41
SPEA2 – 0.05 37 – 0.0 33

TSPEA2 4.20 1.0 35 6.81 0.85 28
NSGAII 5.55 0.97 35 19.90 0.83 31

IBEA Iε+ 5.49 0.82 40 79.44 0.60 35
IBEA IHD 8.55 0.94 38 82.74 0.54 35

2× 2 mul 3× 3 mul
CE Ps n CE Ps n

GA 2.93 0.95 43 14.12 0.38 42
SPEA2 – 0.02 37 – 0.0 40

TSPEA2 2.22 1.0 33 6.89 0.97 37
NSGAII 3.58 1.0 35 14.84 0.73 38

IBEA Iε+ 9.42 0.94 39 58.74 0.27 40
IBEA IHD 9.14 0.97 39 80.27 0.25 40

Table 6.3: Computational effort and number of correctly evolved circuits for standard GA and the
MOEAs. The computational effort (CE) is given in multiples of 106. SPEA2 could not evolve a suf-
ficient number of correct circuits to determine the computational effort. Ps denotes the probability
of evolving a correct solution during n runs. Bold numbers indicate the best performing algorithms.

6-parity 7-parity hash
CE Ps n CE Ps n CE Ps n

GA 0.40 1.0 68 1.59 0.98 66 0.47 0.65 38
SPEA2 – 0.0 48 – 0.0 44 – 0.0 38
TSPEA2 4.24 1.0 44 10.77 1.0 24 2.33 0.51 37
NSGAII 11.62 1.0 38 61.52 0.46 32 16.63 0.13 38
IBEA Iε+ 0.57 0.84 65 124.06 0.16 65 9.11 0.20 39
IBEA IHD 1.19 0.81 64 7.79 0.25 63 22.74 0.13 38
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Figure 6.3: Development of the average functional quality: Comparing GA, SPEA2, TSPEA2,
NSGAII, IBEA Iε+ and IBEA IHD on the evolution of a 3 × 3 multiplier. The plot shows the
development of functional quality only.

computational effort of TSPEA2 is the best for all but the parity benchmarks. For the multiplier
functions, TSPEA2 is even better in CE than the GA. Generally, the gap between TSPEA2 and the
remaining MOEAs became larger for the adder and multiplier benchmarks, when the parity of the
circuits increases from 2×2 to 2×3 bits. For the even 6-parity, both IBEA variants has a lower CE
than TSPEA2 and NSGAII. Here, GA offers the best computational effort. The 7-parity is again
mastered best by GA, followed by IBEA IHD, TSPEA2, NSGAII, and IBEA Iε+. For the hashing
function, TSPEA2 and IBEA IHD switch places. Generally, the gap between TSPEA2 and GA never
became as large as for the other MOEAs. While for the 6-parity benchmark TSPEA2 requires ten
times more fitness evaluations than the GA to evolve a correct solution with a probability of 99%,
NSGAII and IBEA Iε+ show factors of 60 and 77 for the even 7-parity function, and IBEA IHD a
factor of 42 for the hashing benchmark.

While TSPEA2 proves to be successful in solving its primary design goal of fast functional quality
evolution, approaching and sometimes even exceeding the performance of a single-objective GA,
the next section investigates the development of the remaining objectives and whether TSPEA2’s
nondominated sets are on a par with the results of other multi-objective algorithms. For instance,
for the adder, multiplier, and 6-parity benchmarks, there is always at least one MOEA having
a similar probability of evolving a correct circuit. Thus, it’s interesting how the corresponding
nondominated sets compare to the results of TSPEA2. For the 7-parity and hashing benchmarks,
TSPEA2 has a far higher probability of evolving a correct circuit. This may indicate that TSPEA2
has a better developed nondominated set than its competitors.

Before discussing the significance tests for the differences of the distributions of the nondominated
sets, Figure 6.4 shows an example of the objective space coverage for the hashing benchmark,
achieved by 75% (Figure 6.4 (a)) and 25% (Figure 6.4 (b)) of the evolved nondominated sets. The
functional quality and area−1 objective values are normalized and negated. A hypothetical optimal
solution has, therefore, the objective coordinate ~0. We omit the discussion of the attainment
functions spanned by the functional quality and delay, as the effects and conclusions are almost
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identical.

Our first observation from Figure 6.4 is that all algorithms are able to evolve smooth nondominated
sets. The sets contain many diverse Pareto points, offering a considerable range of circuits with
different objective trade-offs. The next observation concerns the performance of TSPEA2. For non-
dominated set regions with low functional quality (e.g. 0.7 to 0.9) and small circuit size (e.g. 0.0 to
0.025), the competitors of TSPEA2 tend to evolve functionally better solutions. This is the case for
circuits of size 0, i.e., consisting only of wires between primary inputs and outputs, and partially for
circuits with one functional block, where in the 25% attainment, only IBEA Iε+ found functionally
better solutions. All functionally dominant circuits with 2 or more blocks are found by TSPEA2.
Functional quality prioritization gives TSPEA2, apart from functionally dominant solutions, also
more freedom to explore circuit regions with inferior quality in the remaining objectives. This can
be observed in Figure 6.4 (b), where TSPEA2 manages to find a more diverse set of solutions than
the other algorithms, with area values between 0.05 and 0.17.

Table 6.4 and Table 6.5 present the evaluation of the comparisons of the nondominated sets using
the unary I1ε+ indicator as well as the attained functions. Again, the first method is evaluated by the
KW test while the KS test is used to compare the attainment functions. For the KW test, a numeric
value in column c and row r indicates that the H0 hypothesis of identical distribution sequences is
rejected. The number represents the one-tailed p-value indicating whether the algorithm in row r
has a lower and therefore a better mean than the algorithm in column c. If the number is below
α = 0.05, we consider the distribution differences as significant. In contrast to the asymmetric KW
test, the KS test verifies whether two sequences follow the same distribution or not. Therefore, a
numerical value in column c and row r below α = 0.05 indicates that the attained coverages of the
algorithms in row r and column c are significantly different.

We draw the following conclusions from Table 6.4 and Table 6.5:

• While the nondominated sets of TSPEA2 are sometimes classified as different and significantly
different from the nondominated sets of the other MOEAs, the KW test never evidences
a higher I1ε+ mean. Thus, we can conclude that no tested MOEA managed to evolve a
significantly better nondominated set than TSPEA2 by means of the I1ε+ indicator.

• For parity and hashing benchmarks, TSPEA2 significantly dominates all tested MOEAs ac-
cording to the KW test. This is interesting, as for the 7-parity and hashing functions, we
anticipated TSPEA2’s evolving “better” nondominated sets as a consequence of its higher
probability for correct circuit evolution. For the 6-parity function, however, all the MOEAs
have similarly high probabilities of evolving correct circuits. The dominance of TSPEA2 for
the parity benchmark lets us assume that parity circuit design space regions with high func-
tional quality also demonstrate above average values in the remaining objectives. A possible
positive correlation between the objectives can intuitively be explained by the fact that an
“optimal” parity function also has the smallest possible circuit size and delay.

• SPEA2 is almost always considered significantly different and inferior in evolving nondomi-
nated sets.

Additionally to the I1ε+ indicator, we have compared the nondominated sets using the I1ε∗ and IHD
indicators and the R1, R2, and R3 measures. The outcome has been inspected by the KW, Fisher,
and Mann–Whitney tests. The results are, apart from minor deviations, almost identical to the
results presented in Tables 6.4 and 6.5.

Conclusion
The multi-objective evolution of CGP circuits by modern MOEAs such as the NSGAII and SPEA2
can be significantly improved by introducing weights for the preferences and objectives into the
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selection scheme. Especially for potentially collinear objectives, TSPEA2 excels, sometimes even
outperforming the single-objective GA. However, it is the regular effect of fixed linear weighting
of the objectives that arranges that some fitness areas are explored more thoroughly than others.
While for TSPEA2 this effect is not significant, it can still be observed. Altogether, if the evolution
of the main objective in a short period of time is essential while it is acceptable to reach very
good but not the highest values for the other objectives, TSPEA2 is a very useful solution. When
unbiased exploration of the complete fitness landscape (which is therefore more robust) is important,
as for instance when a good weighting scheme is unknown a-priori, other techniques have to be
investigated. In the following section we introduce a general methodology and a Pareto based local
search style algorithm for an exploration without preferences of the fitness landscape.
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Figure 6.4: 75% and 25% attainments for the hashing benchmark. The objective values are nor-
malized and negated, thus, a hypothetical optimal solution has the objective coordinate ~0.
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Table 6.4: Comparison of the nondominated sets. A dot denotes an accepted H0. When the KW
test rejects H0 for the algorithm pair (arow, acol), a one-tailed p-value lower than α = 0.05 indicates
that arow evolves significantly better nondominated sets than acol regarding I

1
ε+ (cf. Section 2.4.2).

A star indicates significantly different nondominated set distributions at α = 0.05 according to the
KS test.

SPEA2 TSPEA2 NSGAII IBEAIε+ IBEAIHD
2× 2 add SPEA2 1.000 1.000 1.000 1.000
KW test TSPEA2 0.0 · · 0.0

NSGAII 0.0 · 0.998 ·
IBEAIε+ 0.0 · 0.002 0.0
IBEAIHD 0.0 1.000 · 1.000

2× 2 add SPEA2 * · · *
KS test TSPEA2 * · · *

NSGAII · · * *
IBEAIε+ · · * *
IBEAIHD * * * *

3× 3 add SPEA2 1.000 1.000 1.000 1.000
KW test TSPEA2 0.0 · · 0.0

NSGAII 0.0 · · 0.0
IBEAIε+ 0.0 · · 0.003
IBEAIHD 0.0 1.000 1.000 0.997

3× 3 add SPEA2 * * * *
KS test TSPEA2 * * * *

NSGAII * * * *
IBEAIε+ * * * *
IBEAIHD * * * *

2× 2 mul SPEA2 1.000 1.000 1.000 1.000
KW test TSPEA2 0.0 · · 0.0

NSGAII 0.0 · · 0.0
IBEAIε+ 0.0 · · 0.0
IBEAIHD 0.0 1.000 1.000 1.000

2× 2 mul SPEA2 * · · *
KS test TSPEA2 * · · *

NSGAII · · · *
IBEAIε+ · · · *
IBEAIHD * * * *

3× 3 mul SPEA2 1.000 1.000 1.000 1.000
KW test TSPEA2 0.0 · 0.0 0.0

NSGAII 0.0 · 0.0 0.0
IBEAIε+ 0.0 1.000 1.000 ·
IBEAIHD 0.0 1.000 1.000 ·

3× 3 mul SPEA2 * * * *
KS test TSPEA2 * * * *

NSGAII * * * *
IBEAIε+ * * * *
IBEAIHD * * * *
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Table 6.5: Comparison of the nondominated sets. A dot denotes an accepted H0. When the KW
test rejects H0 for the algorithm pair (arow, acol), a one-tailed p-value lower than α = 0.05 indicates
that arow evolves significantly better nondominated sets than acol regarding I

1
ε+ (cf. Section 2.4.2).

A star indicates significantly different nondominated set distributions at α = 0.05 according to the
KS test.

SPEA2 TSPEA2 NSGAII IBEAIε+ IBEAIHD
6 parity SPEA2 1.000 1.000 1.000 1.000
KW test TSPEA2 0.0 0.0 0.003 0.001

NSGAII 0.0 1.000 0.999 0.989
IBEAIε+ 0.0 0.997 0.001 ·
IBEAIHD 0.0 0.999 0.011 ·

6 parity SPEA2 * · * *
KS test TSPEA2 * · * *

NSGAII · · * *
IBEAIε+ * * * ·
IBEAIHD * * * ·

7 parity SPEA2 1.000 · * 0.021
KW test TSPEA2 0.0 0.0 0.0 0.0

NSGAII · 1.000 0.005 ·
IBEAIε+ 1.000 1.000 0.995 ·
IBEAIHD 0.979 1.000 · ·

7 parity SPEA2 * * * *
KS test TSPEA2 * * * *

NSGAII * * * ·
IBEAIε+ * * * ·
IBEAIHD * * · ·

Hashing SPEA2 1.000 1.000 0.999 0.990
KW test TSPEA2 0.0 0.0 0.0 0.0

NSGAII 0.0 1.000 · 0.001
IBEAIε+ 0.001 1.000 · ·
IBEAIHD 0.010 1.000 0.999 ·

Hashing SPEA2 * * * *
KS test TSPEA2 * * * *

NSGAII * * · *
IBEAIε+ * * · ·
IBEAIHD * * * ·
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6.2 Evolutionary Algorithm Periodization

The methods and algorithms presented in this section have many motivations:

• The previous section presents objective selection schemes that significantly improve the effi-
ciency of the multi-objective evolution of CGP circuits. Their excellent performance has been
shown using many benchmarks, suggesting that they have good generalization capabilities.
However, the weighting scheme used by TSPEA2 for its objectives needs to be balanced by a
human designer each time there is a new set of goal functions, in order to obtain the highest
possible performance. The demand for an unsupervised and preference-free multi-objective
method for CGP is a challenge we address in this section.

• In our work, we have observed the dominance of evolutionary strategies with small λs for
single-objective CGP compared to standard, elitism based GAs with larger populations. 1+λ
ES belongs to the family of local search algorithms, while the single- and multi-objective
GAs presented in this work come from the global search family. A systematic approach
for combining algorithms to blend their properties, their convergence behaviors, and their
functionalities, is the next challenge approached by this section.

• Pareto based multi-objective algorithms introduce the nondominance order relation and di-
versity into their populations. When combined with non-Pareto approaches, these properties
have to be respected. Pareto based ES that also implement a standard diversity technique,
therefore, define the next challenge of this section.

• Finally, combining original algorithms with no or a small implementation effort is the last
topic for this chapter to address.

When combining multiple algorithms into a single scheme, we are inspired by the work of Schwie-
gelshohn [298] and Ierardi [175] on periodic sorting networks (PSN) with constant depth. Sorting
networks assume that each input element is located on a two-dimensional grid. Compare–exchange
lines (CEL) between two grid nodes sort the adjacent elements in a single step. A concrete PSN
scheme comprises two and more CEL layouts that are applied rotationally. For instance, Knuth’s
odd–even transposition sort is a PSN of depth 2. We have observed for some PSN algorithms that
the grid’s geometry plays an essential role in the convergence behavior [187]. Some geometries enable
outstanding convergence in the initial search phases, while other excel in the intermediate or final
stages. Applying the very same PSN scheme to a multi-geometry set of CEL layouts improves the
overall convergence. We extend this idea for population- and generation-based heuristic optimizers
by proposing a periodized execution model that blends the algorithms’ properties, functionalities, and
convergence behaviors in a simple and straightforward way. To this end, we define for a rotationally
executed sequence of algorithms a repetition function specifying the number of generations each
algorithm is iterated before proceeding with the next one.

6.2.1 The Periodization Model
Let A = (a1, a2, . . . , an) be the set of algorithms used in the periodization. As an illustrative
example, consider A = {GA1,GA2,LS}. For a hypothetical periodized algorithm that executes a
single step/generation of GA1, followed by two steps of LS, then a single step of GA2 and two steps
of LS, the index sequence I for the algorithm selection is given by (a1, a3, a2, a3), and the repetition
sequence F is (f1, f2, f3, f4) = (1, 2, 1, 2). While in this specific example, F is a vector of constants,
the number of repetitions can be adaptively adjusted based on the history of the optimization run
H. In particular, global search GAs with fast convergence in the beginning of an optimization
run could be repeated more often in the early search phases, while local search algorithms that
excel at improving nearly optimal nondominated sets could be used more intensively in the final
optimization phase.
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With t as the current generation number, H as the history of the current optimization run, A =
(a1, a2, . . . , an), n ∈ N as the set of algorithms used in the periodization, I = (i1, i2, . . . , im), m ∈ N,
ik ∈ (1, 2, . . . , n) as the set of indices for the selected algorithms in the execution sequence, and
F = (f1, f2, . . . , fm), fk(t,H)→ N as the number of repetitions for the algorithms in I, the complete
periodized execution model P is defined as:

P = AFI

= (a
f1(t,H)
i1

, a
f2(t,H)
i2

, . . . , a
fm(t,H)
im

).

The history H can be large if considering the complete information of an optimization run, or
more compact if considering, for example, only the dominated space of the current nondominated
set. In our experiments, we choose fk(t,H)) := fk(t) ≡ const. For the general case, however, H
changes with each generation. Accordingly, the number of algorithm repetitions fk(t,Ht) computed
in generation t for algorithm ak may differ from the fk(t+1,Ht+1) computed in the next generation.
Therefore, the repetition vector F needs to be updated after each generation. An example where
this effect becomes relevant is when some algorithm is iterated until local convergence occurs. That
is, if for l algorithm repetitions the best individual or the nondominated area does not change,
the periodization scheme proceeds with the next algorithm. However, if the population can be
improved, the algorithm is executed again for at least l generations.

6.2.2 Hybrid Evolutionary Strategies
Evolutionary Strategies in their original form rely solely on a mutation operator. The {µ ,

+λ} ES
uses µ parents to create λ offspring and selects µ new parents from all individuals in case of a ’+’
variant or from the new individuals in case of the ’,’ variant.

Our new hES local search style technique is a 1+λ ES designed for periodization with multi-objective
evolutionary algorithms. In particular, we include two concepts from the Elitist Nondominated
Sorting GA II (cf. Section 2.2.2) in hES: the fast nondominated sorting and the crowding distance
as a diversity metric. Fast nondominated sorting calculates nondominated sets for the objective
space points. The crowding distance for a point is defined as the volume of a hyper-cube bounded
by the adjoining points in the same nondominated set. Consequently, the crowding distance creates
an order, denoted by ≺n, on the points of a nondominated set. Our hES local search technique
uses fast nondominated sorting to decompose parents and offspring into nondominated sets, and
uses crowding distances to decide which of the individuals might be skipped in order to keep the
nondominated set diverse.

In summary, the key ideas for our hES algorithm are:

1. A local search style algorithm is executed for every element of a given set of solutions. Exactly
one individual, which is nondominated, from a parent and its offspring proceeds to the next
population.

2. Offspring individuals that are mutually nondominated to their parent but have a different
Pareto vector are skipped. This prevents unnecessary fluctuations in the nondominated set.

3. Neutral genetic drift, as presented by Miller in [252], is achieved by skipping a parent if at
least one of its offspring holds an equal Pareto vector.

4. Parents and offspring are partitioned into nondominated sets and new parents are selected
using NSGAII’s crowding distance metric.

Algorithm 5 shows the pseudocode of our hES implementation hES-step. The algorithm starts
with the creation of offspring in lines 1 to 4. To this end, for every individual in the parent
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population Pt, hES-step executes 1 + λ ES appending the newly created offspring to Qt. The
1 + λ ES loop is implemented by the ES-generate in Algorithm 5. After the offspring are created,
hES-step proceeds with the concatenation of parents and offspring by calling the add-replace
procedure, listed in Algorithm 7. add-replace clones the parent population and successively adds
offspring that have a unique Pareto vector to this population. An offspring with a Pareto vector
identical to its parent replaces the parent. Then, hES-step partitions the concatenated set Rt
in line 6 into nondominated sets Fi using NSGAII’s fast-nondominated-sort (cf. Algorithm 2).
After that, starting with the dominant set F1, the algorithm partitions F1 by the parents into
G = {G1, G2, . . . }. That means all individuals of Gi have the same parent p. Additionally, if
p ∈ F1, then p ∈ Gi. Should a non-empty set Gi not contain the parent p, one of the least crowded
individuals of Gi is selected to proceed to the next generation. Otherwise, the parent proceeds to
the next generation. Once p or one of its offspring is transferred to the next generation, p and all
of its offspring are skipped by hES-step from further processing.

Algorithm 5: hES-step(λ,Pt)—perform a single hES step
Input: λ, parent population Pt
Output: new archive Pt+1

1 Qt ← ∅
2 foreach p ∈ Pt do
3 Qt ← Qt ∪ ES-generate(p, λ)
4 end
5 Rt ← add-replace(Pt, Qt)
6 F ← fast-nondominated-sort(Rt)
7 Pt+1 ← ∅
8 foreach Fi ∈ F do
9 crowding-distance-assignment(Fi)

10 G ← group-ordered-by-parent(Fi)
11 foreach Gj ∈ G do
12 if parent of Gj not already replaced then
13 if parent(Gj) ∈ Gj then
14 Pt+1 ← Pt+1 ∪ {parent(Gj)}
15 else
16 sort(Gj ,≺n)
17 Pt+1 ← Pt+1 ∪ {Gj [0]}
18 end
19 mark parent of Gj as replaced
20 end
21 end
22 end

Algorithm 6: ES-generate(p,λ)—generate λ offspring
Input: parent p, number of offspring λ
Output: offspring set Q

1 Q← ∅
2 for i← 1 to λ do
3 p′ ← mutate(p)
4 Q← Q ∪ {p′}
5 end
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Algorithm 7: add-replace(P ,Q)—return copy of P joint by Q, replace parents in P by
offspring in Q with equal Pareto vectors, avoid adding multiple offspring with equal Pareto
vectors.

Input: sets P , Q
Output: set R

1 R← P
2 foreach q ∈ Q do
3 if @r ∈ R : r � q ∧ q � r then
4 R← R ∪ {q}
5 end
6 if ∃r ∈ R : r � q ∧ q � r ∧ parent({q}) == r then
7 R← R ∪ {q}
8 R← R\{r}
9 end

10 end

6.2.3 Evaluation
We experimented with several benchmarks to compare hES and the periodized variants of hES,
NSGAII and SPEA2. At first, we used the standard benchmarks for multi-objective algorithms
DTLZ{2,6} and ZDT6. These benchmarks are available with the PISA toolbox [49] and are de-
scribed in [239]. Second, we compared our algorithms on the evolution of digital circuits, i.e., even
5- and 7-parity and 2 × 2 and 3 × 3 adders and multipliers. As in Section 6.1, besides the func-
tional quality of a digital circuit, we selected the circuit’s area and speed to define a multi-objective
benchmark.

In our experiments we executed 20 repetitions for every combination of goal function and algo-
rithm. For the hES, ES-generate produces 32 offspring for each parent. For the other benchmarks,
Algorithm 5 was configured to have one offspring per parent.

Table 6.6 presents the configuration of the benchmarks DTLZ{2,6} and ZDT6. For these bench-
marks, NSGAII and SPEA2 employ the SBX crossover operator [97]. The optimization runs were
stopped after 10,000 fitness evaluations. Table 6.7 shows for the digital circuit benchmarks the CGP
configurations, termination criteria, and population sizes. We limit the functional set to the Boolean
functions presented in Table 6.8. To simplify the nomenclature, we use the following abbreviations:

hES → h
SPEA2 → s
NSGAII → n

6.2.3.1 Periodization of hES for DTLZ2, DTLZ6 and ZDT6
To examine the effect of local search, we first execute the standard NSGAII and SPEA2 for a given
benchmark in order to determine the reference performance. Then, we increase step by step the
influence of local search by periodizing NSGAII with hES until only hES is executed. In terms of
our periodization model (cf. Section 6.2.1), we investigate the six periodization schemes: n, s, nh,
nh4, nh10, and h.

Table 6.9 shows the results of the KW test applied to the benchmarks DTLZ{2,6} and ZDT6 with
respect to the unary additive epsilon indicator I1ε+ at the significance level α = 1%. The results of
the KS test are omitted as they indicate differences significant at α = 5% between the nondominated
sets for almost all combinations of algorithm and benchmark.
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Table 6.6: DTLZ2, DTLZ6, and ZDT6 benchmark configurations.

no. objectives 2
number of decision variables 100
individual mutation probability 1
individual recombination probability 1
variable mutation probability 1
variable swap probability 0.5
variable recombination probability 1
eta mutation 20
eta recombination 15
use symmetric recombination 1

Table 6.7: CGP benchmark configurations. S is the termination number, measured in fitness
evaluations. |P | and |A| denote the capacity of the parent population and the archive.

5-parity 7-parity 2× 2 add 2× 2 mul 3× 3 add 3× 3 mul
|P |/|A| 32/100 for hES, 50/100 else
nc 200
nr 1
ni 5 7 4 6
no 1 4 6
nn 2
l ∞
F see Table 6.8
P (mut.) 0.1
P (rcmb.) 0.0 for hES, 0.5 else
rcmb. type one-point
S 400.000 800.000 400.000 1.600.000 400.000 1.600.00

The central observation for the DTLZ2 and DTLZ6 experiments is that the quality of the nondom-
inated sets degrades with an increasing influence of local search. Starting with the periodization
of NSGAII and hES, the KW test shows falling performance when increasing the number of hES
iterations. The hES-only experiment results in the worst performance of all the algorithms. The
KW test results are confirmed by the graphical interpretation of the 75% attained nondominated
sets in Figure 6.5 (a) and Figure 6.5 (b).

For the ZDT6 benchmark, the influence of hES is not as one sided as for the DTLZ{2,6} benchmarks.
The nh periodization outperforms SPEA2 and NSGAII. Further increase in the influence of hES
in the nh4 periodization lets it dominate all other algorithms. The nh10 periodization is on a par
with SPEA2 and NSGAII, while the execution of hES alone, as with DTLZ{2,6}, falls behind.
The 75% attainments pictured in Figure 6.6 (a) confirm this. Interestingly, despite the large gap
between nh10 and the group of SPEA2 and NSGAII, the KW test finds no significant differences at
α = 1% between the corresponding indicator sequences. The KS test, similar to the results for the
DTLZ{2,6} benchmarks, reveals significant differences at α = 5% for all algorithm combinations
except the NSGAII and SPEA2 pair.

The DTLZ{2,6} and ZDT6 benchmarks demonstrate the various kinds of impact that local search
may have when periodized with global search algorithms. To gain an insight into whether the order
of the algorithms in the periodization sequence influences the results, and into how an hES-less
periodizations of SPEA2 and NSGAII compares to the regular SPEA2 and NSGAII, we fixate on
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Figure 6.5: 75%-attainments for the DTLZ2 (a) and DTLZ6 (b) benchmarks. A hypothetical
optimum is located at ~0.

109



6 Efficient Multi-Objective Optimization for CGP

Table 6.8: CGP configuration: Functional set F .

Number Function Number Function
0 0 10 a⊕ b
1 1 11 a⊕ b
2 a 12 a+ b

3 b 13 a+ b

4 a 14 a+ b

5 b 15 a+ b

6 a · b 16 a · c+ b · c
7 a · b 17 a · c+ b · c
8 a · b 18 a · c+ b · c
9 a · b 19 a · c+ b · c

Table 6.9: Comparison of the nondominated sets of DTLZ2, DTLZ6, and ZDT6. A dot denotes an
accepted H0. When the KW test rejects H0 for the algorithm pair (arow, acol), a one-tailed p-value
lower than α = 0.01 indicates that arow evolves significantly better nondominated sets than acol
regarding I1ε+ (cf. Section 2.4.2).

n s nh nh4 nh10 h
DTLZ2 n · 0.0 0.0 0.0 0.0
KW test s · 0.0 0.0 0.0 0.0

nh · · 0.0 0.0 0.0
nh4 · · · 0.0 0.0
nh10 · · · · 0.0
h · · · · ·

DTLZ6 n · 0.0 0.0 0.0 0.0
KW test s · 0.0 0.0 0.0 0.0

nh · · 0.0 0.0 0.0
nh4 · · · 0.0 0.0
nh10 · · · · 0.0
h · · · · ·

ZDT6 n · · · · 0.0
KW test s · · · · 0.0

nh 0.0001 0.0027 · 0.0001 0.0
nh4 0.0 0.0 0.0014 0.0 0.0
nh10 · · · · 0.0
h · · · · ·

the ZDT6 benchmark and apply 2- and 3-tuple permutations of the NSGAII, SPEA2, and hES
algorithms. All the experiments were repeated 100 times and the execution was stopped after 200
generations.

Table 6.10 shows the results for 2-tuple combinations of NSGAII, SPEA2, and hES. The general
observation taken from the KW test is that hES periodized with either NSGAII or SPEA2 out-
performs standard NSGAII, SPEA2, and their combinations. Interestingly, the hES-after-SPEA2
outperforms the hES-after-NSGAII, while SPEA2-after-hES does not. This shows that the perfor-
mance of this particular periodization scheme may be sensitive to the initial order of the executed
algorithms.

The KS test confirms the results observed before. There are basically two classes of algorithms,
showing significantly different results: the class of algorithms periodized with hES, and the class of
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Figure 6.6: 75%-attainments for the ZDT6 (a) benchmarks. A hypothetical optimum is located at
~0.

NSGAII, SPEA2 and their combinations. In contrast to the previous test, the differences between
(hs) and (nh) are now identified as significant.

Next, Table 6.11 shows the results of 3-tuple combinations of hES with NSGAII and SPEA2.
Analogous to the results achieved for the 2-tuple tests, all the periodized algorithms outperform
(KW) and differ (KS) from NSGAII and SPEA2.

In summary, we can conclude that for the DTLZ{2,6} benchmarks, an increasing impact of hES
reduces the quality of the nondominated sets evolved, while for the ZDT6 benchmark, the schemes
periodized with hES have the dominating results.

6.2.3.2 Periodization of hES for Digital Circuit Design
In contrast to the previous benchmarks, we optimize for three objectives in this section: the func-
tional quality, the area, and the propagation delay. In total, each algorithm is executed 20 times for
each pair of goal functions. Table 6.12 summarizes the number of runs that resulted in functionally
correct solutions. The first observation is that for the parity, the 3 × 3 adder, and the 3 × 3 mul-
tiplier benchmarks, almost none of the algorithms managed to evolve functionally correct circuits.
We focus therefore on the experiments involving the 2 × 2 adder and the 2 × 2 multiplier, when
discussing the influence of local search on the evolution of correct circuits.

When comparing the motivations and methodologies in the current section with those of Section 6.1,
several analogies become clear: in this section, we try to improve multi-objective circuit optimization
by combining it with a single-objective local search technique, while in Section 6.1, we mimic the
selection scheme of a single-objective algorithm within a multi-objective optimizer. In both sections
we want to approach the performances of baseline methods by incorporating their key principles into
a unified approach. However, there is a cardinal difference between remodeling a multi-objective
algorithm and blending multiple independent algorithms into a single method. While in Section 6.1,
the reference TSPEA2 is created to prioritize functionally fit individuals and therefore is expected to
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Table 6.10: ZDT6 nondominated sets comparison for 2-tuple combinations of NSGAII, SPEA2 and
hES to NSGAII and SPEA2. A dot denotes an accepted H0. When the KW test rejects H0 for
the algorithm pair (arow, acol), a one-tailed p-value lower than α = 0.01 indicates that arow evolves
significantly better nondominated sets than acol regarding I

1
ε+ (cf. Section 2.4.2). A star indicates

significantly different nondominated set distributions at α = 0.05 according to the KS test.

n s nh hn sh hs ns sn
KW test n · · · · · · ·

s · · · · · · ·
nh 0.0 0.0 · · · 0.0 0.0
hn 0.0 0.0 · · · 0.0 0.0
sh 0.0 0.0 0.0091 · · 0.0 0.0
hs 0.0 0.0 · · · 0.0 0.0
ns · · · · · · ·
sn · · · · · · ·

KS test n · * * * * · ·
s · * * * * · ·
nh * * · * * * *
hn * * · · · * *
sh * * * · · * *
hs * * * · · * *
ns · · * * * * ·
sn · · * * * * ·

Table 6.11: ZDT6 nondominated sets comparison for 3-tuple combinations of NSGAII, SPEA2 and
hES to NSGAII and SPEA2. A dot denotes an accepted H0. When the KW test rejects H0 for
the algorithm pair (arow, acol), a one-tailed p-value lower than α = 0.01 indicates that arow evolves
significantly better nondominated sets than acol regarding I

1
ε+ (cf. Section 2.4.2). A star indicates

significantly different nondominated set distributions at α = 0.05 according to the KS test .

n s nhs nsh shn snh hns hsn
KW test n · · · · · · ·

s · · · · · · ·
nhs 0.0 0.0 · · · · ·
nsh 0.0 0.0 · · · · ·
shn 0.0 0.0 · · · · ·
snh 0.0 0.0 · · · · ·
hns 0.0 0.0 · · · · ·
hsn 0.0 0.0 · · · · ·

KS test n · * * * * * *
s · * * * * * *
nhs * * · · · · ·
nsh * * · · · · ·
shn * * · · · · ·
snh * * · · · · ·
hns * * · · · · ·
hsn * * · · · · ·
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have a higher performance in evolving correct solutions, in this section, hES has no such alignment
towards a specific objective being completely unbiased. Thus, a higher performance in evolving
correct solutions is not self-evident. Fortunately, a consequence of a fair selection scheme is that no
nondominated set deterioration is expected for hES.

Table 6.12: The number of circuits with perfect functional quality evolved during 20 runs.

2× 2 add 3× 3 add 2× 2 mul 3× 3 mul 5-parity 7-parity
n 1 0 0 0 0 0
s 6 0 7 0 0 0
nh 7 0 8 0 0 0
nh4 9 0 11 0 0 0
nh10 11 0 14 0 0 0
h 12 1 15 0 0 0

Despite treating equally all objectives, hES is most effective in finding functionally correct solutions.
While SPEA2 outperforms NSGAII for this particular CGP configuration on the 2 × 2 adder and
multiplier benchmarks, increasing the influence of hES in the periodization with NSGAII produces
even greater success rates. nh4 and especially nh10 periodization schemes reveal only a small gap
with the hES-only performance. This insight is also partly confirmed by the results of the KW
and the KS tests presented in Table 6.13. For the 2 × 2 adder, the KW test finds no significant
differences in nondominated sets at α = 1% while the KS test partitions the algorithms into groups
of {n}, {s, nh, nh4, nh10}, and {h} with significant differences in the evolved nondominated sets at
α = 5%. For the 2× 2 multiplier benchmark, NSGAII is dominated by all, and hES by SPEA2 and
nh according to the KW test. The KS test splits the algorithms, similarly to what happened with
the 2× 2 benchmark, into groups of {n}, {s, nh, nh4, nh10}, and {h}. Additionally, in the group of
{s, nh, nh4, nh10} SPEA2 evolves different nondominated sets than it does for nh4, nh10.

The 3× 3 adder and multiplier benchmarks split the algorithms into {n} and {s, nh, nh4, nh10, h}
groups with different nondominated sets according to the KW test. The KS test reveals, similar to
what happened with the 2 × 2 benchmarks, the same general tendency of differences between the
nondominated sets evolved by the NSGAII, the hES, and the group of the remaining algorithms.

The general partitioning according to the quality of the evolved nondominated sets between NSGAII,
hES, and the rest of the algorithms, is even more pronounced for the parity benchmarks, as now
the KW test also confirms significant differences. That is, SPEA2, nh, nh4, and nh10 are better
than NSGAII and hES for 5- and 7-parity functions and NSGAII is better than hES for the 7-parity
function. The KS test finds significant differences between the three groups, also finding a significant
difference between nh and nh10 for 5-parity.

In summary, we can state that periodizations of hES with NSGAII, as well as the non-periodized
SPEA2, create, for almost all benchmarks, nondominated sets which are better than those of the
non-periodized hES and NSGAII. Additionally, with the increasing influence of hES in a periodiza-
tion scheme, the probability for the evolution of correct circuits increases.

6.3 Chapter Conclusion

Pareto based multi-objective optimization is fundamental for our holistic Evolvable Hardware ap-
proach. We have observed, however, state of the art MOEAs performing below average for the
domain of CGP circuits. This has motivated our research on the scalability of MOEAs for CGP.
At first, we redefined the selection of parents in SPEA2 by a linear objectives aggregation scheme
leaving the Pareto diversity mechanism in place. We proved our new algorithm to be very efficient,
sometimes outperforming even the single objective GA. The diversity of the evolved nondominated
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Table 6.13: Non-dominated sets comparison: A dot denotes an accepted H0. When the KW test
rejects H0 for the algorithm pair (arow, acol), a one-tailed p-value lower than α = 0.01 indicates that
arow evolves significantly better nondominated sets than acol regarding I

1
ε+ (cf. Section 2.4.2). A

star indicates significantly different nondominated set distributions at α = 0.05 according to the
KS test.

n s nh nh4 nh10 h
2× 2 add n · · · · ·
KW test s · · · · ·

nh · · · · ·
nh4 · · · · ·
nh10 · · · · ·
h · · · · ·

2× 2 add n * * * * *
KS test s * · · · *

nh * · · · *
nh4 * · · · *
nh10 * · · · *
h * * * * *

3× 3 add n · · · · ·
KW test s 0.0067 · · · ·

nh 0.0004 · · · ·
nh4 0.0011 · · · ·
nh10 0.0 · · · ·
h 0.0 · · · ·

3× 3 add n · * * * *
KS test s · · · · *

nh * · · · *
nh4 * · · · *
nh10 * · · · *
h * * * * *

2× 2 mul n · · · · ·
KW test s 0.0 · · · 0.0

nh 0.0 · · · 0.0013
nh4 0.0 · · ·
nh10 0.0 · · ·
h 0.0016 · · · ·

2× 2 mul n * * * * *
KS test s * · * * *

nh * · · · *
nh4 * · · · *
nh10 * * · · *
h * * * * *

3× 3 mul n · · · · ·
KW test s 0.0006 · · · ·

nh 0.0 · · · ·
nh4 0.0 · · · ·
nh10 0.0 · · · ·
h 0.0002 · · · ·

3× 3 mul n * * * * *
KS test s * · · * *

nh * · · · *
nh4 * · · · *
nh10 * * · · *
h * * * * *
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Table 6.14: Non-dominated sets comparison: A dot denotes an accepted H0. When the KW test
rejects H0 for the algorithm pair (arow, acol), a one-tailed p-value lower than α = 0.01 indicates that
arow evolves significantly better nondominated sets than acol regarding I

1
ε+ (cf. Section 2.4.2). A

star indicates significantly different nondominated set distributions at α = 0.05 according to the
KS test.

n s nh nh4 nh10 h
5-parity n · · · · ·
KW test s 0.0 · · · 0.0

nh 0.0 · · · 0.0
nh4 0.0 · · · 0.0
nh10 0.0 · · · 0.0
h · · · · ·

5-parity n * * * * *
KS test s * · · · *

nh * · · * *
nh4 * · · · *
nh10 * · * · *
h * * * * *

7-parity n · · · · 0.0054
KW test s 0.0 · · · 0.0

nh 0.002 · · · 0.0
nh4 0.0 · · · 0.0
nh10 0.0 · · · 0.0
h · · · · ·

7-parity n * * * * *
KS test s * · · · *

nh * · · · *
nh4 * · · · *
nh10 * · · · *
h * * * * *

sets was on a par with, but sometimes significantly different than, the solutions from NSGAII and
SPEA2.

For the following reasons we have been looking for a more systematic approach: Fixed and efficient
objectives weighting scheme is not always known a priori and may change during the search process.
The robustness of an evolutionary algorithm can therefore be improved by avoiding putting prefer-
ences into the selection operator. A selection scheme without preferences also allows exploring the
complete fitness landscape. Finally, we were searching for a way to combine algorithms that already
worked very well, and their properties, into a single scheme without implementing yet another new
algorithm.

With the introduction of the algorithm periodization scheme and a Evolutionary Strategies variant
able to cope with nondominated sorted populations, we have combined single objective local search
style algorithms with multi-objective global search algorithms into one method without modifying
the single algorithms themselves. Algorithm periodization can be used to explore the nature of
the optimized function by varying the influences of the rotationally executed algorithms. More
importantly, for the domain of CGP circuits, a carefully balanced periodization scheme has proved
to be superior to the single algorithms of the periodization sequence.

Altogether, our methods can significantly improve the multi-objective evolution of CGP circuits in
terms of convergence rates and sometimes in terms of the diversity of the nondomination set. In
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the next chapter, we will present Evolvable Hardware applications employing these methods and
algorithms.
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Chapter 7

Evolvable Hardware Applications

In this chapter we apply our methods, introduced in Chapter 5 and Chapter 6, to the applications
of Evolvable Hardware pattern matching architectures and processor optimization.

In the first section (Section 7.1), we investigate their application to electromyography (EMG) signal
classification. EMG signals are generated by contracting muscles. Today, muscle signal classifi-
cation has become more and more popular for steering lower- and upper-limb prostheses. With
the potential non-stationarity of EMG signals, Evolvable Hardware solutions are highly suitable for
this application. EHW systems allow secure functional and temporal operation modes, are energy
efficient, compact, and, most importantly, inherently adaptable to varying components. EMG’s
potentially non-stationary signal components could be induced by changing conductances of the
electrodes attached to the skin, muscle fatigue, varying amputee conditions, and long term muscu-
lar characteristic variations, such as aging.

In Section 7.2, we extend our work on adaptable classifier architectures by investigating the behav-
ior of the classification accuracy during and after changes in the available resources a classifier may
use, and after the classifier size has been adjusted. we are motivated by our adaptation paradigm
proposed in Section 1.1, relying on simulated evolution for gradual changes, and on pre-evolved so-
lutions for radical changes. Observing the impact of architectural reconfigurations, we gain insights
into the adaptation dynamics of an EHW classifier. We select the run-time reconfigurable functional
unit row classifier of Glette et al. [127] for our experiments, and extract the magnitudes of any drops
in accuracy and of the recovery behavior for both gradual and radical changes in architecture.

In our last contribution, we extend the notion of Evolvable Hardware to an application that has not
been considered for adaptation in conventional engineering. In Section 7.3 we apply the concept
of Evolvable Hardware to the evolution of the memory-to-cache address mapping functions of a
processor. To this end, we introduce a small reconfigurable fabric within a CPU and subject it to
evolution. Thereby we use a realistically sized embedded system with a multi-level cache and a
cycle-accurate execution time fitness.

7.1 ECGP Based Architecture for Electromyographic Signal
Classification

A prosthetic hand controller (PHC) is usually operated by signals generated by contracting muscles,
i.e., electromyographic signals. The challenge of modern prosthesis control, which became relevant
with the introduction of multi-functional prostheses, is that the conventional way of steering a
prosthesis overstrains the amputee. It is very difficult for amputees to select from among multiple
prosthetic device functions using a limited set of muscles and types of muscle contractions. To have
improved control over motions using prostheses with more degrees of freedom, classification based
PHCs are necessary. Additionally, it would be a great advantage to have access to PHCs which
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adapt themselves to changes in the user’s EMG signal patterns. These EMG patterns are influenced
by parameters such as muscle fatigue, skin conductivity, and the amputee’s age. Currently, users are
required to adapt to pre-defined EMG patterns, partly supported by periodic re-training sessions.

In the context of a PHC, Evolvable Hardware becomes an interesting approach, providing possibili-
ties for self-adaptation, fast training, and compactness. The combination of evolutionary algorithms
and reconfigurable hardware allows for automatically constructed hardware systems able to adapt
their structure to specification changes. Learning to classify electromyographic signals is basically an
incremental learning problem when it is applied in practice. In general, a learning task is incremen-
tal if the training examples that must be used to solve that task become available over time [126]. In
our case, it would be possible that a disabled person using an intelligent prosthesis system carries out
some exercises under the guidance of that system. The system records and processes the measured
data, extending the available training data with new samples. The advantages of such an approach
are obvious: First, the system would adapt to the behavior of the disabled person (and not vice
versa). Second, the system would also be able to adapt to long term changes in the behavior of the
disabled person. An interesting question is whether the classifier can then be trained incrementally
instead of training it “from scratch.” Updating and retraining the classifier using the most recent
data may allow discarding old training data, as the essential knowledge that can be extracted from
that data is already contained in the classifier’s parameters. For support vector machines (SVMs)
and other conventional classifier paradigms, which are used for comparison in this work, there are
available incremental training techniques (cf., e.g., [215,273,317]).

In this section, we define an pattern matching architecture based on ECGP and compare it to the
reference EHW classifier of Glette and Torresen, described in Section 3.2.6, and to conventional
state of the art pattern matching algorithms. Among the conventional classifiers, we employ arti-
ficial neural networks and support vector machines, which are considered to be some of the most
powerful classifier methods existing today. All experiments using the FUR architecture in this
section (Section 7.1) were carried out by Kyrre Glette.

The two key insights we want to gain from our experiments are whether our and the FUR based
EHW classifier are on a par with state of the art pattern matching algorithms, and whether EMG
signals have a non-stationary nature requiring continuous adaptation.

To motivate the relevance of our work, the next section (cf. Section 7.1.1) presents the history
and currently used control strategies of EMG-driven prostheses. As EHW based classifiers have
been applied frequently to EMG signal classification, the section also summarizes related work in
this area. Sections 7.1.2 and 7.1.3 describe the setup of our EMG sensor system and the signal
processing as well as the feature extraction schemes. ECGP based and conventional approaches are
given in detail in Sections 7.1.4 and 7.1.5. A description of the experiments, validation schemes,
and the results is given in Section 7.1.6.

7.1.1 Classification of Electromyographic Signals
The first known prosthesis controlled by electromyography signals is the “Hüfner Hand” [67]. In
1948, Reiter implemented a prosthesis controller using one EMG channel to encode “open” and
“close” movements of an artificial hand [284]. A quick contraction and relaxation triggered the
“open” movement and a steady force contraction caused the prosthesis to gradually close the hand.
Driven by the availability of compact electronic components, the area of prosthesis control gained
more popularity in the 1960s and 1970s. Substantial effort went into defining strategies for robust
selection of prosthesis actions from muscular activities [65, 66, 101, 138, 158]. The first commercial
system was offered in the early 1960s [195]. In the following, we discuss modern EMG signal
classification techniques with both conventional systems and Evolvable Hardware.

Modern conventional upper limb prosthesis control systems typically use rudimentary algorithms
to derive information for steering the prosthesis. There are three popular methods of acting on the
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signal of a muscle, or more precisely, a group of muscles, which consider:

• the intensity of the muscular activity. For a single channel, typically two intensity thresh-
olds separate three muscle states: relaxed, slightly contracted, and contracted, allowing the
prosthesis to perform, for example, “open” and “close” movements [101].

• the muscular activity growth rate. Similar to the previous method, two thresholds for the
speed of the performed contraction partition the channel output into three states [65].

• multiple groups of muscles, discriminating between contracted / non-contracted muscles, to
encode the prosthesis action. For example, using two channels, up to three prosthesis actions
and a neutral state can be selected.

For multi-functional prostheses, the control system can use quick co-contractions to switch between
different activity modes (e.g., switching between the “grasping” and the “rotating” modes for an
artificial hand). However, such a control mechanism is not intuitive and has to be learned by the
user.

Pattern recognition algorithms enable a different way of extracting information from muscular ac-
tivity. For example, instead of requiring the user to be familiar with the activation of some groups of
muscles to trigger an “open” movement, pattern recognition algorithms are able to extract the nat-
ural hand “open” impulse from the superimposed EMG signals of the forearm. Pattern recognition
methods allow for intuitive control and are also capable of discriminating between a larger number
of distinct movements. However, multiple EMG channels are needed for the robust detection of
multiple movements.

Early attempts to use pattern recognition algorithms were made by Finely [119], Herberts [158], and
Graupe and Cline [138]. In today’s literature on EMG signal classification, the signal processing
chain is often broken down into three algorithmic components: feature extraction, dimensionality
reduction, and pattern classification. The feature extraction step isolates application specific at-
tributes from the EMG signal. Dimensionality reduction decreases the amount of data to obtain a
more robust and accurate classification by selecting or projecting features. The final pattern clas-
sification step determines the predefined category to which the input data belongs. The complete
processing chain has to be carefully balanced. In particular, the choice of a pattern recognition
algorithm and the selected features contribute significantly to the recognition accuracy.

Feature extraction schemes for continuous prosthesis control act in a sliding window manner. That
is, a feature set is calculated for each window of the data, where the windows are typically up
to 300 milliseconds in length and are selected according to the classification rate of the prosthesis
controller.

Historically, the development of computationally efficient algorithms has been of the utmost im-
portance, since prosthesis controllers typically run on battery powered embedded systems. Here,
feature extraction methods acting in the time domain (TD) are often regarded as being well-suited
because of their simplicity. Examples of time domain methods widely used in EMG classification
are mean absolute value (MAV) [110,173,182,268,403] [10], zero crossing (ZC) [110,173], slope sign
changes (SSC) [110,117,173], and waveform length (WL) [110,117,173].

EMG electrodes, being electrically only loosely attached to the skin surface, tend to act as antennas,
collecting noise from power lines, adjacent electric and electronic prosthesis subsystems, and other
electromagnetic sources. Time domain methods in general and methods using amplitude based
features in particular have difficulties dealing with such noise and also with the effects of varying skin
conductance. Consequently, a significant part of the related work concentrates on frequency domain
based feature extraction to suppress noisy influences. The Fourier transformation (FT) and the short
time Fourier transformation (STFT) [110,186,326] are among the most popular methods. Capturing
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information from the time and frequency domains, the wavelet transformation (WT) [110,186] and
the wavelet packet transformation (WPT) [110,112,326] have also been successfully studied for the
recognition of EMG signals. Despite being computationally expensive, frequency domain feature
extraction schemes are feasible on today’s high performance embedded systems.

Reducing the dimensionality of the feature space while preserving essential information may in-
crease a classifier’s generalization ability. Additionally, irrelevant information that is skipped in
this step reduces the amount of data to be processed by the classifier. Dimensionality reduction
can be implemented as a feature selection that aims at maximizing the probability of a correct
classification [112, 247]. For the classification of EMG signals, the projection of features is quite
popular. Projection creates a new and generally smaller feature set by combining the original
features in a linear or non-linear way. Some of the algorithms employed are principle component
analysis (PCA) [112,247], linear and non-linear discriminant analysis (LDA, NLDA) [70], and self-
organizing feature maps (SOFM) [70].

The last step of the signal processing chain covers pattern recognition. A dominant part of the
related work uses artificial neural network (ANN) classifiers [164, 171, 173, 263]. More recent work
also has introduced support vector machines (SVM) for EMG signal classification [47, 316] [10], as
well as Bayesian classifiers [109, 111, 112], fuzzy classifiers [62, 185], Gaussian mixtures [172], and
hidden Markov models [61].

A compact overview of the methods for preparing, processing, and classifying EMG signals is given
by Zecca et al. [407] and Parker et al. [269].

Classification of Electromyographic Signals with Evolvable Hardware

An early use of EHW for pattern recognition was reported by Higuchi et al. [160]. Their architecture,
presented in Section 3.2.2, was originally applied to character classification but was later used for
classification in a PHC [181,183]. The configuration of the architecture was evolved using a genetic
algorithm implemented on the same chip as the classifier, resulting in a compact and adaptable
system. The controller was trained with feature vectors extracted from EMG data where one input
signal consisted of four channels at a resolution of four bits. The classifier distinguished between
six different kinds of movements. The classification performance was computed by dividing the
EMG data into two halves and using one half as the training data and the second half as the test
data. Although the results showed a classification rate for the evolved circuits competitive with
that of artificial neural networks (ANNs), it was noted that the size of the employed dataset might
be insufficient; this was indicated by the strongly varying classification rates. As a result of having
the GA implemented entirely in hardware and on the same chip, the learning time (800 ms) for the
EHW approach was significantly shorter than that of the ANN. Short training times are important
for the user-friendliness of a PHC, especially if online adaptation is applied.

Using similar EMG data, Torresen [361] conducted experiments on incremental evolution using an
EHW architecture. The two layer architecture consisted of AND-OR matrices followed by a selector
layer. The AND-OR matrices were evolved in the first step followed by the evolution of the selectors.
In addition, the best subsystems from different runs were combined into one system. The results
showed that a two step incremental approach can lead to a better generalization performance and
shorter computation times than either traditional one-step evolution and ANN.

We have compared, in [9], the presented EHW architectures of Higuchi et al. [160] and Torresen [361]
with the FUR architecture demonstrated in Section 3.2.6 and with our ECGP based classifier
architecture, which we will introduce in this chapter. The results have shown that accuracy rates
increase from the first-generation classifier of Higuchi et al., through the more sophisticated and
complex architecture of Torresen, to the modern schemes of the FUR and ECGP based ensemble
classifiers.
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Figure 7.1: Evolvable hardware architecture for classification tasks introduced by Torresen in [361].
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Figure 7.2: The EMG measurement system. The analog signal processing part is decoupled from
the PC and powered by a battery. EMG signal amplifiers are placed close to the electrodes to reduce
noise. Signal processing is implemented completely on the PC.

7.1.2 Recording Electromyographic Signals
We use two measurement systems for stationary and portable EMG signal recording. The stationary
system comprises four components: EMG sensors (Tyco Arbo*, Ag/AgCl, 35 mm), amplifiers
(Biovison [45]), A/D converters (N.I. [261]), and a standard computer. The system is shown in
Figure 7.2 and continuously monitors four sensor channels with 14 bit resolution at a sampling rate
of 6 kHz. Two important requirements for such a measurement system are the reduction of noise in
the analog signal processing path and a reproducible biomechanical experimental setup. To reduce
noise, we employ an optical bridge (Sonowin [325]) to galvanically decouple the signal amplifiers
and the A/D converters from the computer that accumulates the data. A separate battery provides
a stable power supply to the amplifiers and A/D converters. Moreover, the amplifiers are placed
as near as 10 cm to the electrodes attached to the skin in order to minimize parasitic inductances.
For portable EMG data acquisition, we use a MindMedia Nexus 10 Biofeedback System [258] to
continuously monitor four EMG sensor channels with 24 bit resolution at a sampling rate of 2048
Hz.

We place the four electrode pairs on the top, bottom, medial, and lateral sides of the forearm with
the reference at the wrist, as shown in Figure 7.3. The exact electrode positions are determined
specifically for the test subject to obtain pronounced signals. A reproducible biomechanical exper-
iment setup is an important requirement for such a measurement system. Thus, after the initial
calibration we mark the electrode positions to be able to re-establish the experimental setup on
different days.
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channel 0

channel 3
channel 1

channel 2

Figure 7.3: Sensor placement (muscle anatomy taken from [139]).

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)

Figure 7.4: Motion classes: 1) extension, 2) flexion, 3) ulnar deviation, 4) radial deviation, 5)
pronation, 6) supination, 7) open, 8), close 9) key grip, 10) pincer grip, and 11) extend index finger.

In a single run of the experiment, the test subject has to perform a sequence of multiple different
movements. Some of these movements are depicted in Figure 7.4. Each movement starts with a
relaxation phase followed by a contraction phase, as shown in Figure 7.5(a). The EMG signal for
the contraction part can be roughly divided into a one second phase at the onset of the contraction,
containing the transient components of the EMG signal, and a subsequent steady state phase, which
corresponds to a constant force contraction. We use the steady phase for classification.

For the first experiment we use the stationary EMG measurement system to record the movements
1) to 8), as presented in Figure 7.4, by three individuals on three consecutive days. In each of the
nine sessions, an individual repeats the movement sequence 20 times. Each movement consists of
a nine second relaxation phase and an eleven second contraction phase. The data is recorded at
a sampling rate of 6 kHz. For the second experiment, recorded by Boschmann et al. [50] [10], we
use the portable EMG measurement system to have a single individual collect data from all eleven
movements presented in Figure 7.4 over 21 days. Similar to the previous setup, the subject records
a single sequence of movements five to six times a day. In total, 121 sessions are conducted during
different times of a day. Each movement starts with a relaxation part of about four seconds followed
by a contraction part that lasts about five seconds. The sampling rate in this experiment is set to
2048 Hz.

The data from the first experiment is analyzed by the “Day1–3” and “2of3” evaluation schemes, and
the data from the second experiment is analyzed by the “121” evaluation scheme. The definitions
of these schemes will be given in Section 7.1.6.
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(a) relax (b) (c) steady state

Figure 7.5: EMG signal preprocessing. The left figure shows the raw signals for all four channels,
consisting of a) a relaxation phase, b) a transient phase with intensified activity, and c) a steady
state contraction phase. The center figure presents the DC offset-compensated and rectified signals
from the four channels in the steady state phase, and the right figure shows a single extracted
feature vector using the (200, 2, 5) scheme.
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Figure 7.6: (200,2,5) feature extraction scheme for a single signal channel: Five average values over
2×200 samples defines a feature vector. An averaged window overlaps with the subsequent window
for 200 samples.

7.1.3 Electromyographic Signals Processing and Feature
Extraction

Signal preprocessing and feature extraction is done completely in the digital domain. Our method
is inspired by the mean average value (MAV) scheme of Kajitani et al. [183]. We design the method
to have an efficient computation procedure by subdividing the input signals into small and disjoint
intervals. Partial solutions are computed for each interval and reused for feature vector extraction.
This minimizes redundant computations.

The feature vector extraction scheme is defined by the triple (r, s, t), where r is the number of samples
in the moving average window, s is the number of moving average windows used to compute a single
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feature value, and t is the number of values in the feature vector calculated for a particular channel.
With k as the number of signal channels, p as an index of a signal sample, dip, i = 1, . . . , k, as the
DC compensated raw signal, and j = 1, . . . , t a single feature vector, v ∈ Rkt is calculated by

v = (v)ij = − log

(
1

rs

(j−1+s)r∑

l=(j−1)r+1

|dil|
)
.

Thus, a single feature vector in the (r, s, t) scheme consists of k× t values calculated over r(s+ t−
1)f−1 seconds, where f denotes the sampling rate.

To demonstrate a feature vector calculation, we given an example of computing a (200, 2, 5) scheme
for a signal sampled at 6 kHz. The first element of v = (v1,1, v1,2, v1,3, v1,4, v1,5) is computed
as v1,1 = −log([200 · 2]−1 · [|d1,1| + |d1,2| + · · · + |d1,400|]). Similarly, the remaining elements of
v rely on means computed using the raw signal values with indices (201, . . . , 600), (401, . . . , 800),
(601, . . . , 1000), and (801, . . . , 1200). Altogether, the first feature vector relies on data recorded over
200 · (2 + 5 − 1) · 6000−1 = 200 [ms]. Figure 7.6 shows an EMG signal example and the according
elements of v.

Our feature extraction scheme is tailored for the continuous operation mode of a prosthesis controller
running on a small embedded system. With an update frequency of fu for the feature extraction
and classification chain, the window size r should be set to f · f−1u to allow the reuse of (v)ij , i =
1, . . . , k, j = 2, . . . , t for the calculation of the following feature vector. With t = f · f−1u , only the
averages (v)ij , i = 1, . . . , k, j = t have to be updated. Coming back to the example of Figure 7.6, we
set the update frequency to 30, which results in a moving average window of r = 6.000 · 30−1 = 200
samples. With this, we can reuse v1,2, v1,3, v1,4, v1,5 of the first feature vector. Thereby, the elements
are relabeled to v1,1, v1,2, v1,3, v1,4 and for v1,5 only the sum of raw signal elements with indices
(1201, . . . , 1400) need to be computed. v1,5 is then the sum of the partial results

∑1.200
l=1.001 |d1l|,

already computed for the first feature vector, and
∑1.400

l=1.201 |d1l| divided by rs = 200 · 2.

In our experiments we set the update frequency to f(r(s+ t− 1))−1: thus, the feature vectors are
computed on disjoint data. If further feature normalization is applied by the classification algorithm,
the channels are treated independently. For the “Day1–3,” “2of3,” and “121” experiments, the feature
vectors are computed by a (300, 2, 5) and (100, 2, 5) scheme, respectively. Thus, the feature vectors
consist of 20 values and the corresponding label. Both feature extraction schemes use the data of
roughly one-third of a second, which is a realistic assumption for a prosthesis control.

7.1.4 The Embedded Cartesian Genetic Programming
Classification Architecture

Creating our ECGP based classifier, we orient ourselves with the FUR ensemble classifier structure
previously presented in Section 3.2.6. A generalized FUR architecture is shown in Figure 7.7. The
architecture decomposes into category detection modules (CDM) computing how likely it is that an
input vector corresponds to a certain category. Each module splits into single detectors, so-called
category classifiers (CC), indicating by a 1 and a 0, whether the input vector matches or not the
trained category. All category classifiers in a module detect the same category. The number of
“activated” category classifiers expresses the likelihood that an input vector belongs to a certain
category.

The generalized classification architecture in Figure 7.7 becomes specific with the implementation
of the category classifiers. In the case of the functional unit row (FUR) architecture, a CC is
implemented as a set of comparator elements contributing to an AND gate. For the ECGP based
classification architecture, each category classifier is a general Boolean circuit with a single output,
evolved to compute a “1” for an input vector corresponding to the trained category and a “0”
otherwise.
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Figure 7.7: High level structure of the FUR and ECGP based EHW classifier architectures.

Table 7.1: ECGP-based architecture parametrization.

ni / no / nr / nc 10.000 / 1 / 1 / 1000–1500
nn / F 4 / B4

mutation prob. 1.0
mutation rate 0.03
one point mutation prob. 0.6
compress / expand prob. 0.1 / 0.2
module point mutation prob. 0.04
add / remove module input prob. 0.01 / 0.02
add / remove module output prob. 0.01 / 0.02
maximum module size 3

Our EHW based classifier relies on a variant of the embedded Cartesian genetic programming
model presented in Sections 3.4.4 and 5.2. We employ age based module creation as this particular
method demonstrated higher convergence rates in our experiments. To configure the complete
architecture, we define a multi-chromosome genotype, storing for each CC a complete ECGP model.
The architecture’s fitness is defined as a candidate solution’s classification accuracy on the training
dataset. More precisely, for the set of labeled training feature vectors X = (x, l), the fitness f of an
evolved classifier circuit c is defined as:

f(c) = |X|−1
∑

(x,l)∈X

{
1 : if c(x) = l,
0 : else.

The evolution is implemented as 1 + 1 ES, presented in Section 3.4.1. The complete set of ECGP
model parameters is summarized in Table 7.1. The population is initialized randomly with a length
of 1000 logic blocks. Depending on the modules created, the chromosome is allowed to grow up
to 1500 blocks. The architecture is configured to evolve 24 ECGP classifier circuits per category
for “Day1–3” and “2of3,” and 20 ECGP classifier circuits per category for “121.”. Each of the 20
values in a feature vector is linearly quantized to a 9-bit representation and input to a 1-out-of-500
encoder. The resulting 20× 500 bits are then fed to a classifier circuit.
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7.1.4.1 Comparison of the ECGP classifier with the FUR classifier
We compare our approach with the FUR EHW architecture of Glette et al. [127], presented in
Section 3.2.6. The architecture is specifically tailored to classification tasks and online evolution,
and possesses register based reconfiguration capabilities. This offers very fast reconfiguration times.

The common elements of the ECGP and FUR architectures are, apart from their identical general
structure, the abstraction levels of the functional elements. Both approaches employ or try to employ
high level building blocks. While the ECGP approach extracts the building blocks automatically,
and thus is a very general approach, the FUR architecture uses knowledge, in the form of predefined
building blocks found to be good for classification.

The differences between the architectures lie in the ways they are evolved and in the ways a classifi-
cation decision is taken. The complete ECGP based architecture is encoded by a multi-chromosome
genotype, which is subject to evolution. The evolution of the FUR architecture decomposes into
separate evolutionary runs, one for each category. The genotype describing a category decision
module is further partitioned by the category classifiers. FUR’s evolution considers at any point
of time only a portion of CDM’s genotype, describing a single CC. With this, FUR requires fewer
fitness evaluations to evolve a complete architecture than the ECGP based architecture requires.

FUR’s principle for making its classification decisions follows the general approach of decision trees
(DT). The FUR approach compares the signal values with constants. Thus, similar to DTs, it
realizes a decision boundary with sections of straight lines that must be parallel to the axes of
the input space spanned by all attributes. In contrast, the decision boundary of an ECGP based
classifier is implemented as a Boolean combination of signal values and constants. Therefore, similar
to kNN, the decision boundaries are a composition of straight lines.

7.1.5 Conventional Classifiers
For a realistic perspective, we compare our method to conventional state of the art methods. For the
comparison, we select kth nearest neighbor, decision trees, support vector machines, and neural net-
works, covering different kinds of decision boundaries between classes. To establish fair conditions,
we employ grid search to find good algorithm parametrizations.

A kth nearest neighbor (kNN) classifier is a very simple, data based classification approach [103], i.e.,
it does not require any training phase. From an analysis of the very general “bias/variance dilemma”
for classification tasks [100,123], which states that variance dominates bias, it can be concluded that
classifiers with a low complexity—roughly corresponding to the number of free parameters—perform
well in many classification tasks. With this property in mind, we select, as a baseline method, a
kNN having only one parameter, k. We consider kNN as a reference method that is expected to be
outperformed by other kinds of classifiers. However, kNN classifiers require storing of and iteration
through all of the sample vectors of the training dataset during the operational phase, thus they
are hardly suitable for many real applications, which require a compact and fast implementation.
In a kNN classifier, the form of the decision boundary between two classes is defined locally by the
k nearest (using a Euclidean distance measure) samples in the training set. Therefore, the decision
boundary is composed of sections of straight lines. In our experiments, the number of neighbors is
set to k = 7.

Decision trees can be used for the classification of numerical as well as categorical data [103]. A DT
realizes a set of human interpretable “if–then” rules. In a tree structure, each leaf node represents
a classification decision, each non-leaf node evaluates an attribute associated with that node. An
input sample vector is classified by successive tests from the root of a DT down to a leaf. Our
motivation for including DT in our comparison is the possibility of extracting human-interpretable
rules. Moreover, DT can be regarded as a state of the art technique for solving classification
problems. DTs realize a decision boundary with sections of straight lines that must be parallel
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to the axes of the input space spanned by all attributes. This restriction basically enables the
interpretability of the training results in the form of “if–then–else” rules. This is one reason why
DTs are used for many practical applications.

In our experiments, we use the C4.5 algorithm [278] to build a DT. C4.5 selects the next attribute
(based on a greedy principle) according to an information gain measure. Pruning techniques such
as subtree raising are applied to reduce overfitting of the classifier to the training dataset. The
confidence threshold for pruning is set to 0.25 and the minimum number of instances per leaf is 2.

Support vector machines use a hyperplane to separate any two classes [56, 148]. For problems that
cannot be linearly separated in the input space, SVMs find a solution using a nonlinear transforma-
tion of the original input space into a high-dimensional so-called feature space, where an optimal
separating hyperplane is determined. Those hyperplanes having a maximal margin are called op-
timal, where margin means the minimal distance from the separating hyperplane to the closest
(mapped) data points (the so-called support vectors). The transformation is usually realized by
nonlinear kernel functions, e.g., Gaussian kernels. C-SVMs, which are used here, introduce slack
variables, being subject to minimization as well, to allow a certain degree of misclassification. With
the aid of nonlinear kernel functions, SVMs are able to realize arbitrary nonlinear decision bound-
aries in the input space. The key advantage of SVMs is that they are based on the principle of
structural risk minimization, which typically leads to a very good generalization performance. Thus,
one could expect SVMs to yield very good results in our comparison.

In our experiments, we use a C-SVM with a Gaussian (radial basis function, i.e., RBF) kernel. For
“Day1–3” and “2of3,” we set C = 0.5 and γ = 0.175. The parameters for “121” are C = 3 and γ = 1.

Multilayer perceptrons (MLP), also known as backpropagation networks, are neural networks that
are biologically inspired [46,286]. They aim at being discriminative, but they lack a built-in mech-
anism for structural risk minimization like SVMs. Thus, good generalization properties must be
assured by means of comprehensive cross-validation or bootstrapping tests. Like SVMs, MLP are
able to realize nonlinear decision boundaries. A major difference from SVMs is that the structure
of the classifier (e.g., the number of hidden neurons) must be fine tuned by hand. We have chosen
MLP for our comparison because of their use as a reference classifier in related work on EHW.

In our experiments, we use an MLP with 20 input neurons (for the 20 input features), 8 and 11
output neurons (for the 8 and 11 classes), and one hidden layer consisting of 32 neurons. The MLP
are trained using the backpropagation algorithm with an additional momentum term. The learning
rate is set to 0.3, the momentum rate to 0.2, and the number of training epochs is 500.

7.1.6 Evaluation
Our first experiment is based on the stationary EMG measurement system and uses cross-validation
for evaluation. Cross-validation is a partitioning scheme splitting the data into similar sized chunks,
selecting one chunk for performance testing, and the remaining chunks for training. This scheme is
repeated until all chunks have served for testing. The classifiers are trained anew for each test chunk.
The data of the first experiment is used to define two benchmarks: in the first benchmark, referred
to as the “Day1–3” benchmark, we investigate the asymptotic classifier accuracy by merging and
shuffling all data from a single individual and evaluating the proposed classifiers with 10-fold cross
validation. In the second benchmark, referred to as the “2of3” benchmark, we aim at investigating
the classifier’s generalization capabilities. To this end, we use a 3-fold cross validation defining the
data partitioning by the recorded day. Thus, the data from two days is used for training and the
data from the remaining day is used for testing.

The second experiment, referred to as the “121” benchmark, investigates longer term effects on the
performance of classifying EMG signals. The main question is whether and how much the classifi-
cation accuracy degrades over time if the classifiers are not being trained continuously. Assuming
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the EMG signal changes over time, one needs to study the nature of the change, the way it can be
measured, and the effects on the classification accuracy. To design practical prosthesis controllers,
one then has to devise appropriate feature extraction schemes compensating for such variations in
the EMG signal, and also look at the interdependency of a recurrently trained controller and the
amputee interacting with the prosthesis controller. Furthermore, one also has to analyze technical
issues such as the amount of training data required for reaching high accuracy rates, the selection of
the most stable feature extraction, dimensionality reduction, classification algorithm combination,
and incremental learning.

In this work, we address a subset of these issues, in particular the amount of data required to
reliably reach high accuracies and the fundamental question of the accuracy degradation for an
initially trained classifier. Using 121 data trials, we define three validation schemes. For a test trial
i, i ≥ 2, we configure the training set to consist of

1. 1, . . . , i− 1,

2. 1, . . . ,min(s, i− 1), and

3. max(i− s, 1), . . . , i− 1

trials. Here, s denotes the number of trials sufficient for all algorithms to reach high accuracy rates.
Over all classifiers, we found five trials or the data collected during a single day to be sufficient. The
first validation scheme determines the accuracy using all available data for training. It is unclear
whether this results in the best possible performance since, in general, aged data might lower
the classification accuracy. Moreover, a permanently growing training dataset also permanently
increases the computational load for retraining. The goal of the second scheme is to check whether
the accuracy degrades if a classifier is trained with data from the first day only. Finally, the third
validation scheme investigates the evolution of the accuracy when using only recent data for training
and thus tries to answer the question: Can the classification accuracy be improved by stripping aged
data?

Experiments using kNN, DT, MLP, and SVMs are conducted with the data mining framework
RapidMiner [248]. RapidMiner uses the LIBSVM [63] implementation for SVMs and theWEKA [146]
implementation for DTs and MLPs. In the case of SVMs, multi-class datasets are handled by LIB-
SVM using the one-against-one method [170].

7.1.6.1 The “Day1–3” Experiment
As a metric for comparing the classification performance of the different approaches, we use the
classification accuracy expressed by the error rate. Table 7.2 summarizes the error rates, arranged
by the particular individual. The test error rates show the classifiers’ generalization abilities, and
the error rates obtained for the training datasets point to the classifiers’ approximation abilities.
Bold numbers symbolize the best error rates.

The first major observation is that we achieve high training and test error rates for user 2. Since we
carefully configured and adjusted the EMG sensor positions and ran tests before starting the data
experiments, we can dismiss the experimental setup as being a reason for the high differences in
the error rates. The daily analysis of user 2’s data reveals similar bad recognition rates, separately
for each day. Thus, we assume that the results are due to either a lax tension when performing the
contraction phases or the physiological properties of the subject. The second observation, and this
comes as a surprise, is the excellent performance of the kNN classifier. This could be explained by
the “bias/variance dilemma,” mentioned in Section 7.1.5, which states that even a simple classifier
can achieve high accuracy rates, as low model complexity corresponds to low variance. MLPs come
second, followed by SVMs. The small gaps between training and test accuracy rates imply correct
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Table 7.2: The “Day1–3” experiment: Approximation and generalization errors in %. Bold numbers
represent the best error rates.

user 1 user 2 user 3
training test training test training test

kNN 3.14 3.96 12.94 17.29 3.64 4.75
DT 1.42 8.68 4.51 25.85 1.72 8.95
MLP 3.09 4.45 23.73 25.44 4.31 5.67
SVM 5.53 5.63 32.22 32.30 6.59 6.68
ECGP 7.50 8.86 38.00 39.57 8.81 8.30
FUR [127] 9.59 10.02 45.67 46.08 11.03 11.40

parametrizations and negligible effects of overfitting. In contrast to this, and as a third observation,
the DTs show a larger distance between training and test accuracies despite using pruning techniques
to prevent overfitting. The EHW based classifiers close the comparison, being near to the DTs. Our
architecture demonstrates a gap from the best performing algorithm of 4.9%, 22.3%, and 3.6% for
users 1, 2, and 3, respectively. The FUR architecture follows, with 6.1%, 28.8% and 6.7%. High
and compactly distributed accuracy rates for the user 1 and 2 experiments among all algorithms let
us assume that the task of EMG signal classification using mean average features tends not to be
too complex.

7.1.6.2 The “2of3” Experiment
In this experiment we focus on the real world situation in which the data of a past time period is
used to train the classifiers, and the performance of a prosthesis is measured over a later time period.
To this end, we define, as described in Section 7.1.6, a 3-fold cross validation scheme partitioning
the data of each fold by the recording day. Since the EHW classifiers are evolved from random
genotypes, each evolved classifier has a different structure and the classification rates vary slightly.
The EHW experiments generate only three classifiers when computing the 3-fold cross validation
scheme. To achieve reliable accuracy rates, we have evolved 10 × 3 classifiers and averaged the
results.

Table 7.3: The “2of3” experiment: Approximation and generalization errors in %. Bold numbers
represent the best error rates.

user 1 user 2 user 3
training test training test training test

kNN 2.70 12.38 12.62 40.46 3.02 18.25
DT 2.28 17.95 7.68 48.28 2.82 23.19
MLP 2.43 14.49 20.93 44.94 2.97 19.25
SVM 4.88 12.10 32.14 45,53 5.64 17.04
ECGP 2.90 19.63 6,88 48.43 1.49 18.05
FUR [127] 8.75 14.55 42.69 54.13 9.26 20.07

Characteristic of the “2of3” experiments are the higher error rates and larger distances between
training and test rates compared to the “Day1–3” experiment (see Table 7.3). This can be explained
by an insufficient amount of data for prediction model creation and by a smaller portion of training
and larger portion of test data used in the 3-fold cross validation. Additionally, data used for testing
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Figure 7.8: The “121” experiment: Test accuracy for the kNN algorithm trained on the first five,
last five, and all preceding trials.

have been recorded on a different day than the data used for training. With these differences in
mind, no algorithm consistently dominates according to this benchmark. While SVM and kNN
still perform well, being among the three best algorithms and always taking first place, MLPs take
second for user 2 and our architecture for user 3. Analogous to the “Day1–3” experiment, DTs
again demonstrate some overfitting. Additionally, our architecture shows larger overfitting effects,
indicating the necessity for pruning techniques. The ranges for test errors over all algorithms are
roughly the same as in the previous benchmark, lying around 7% for user 1 and user 3, and around
14% for user 2.

While the observed performance behaviors in the “2of3” experiment can be explained by the same
reasons mentioned when analyzing the “Day1–3” experiment, the results suggest two additional
conclusions. The closer distances between SVMs, MLPs, and the EHW approaches, raise the
question whether the higher decision boundary flexibility of SVMs and MLPs is really necessary.
Additionally, the results support the idea that periodic retraining may be useful to maintain high
classification rates.

7.1.6.3 The “121” Experiment

Figures 7.8 and 7.9 plot the accuracy results for the best performing conventional classifiers in the
“121” experiment: kNN and SVM. As described in subsection 7.1.6, we evaluate three validation
schemes in this experiment: employing all the preceding, the preceding five, and the initial five trials
for training and the following trials for testing. While using for trial i all or five previous trials for
training yields similarly good accuracy rates of roughly about 90%, training kNN and SVMs with
the first five trials degrades the accuracy. This accuracy loss became visible after two to three days
of omitted re-training. The averaged error rates are summarized in Table 7.4. Interestingly, there is
no significant indication for negative influence of “old” data used for training. For both algorithms,
the error rates improve from the second to the third column of Table 7.4. While the improvement
is small for SVM, kNN improves its error rate by 2.59%. However, fading out old training data for
potential accuracy improvement might make sense considering the real world prosthesis use periods.
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Figure 7.9: The “121” experiment: Test accuracy for the SVM algorithm trained on the first five,
last five, and all preceding trials.

Table 7.4: The “121” experiment: Averaged errors in % (generalization), when trained on first five
trials (roughly data recorded on a single day), five recent trials, and on all preceding trials.

first five preceding five all preceding
kNN 26.19 10.45 7.86
SVM 26.23 9.00 8.66

We limit the evaluation for the remaining classification algorithms to the “preceding five trials”
scheme, as training became costly with increasing data sizes. We chose this scheme as it is relevant
to the prosthesis controller application. The results are summarized in Table 7.5. Similar to
the previous experiments, kNN and SVMs perform best followed by MLPs. EHW approaches lie
between this group and the DTs. The error rates spread in a 9% interval bounded by SVMs at 9.0%
and DTs at 17.91%. The values are similar to the user 1 and 3 results of the “2of3” experiment.
The peak classification rates are slightly better while being somewhat broadly distributed. The
similarities of the “2of3” and “121” experiments are not surprising. Both evaluation schemes use
data from disjoint recording sessions for training and testing. The slightly better results of the “121”
experiment can be explained by the larger data portion used for training. This is also probably
an explanation for the broader accuracy distribution. All algorithms are able to improve their
classification accuracies using more training data in the “121” experiment (cf. Table 7.3, user 1
test column and Table 7.5). While for some algorithms the improvements are rather small (cf.
DT with a 0.04%), other algorithms manage to get roughly 3% to 4% improvements, such as, our
architecture, the SVMs, and the MLPs.

7.1.6.4 Discussion
From the experimental results, we can make the following observations:

• Among the conventional classifiers, kNN yields surprisingly good results. While this approach
is likely to be inapplicable to a real PHC, as all the data have to be stored and evaluated for the
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Table 7.5: The “121” experiment: Averaged errors in % (generalization), when trained on five recent
trials (roughly data recorded on a single day). Bold numbers represents the best error rate.

error rate
kNN 10.45
DT 17.91
MLP 10.44
SVM 9.00
ECGP 16.48
FUR [127] 13.72

classification decision, it shows that the classification problems posed by our experiments can
be solved with very simple classifiers. DT, despite the pruning techniques which were applied,
were prone to overfitting in this application, in particular in experiment “2of3.” Amongst the
conventional classifiers, kNN and SVM yield the best results. However, similar to kNN, SVM
might be susceptible to a growing training dataset.

• Our ECGP based architecture together with the FUR architecture—and this is the main
result of our experiments—also yield a good classification performance. While the “Day1–3”
experiment turned out to be tough for both approaches (both architectures clearly rank at
the bottom), the “2of3” experiment shows a more compact distribution of accuracies with the
EHW approaches deviating by 2%, 8%, and 1% from the best performing classifier. In the
“121” experiment, the distances from the best performing algorithms amount to 4.7% and
7.5%.

• We observe that the task of EMG signal classification using mean average features needs online
learning. The classification rates fall by 8%, 23%, and 12% from the “Day1–3” experiment,
where 10-fold validation was applied on the shuffled dataset, to the “2of3” experiment, where
the data of two days was used to classify the data of the third day. This is an indication
that data of only a few days is insufficient to evolve a highly predictive model. In an ad-
ditional experiment, we observed that the classification rates degrade when retraining is not
continuous.

The classification rates achieved, except the results for the second user in the “2of3” experiment,
are high enough for a PHC: a PHC relies only partly on the accuracy of the utilized classifier. In
recent work, a more holistic approach has been introduced by Englehart et al. [154] and Shenoy et
al. [316], accounting for the success and execution time of complex and real world hand movements.
This kind of metric implicitly rate the classification accuracy. The authors state that: “Perhaps
most importantly, these results [154] support clinical observations that training data which includes
transient MES [myoelectric signal] information can lead to more robust usability and performance
while yielding a seemingly ‘worse’ classifier. The authors [Englehart et al.] therefore suggest caution
in accepting classification error as the sole measure of a system’s usability and performance” [154].
Englehart et al. found that accuracy rates below 85% start to affect the performance of complex
movement executions.

The accuracy rates in our experiments can certainly be improved. The goal of our work is not to
reach the highest classification rates possible, but to have a fair comparison of pattern matching
algorithms. To this end, we have spent roughly the same amount of time finding configurations
with good performance for the different classifiers. We used grid search for conventional and our
expert knowledge for EHW approaches. Additionally, the experiments were executed by subjects
not familiar with EMG controlled prostheses. An amputee usually spends months of training before
being able to reliably create pronounced muscular tensions, and also learns how and which muscles
to activate to achieve the desired response from the prosthesis. Higher recognition rates can be
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approached by a model view of the prosthesis’s mechanics. A prosthesis cannot respond to very
short misclassifications of some milliseconds. Elimination of misclassification glitches by a low-pass
filter, while slowing down prosthesis latency, increases the overall accuracy rate. In our experiments
we observed improvements of 3% to 7%. Furthermore, complex hand movements decompose into
basic hand actions. Each action has a typical duration and some follow-up actions, specified by
their probabilities. Capturing the action space of a prosthesis by a Markov chain model helps
reduce misclassification during a single action and select a correct follow-up action more quickly
and reliably. The accuracy can also be improved by using additional feature extraction schemes.
Their efficiency, however, needs to fit the computational complexity of an embedded system.

All of the classification approaches are able to provide a differentiated output of the certainty
of the match to a given class (movement). This implies that implementation details are key to
the selection of a classifier for prosthesis control. A PHC’s primary requirements are a secure
operation mode with guaranteed functional and temporal aspects, as well as energy efficiency.
This gives hardware approaches an advantage over software methods for the following reasons: the
exclusive use of a computational resource often allows giving hardware approaches precise execution
time estimations and response time guarantees. Hardware solutions also have a somewhat simpler
function verification. While some modern microcontrollers have low energy consumption [348], they
lack larger memories and floating point units. Together with limited computational power, often
only simplified classification algorithms can be realized there. Evolving and retraining classifiers,
storing larger data models and datasets, and acquiring dynamic data is seldom possible on such
small systems. Hardware approaches, on the other hand, while also offering energy efficiency and
compactness, are much more capable of solving computationally extensive tasks and can be designed
to efficiently interface with large memories.

Generally, we can state that our ECGP as well as the FUR architecture do not have peak accuracy
rates as high as today’s best pattern matching algorithms on EMG signal classification, but can
compete with well known approaches such as DTs. The observed classification accuracies are close
to each other, suggesting that implementation details become dominant when selecting a classifier
for a prosthetic control system. Additionally, the requirement of dynamic learning makes a run-time
adaptable EHW system one of the most promising candidates for application in prosthesis control.

7.2 Classifier Adaptation to Resource Fluctuations

Adaptation in Evolvable Hardware is typically considered regarding two kinds of stimuli. The pre-
dominant research effort has been put into the investigation of function adaption to environmental
changes. The second line of research examines adaptation techniques to defects within reconfig-
urable hardware fabrics. Extending these scenarios by our idea introduced in Section 1.1, we study
the capability of Evolvable Hardware to adapt to run-time fluctuations in the available resources,
i.e., the chip area, in this section. Therefore, we investigate in this section the adaptation behavior
of an Evolvable Hardware classifier during resource changes. In our analysis we add and remove the
category classifiers of a continuously evolved system. The observed recovery rates can be seen as
lower bounds for the adaptation speed. In the context of a multi-objective adaptation mechanism
for EHW, where gradual and radical changes are compensated by continuous evolution and the
selection of a most suitable Pareto solution, our experiments give insights into the adaptation and
evolution speeds of a Pareto individual that has been instantiated after a change in the resources.

The ability to deal with fluctuating resources can be used to support the optimization process
by assigning more resources when the speed of adaptation is crucial. Additionally, when energy
considerations or new tasks reduce the available amount of resources, replacing EHW functions
by alternatives with smaller circuit sizes, while probably decreasing the performance, allows for
retaining the functionality.

To demonstrate our approach, we leverage the FUR architecture presented in Section 3.2.6. We
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apply the FUR classifier to two medical benchmarks, the Pima and Thyroid datasets from the
UCI Machine Learning Repository. While these benchmarks do not benefit from fast processing
times, resource efficient implementations, or run-time adaptation of Evolvable Hardware, we con-
sider them as model applications because they demonstrate FUR’s properties, such as fast recovery
time, the ability to reach high accuracy rates using compact configurations, and stable accuracy
behavior under a wide range of parameters. We first investigate FUR’s general performance for
these benchmarks before examining its classification behavior during architectural reconfigurations.
To minimize the impact of architecture scaling, we introduce two reconfiguration techniques. The
reconfiguration techniques gather statistical data during the training phases and use it to select the
basic pattern matching elements to duplicate or remove when changing the architecture size.

7.2.1 The Reconfigurable Functional Unit Row Architecture
During design time, FUR’s architecture can be parametrized along three dimensions: the number
of

• categories,

• CCs in a category, and

• FUs in a CC.

The authors of the FUR architecture show, in [366], that the partial reconfiguration capabilities
of FPGAs can be used to change the architecture’s size dynamically. For our experiments, we
decided to vary the number of CCs in a CDM for the following reasons: the number of categories
is typically known a priori and is fixed. When comparing the classification principles of the FUR
architecture and decision trees, the number of FUs in a CC can be seen as similar to the depth of a
decision tree, which roughly represents the dimensionality of the decision space. The dimensionality
of the decision space is highly application specific. Reducing the amount of FUs per CC without
increasing the number of CCs in a CDM would be likely to create systems unable to reach the high
classification rates of a properly configured architecture.

An additional motivation for changing the number of CCs in a CDM is that the FUR architecture
is fully operational with only one CC per CDM. The number of CCs in a CDM can be seen as
the CDM’s resolution. While with one or few CCs in a CDM, the FUR architecture shows basic
discrimination abilities, with a rising number of CCs, the accuracy rate reaches higher regions.

Reconfiguration of the FUR architecture is sketched in Figure 7.10. For a sequence I = {i1, i2, . . . , ik},
we evolve a FUR architecture having i1 FUs per CDM, then switching to i2 FUs per CDM and
re-evolving the architecture without flushing the configuration evolved so far.

In our experiments we want to examine the the sensitivity of the classification accuracy to the
changes described above, and how fast the evolutionary algorithm is able to reestablish pre-reconfiguration
accuracy rates. Furthermore, we would like to investigate whether our non-randomized strategies
for replacing and duplicating CCs minimize the impact of architectural reconfigurations compared
to the baseline randomized method.

7.2.2 Evaluation
For our investigations we rely on the UCI machine learning repository [33] and, more specifically, on
the Pima and the Thyroid benchmarks. Pima, or the Pima Indians Diabetes dataset, was collected
by the John Hopkins University in Baltimore, MD, USA, and consists of 768 samples with eight
feature values each, divided into a class of 500 samples representing negative tested individuals and
a class of 268 samples representing positive tested individuals.
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Figure 7.10: Reconfigurable FUR architecture: The FUR architecture is parametrized by the num-
ber of categories, category classifiers, and functional units (FU) per CC. While the number of
categories is fixed and the number of FUs is largely application dependent, we scale the FUR
architecture by changing the number of category classifiers in a category detection module.

The data of the Thyroid benchmark represents samples of regular individuals and individuals suf-
fering hypo- and hyper-thyroidism. Thus, the samples are divided into 6,666, 166, and 368 samples,
representing regular, subnormal, and hyper-functional individuals. A sample consists of 22 feature
values.

Neither benchmark relies on high classification speeds or run-time adaptation of EHW hardware
classifiers. However, these benchmarks were selected because of their pronounced effects in the
run-time reconfiguration experiments presented in the next section.

7.2.2.1 Methodology

We implement FUR’s parameter analysis by a grid search over the number of CCs and number of
FUs. For a single (i, j)-tuple, where i denotes the number of CCs and j the number of FUs, we
evolve a FUR classifier by running 1 + 4 evolutionary strategies for 100,000 generations. In contrast
to the original work on the FUR architecture in [131] and experiments in Section 7.1, we do not
use incremental evolution evolving CDMs separately, but evolve the complete FUR architecture in
a single ES run. Thereby we use a mutation operator modifying three genes in every CC. As we
employ a 12-fold cross validation scheme, the evolution is repeated 12 times while alternating the
training and test datasets. During the evolution, we log for every increase in the training accuracy
FUR’s performance on the test dataset. The test accuracies are not used while the evolution runs.
To detect the tipping point where FUR starts to overfit, i.e., where FUR learns to match each
training vector instead of learning the general model, we average the test accuracies logged during
the evolutionary runs and select the termination training accuracy according to the highest average
test accuracy. This is shown in Figure 7.11 for the Pima benchmark and the (30, 8) configuration.
The average test accuracy, drawn along the y-axis, rises in relation to the average training accuracy,
drawn along the x-axis, until the training accuracy reaches 0.76. After this point the test accuracy
degrades gradually. Consequently, we note 0.76 and 0.76 as the best combination of test and
termination training accuracies.
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Figure 7.11: Overfitting analysis for the Pima dataset and FUR architecture having 8 FUs per CC
and 30 CCs per CDM. In this example, the termination training accuracy is around 0.76, before
the test accuracy begins to decline, indicating overfitting.

7.2.2.2 FUR’s General Performance for the Pima and Thyroid
Benchmarks

To examine the general FUR performance for the Pima and Thyroid datasets, we configure and
evaluate the FUR architecture for all combinations of 2, 4, 6, . . . , 20 FUs per CC and for 2, 4, 6, 8,
10, 14, 16, 20, 25, 30, 35, 40, 50, 60, 70, and 80 CCs. Figures 7.12 and 7.13 display the results. Along
the horizontal level, the diagrams span the parameter area of the CCs and FUs. The accuracy for
each parameter tuple is drawn along the z-axis with a projection of equipotential accuracy lines on
the horizontal level. While the test accuracies for the Pima benchmark, presented in Figure 7.12(a)
are largely independent of the number of FUs and CCs, with small islands of improved behavior
around the (8, 8 − 10) configurations, the Thyroid benchmark presented in Figure 7.13(a) has a
performance loss in regions with a large number of FUs and few CCs.

Tables 7.6 and 7.7 compare FUR’s results for the Pima and the Thyroid benchmarks to related
work. We also use the data mining tool RapidMiner [248] to create the numbers for the standard
and state of the art algorithms and their modern implementations. To this end, we evaluate with
a 12-fold cross validation the algorithms DT, kNN, MLPs, LDA, SVMs, and classification and
regression trees (CART). For the Pima benchmark, the FUR architecture outperforms any other
method. It forms, together with the SVMs, LDA, the shared kernel models, and kNN, a group of
best performing algorithms within a 3% margin. The accuracy range of the Thyroid benchmark
is much smaller because of the disproportional category data sizes and a single dominant category
amounting to 92.5% of the data. In this benchmark, the FUR architecture lies 0.66% behind the
best algorithm.

7.2.3 Functional Unit Row Architecture Reconfiguration Schemes
In our second experiment we investigate FUR’s run-time adaptation capabilities to gradual and
radical changes in resource sizes. To this end, we configure FUR with 4 FUs per CC and change
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Figure 7.12: Pima overfitting analysis: Best generalization (a) and the corresponding termination
training (b) accuracies for the Pima benchmark.

the number of CCs every 50,000 generations. We split the dataset into disjoint training and test
sets similar to the previously used 12-fold cross validation scheme and start the training with 10
CCs. Then, we gradually change the number of CCs to 9, 8, . . . , 1, and then back to 2, 3, . . . , and
10, executing altogether 106 generations. In the second experiment we investigate larger changes,
switching from 10 to 4 to 2 to 5 and back to 10 CCs. For sound results, we repeat the first experiment
96 times, and the second experiment 32 times.

Our basic implementation of FUR’s reconfiguration reduces and increases the amount of CCs in
a CDM by removing randomly selected and adding randomly initialized CCs to a CDM. In order
to improve adaptation times during the architectural reconfigurations, we define two additional
schemes to change the amount of CCs in a CDM by removing “worst” and duplicating “best” CCs.
To quantify the quality of a CC, we define for every CC a penalty counter that is increased by the
number of wrongly activated CCs in the same CDM for some input vector. A specific CC’s counter
is only increased when the CC itself decides incorrectly. The rationale behind this is that FUR’s
global decision is taken at the CDM level. Thus, a CDM with, for instance, 4 wrongly decided CCs
is more likely to cause an incorrect global decision than a CDM with only 2 wrongly decided CCs.
In the first case, every CC in the particular CDM with an incorrect decision adds a 4 to its penalty
counter while in the second case, a 2 is added. Consequently, a CC is considered “bad” when having
a higher penalty counter and “good” otherwise.
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Figure 7.13: Thyroid overfitting analysis: Best generalization (a) and the corresponding termination
training (b) accuracies for the Thyroidbenchmark.

7.2.4 Evaluation
Figure 7.14 and Figure 7.15 compare accuracy drop magnitudes during architectural reconfiguration
using “random,” “best,” and “worst” schemes for the Pima and the Thyroid benchmarks, respectively.
The top two diagram lines show the training and test behavior when randomly removing a CC and
adding a randomly initialized CC to the FUR architecture, respectively. The diagrams in the next
two pairs of lines illustrate the test accuracy behavior for the “best” and “worst” reconfiguration
schemes. The diagrams in the bottom line display the development of the available resources,
expressed by the number of CCs in a CDM. Additionally, Table 7.8 summarizes the training and
test accuracy drops during the reconfigurations.

An obvious conclusion is that removing the “worst” CCs result in the smallest accuracy drops.
Analogously, duplicating the “best” CCs helps minimizing accuracy drops when adding resources to
the FUR architecture. Generally, we observe, for the Pima benchmark, the following:

• The training and test accuracies drop for any reconfiguration scheme for almost any posi-
tive and negative changes in the number of CCs, and subsequently recover. The drops are
slightly larger for configurations with few CCs. The average accuracy drops, as summarized
in Table 7.8, are minimized when removing the “worst” and duplicating the “best” CCs during
the FUR reconfiguration. Randomly removing and initializing new CCs comes second, while
removing the “best” and duplicating the “worst” CCs result in the largest accuracy losses.
Altogether, the differences between the reconfiguration schemes are rather small, amounting
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Table 7.6: Pima benchmark: Error rates and standard deviation in %. We use the data mining
toolbox RapidMiner [248] to evaluate the algorithms marked by “*.” Preliminarily, we identify
algorithm parameters with good performance by a grid search. The remaining results are taken
from [388].

Error Rate SD
FUR 21.35
SVM* 22.79 4.84
LDA* 23.18 4.64
Shared Kernel Models [358] 23.27 2.56
kNN* 23.56 3.07
GP with OS, |pop|=1.000 [388] 24.47 3.69
CART* 25.00 3.61
DT* 25.13 4.30
GP with OS, |pop|=100 [388] 25.13 4.95
MLP* 25.26 4.50
Enhanced GP [105] 25.80–24.20
Simple GP [105] 26.30
ANN [52,92] 26.41–22.59 1.91–2.26
EP / kNN [281] 27.10
Enhanced GP [105] 27.70–25.90
GP [52] 27.85–23.09 1.29–1.49
GA / kNN [281] 29.60
GP [92] 30.36–24.84 0.29–1.30
Bayes [281] 33.40

to roughly 3.5% for removing and 1% for adding CCs.

• We observed the maximal training accuracies to be somewhat lower when using fewer CCs,
while the test accuracies tend to stay at the same levels. Only for configurations with one and
sometimes two CCs per CDM, the accuracy rates did not reach the pre-switch levels. The
gaps, however, are small, roughly amounting for up to 5%.

• Test accuracies are recovered quickly for most schemes and FUR configurations. However,
the strategy of removing the “worst” and “random” CCs maintains a fast recovery speed also
when going below five CCs per CDM, whereas removing the “best” leads to significantly longer
times before the asymptotic test accuracies are recovered.

• The test accuracies are mostly located between 0.72 and 0.76, independently of the changes in
the number of CCs. Thus, and this is the main observation, the FUR architecture shows to a
large extent a robust test accuracy behavior under reconfiguration for the Pima benchmark.

For the Thyroid benchmark, we can draw the following conclusions:

• The test accuracies drop significantly when changing the number of CCs. The drops are
roughly three to five times larger, reaching up to 40%. Reducing FUR size, the accuracy
drops became the smallest when removing the “worst” CCs during reconfigurations, followed
by schemes selecting random and “best” CCs. When increasing the number of CCs, the
smallest accuracy drops are obtained from the random CC duplication scheme, followed by
schemes duplicating the “best” and the “worst” CCs. The difference between the random and
“best” duplication scheme is, however, small, accounting for 0.69%.
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Table 7.7: Thyroid benchmark: Error rates and standard deviation in %. We use the data mining
toolbox RapidMiner [248] to evaluate the algorithms marked by “*.” First, we identify algorithm
parameters with good performance by a grid search. Remaining results are taken from [388].

Error Rate SD
DT* 0.29 0.18
CART* 0.42 0.27
CART [386] 0.64
PVM [386] 0.67
Logical Rules [102] 0.70
FUR 1.03
GP with OS [388] 1.24
GP [52] 1.44 – 0.89
BP + local adapt. rates [293] 1.50
ANN [294] 1.52
BP + genetic opt. [293] 1.60
GP [125] 1.60–0.73
Quickprop [293] 1.70
RPROP [293] 2.00
GP [37] 2.29–1.36
SVM* 2.35 0.51
MLP* 2.38 0.62
ANN [52] 2.38–1.81
PGPC [225] 2.74
GP [234] 5.10–1.80
kNN* 5.96 0.44

Table 7.8: Averaged accuracy drops in % over 96 algorithm runs. 1+4 ES is executed for 50,000 gen-
erations between the reconfigurations. During a reconfiguration, randomly selected “best” CCs are
removed and “worst” CCS are duplicated. Bold numbers indicate the best performing replacement
strategy.

delete rows insert rows
10→ 9→ · · · → 1 1→ 2→ · · · → 10
training test training test

Pima random 10.87 5.70 8.33 5.70
best 13.57 7.90 7.18 5.15
worst 9.39 4.23 8.90 6.11

Thyroid random 23.94 23.77 15.91 15.74
best 40.87 40.73 16.13 16.03
worst 12.21 12.00 20.60 20.53

• As anticipated by previous results shown in Fig. 7.13 (a), the test accuracy degrades for FUR
architecture configurations with very few CCs. For instance, a FUR configuration with only
one CC has an error rate of 7%. This is considerably low, as the baseline recognition rate lies
at 92.5%, which corresponds to an error rate of 7.5% due to a single category’s amounting to
6, 666 out of 7, 200 vectors.

• The main result is that given enough resources, reconfigurations are quickly compensated.
The limitation in the case of the Thyroid benchmark is the minimum amount of CCs required
to achieve high recognition rates.
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Table 7.9: Averaged accuracy drops in % over 32 algorithm runs. 1 + 4 ES is executed for 50,000
generations between the reconfigurations. During a reconfiguration randomly selected, “best,” or
“worst” CCs are removed or duplicated. Bold numbers indicate the best performing replacement
strategy.

10→ 4 4→ 2
training test training test

Pima random 21.90 13.76 17.75 9.91
best 21.59 10.93 19.94 11.52
worst 16.65 10.30 10.57 5.61

Thyroid random 60.00 59.37 45.96 45.55
best 54.50 54.28 54.75 54.72
worst 34.27 33.91 35.71 35.89

2→ 5 5→ 10
training test training test

Pima random 13.46 11.86 18.27 15.42
best 8.98 6.34 16.52 9.32
worst 14.66 11.91 21.71 16.35

Thyroid random 30.29 30.27 44.13 44.00
best 30.14 29.88 34.90 34.93
worst 18.65 18.30 71.84 72.16

Adaptation Behavior to Radical Changes
The challenges for an autonomous and adaptable embedded system are manifold. It may for in-
stance have to react to aperiodic events where the solution may benefit from additional resources.
With its typically restricted energy, an embedded system sometimes also faces the challenge of
balancing resources between multiple applications. We anticipate resource assignment changes in
such situations being of a more radical nature. To investigate FUR’s behavior in such situations,
we define a second reconfiguration sequence, switching form 10 to 4 to 2 to 5 and back to 10 CCs.
In each reconfiguration step, we nearly halve or double the FUR’s size. The results are summarized
in Table 7.9. Almost all observations and conclusions made in the previous experiment hold also
for the current experiment. The important differences are:

• The accuracy drops are now mostly two to three times as large compared to the gradual FUR
size changes. Despite the dramatic numbers, accuracies recover similarly fast.

• Similar to the previous experiment, removing the “worst” CCs and duplicating the “best”
CCs reduces the accuracy drops for Pima and Thyroid benchmarks. There is, however, one
exception. The lowest test accuracy drops when switching from 2 to 5 CCs in the Thyroid
benchmark are achieved by duplicating the “worst” CC three times.

In summary, for all the experiments in this section, we can conclude that the FUR architecture is
exceptionally fast in recovering from architectural reconfigurations, provided that enough resources
are available for learning. Still, the proposed schemes of removing the “worst” and adding the “best”
CCs help to reduce the impact on the classification rate after reconfiguration of the dimensions of
the architecture. This is both in terms of lower magnitudes of instantaneous accuracy drops, as well
as a shortened recovery time before pre-reconfiguration test accuracies are regained.
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Figure 7.14: Pima benchmark: Gradually reconfiguring the FUR architecture. The left column
presents FUR’s averaged classification behavior in % when reducing and the right column when
increasing the number of CCs. The diagrams on the bottom show the number of CCs in the system.
Two diagram lines on the top show examples of the training and test behavior for the randomized
reconfiguration scheme. Diagrams in the second and third pair of lines show training and test
behavior for the “best” and “worst” FUR reconfiguration schemes, respectively.
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Figure 7.15: Thyroid benchmark: Gradually reconfiguring the FUR architecture. The left column
presents FUR’s averaged classification behavior in % when reducing and the right column when
increasing the number of CCs. The diagrams on the bottom show the number of CCs in the system.
Two diagram lines on the top show examples of the training and test behavior for the randomized
reconfiguration scheme. Diagrams in the second and third pair of lines show training and test
behavior for the “best” and “worst” FUR reconfiguration schemes, respectively.
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7.3 Adaptation of Cache Mappings

The Evolvable Hardware principle is perceived and presented in the original work [163] as an adap-
tation methodology for autonomous embedded systems. The EHW principle is, though, not limited
to this application domain. In this section, we present EvoCaches, an approach for implementing
application specific caches. The key innovation of EvoCaches is to make the function that maps
memory addresses from the CPU address space to cache indices programmable. To this end, we
support arbitrary Boolean mapping functions that are implemented within a small reconfigurable
logic fabric. For the evolution of suitable cache mapping functions, we rely on the regular EHW
methods and models presented earlier in this thesis.

7.3.1 The Concept of EvoCaches
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Figure 7.16: The evolvable cache (“EvoCaches”) architecture provides a configurable mapping from
CPU memory addresses to cache indices. The optimization process evolves the configuration of
node functions and wiring between them. The nodes implement Boolean functions with four inputs
and one output. The figure shows an example of a two way set associative cache.

The key idea of the EvoCaches approach is presented in Figure 7.16. A very small reconfigurable
logic fabric implements a hashing function that maps a part of a memory address to a cache line
index. The hashing function is encoded by a Cartesian genetic program and optimized to achieve
a low overall execution time for a specific application. For optimization, we employ evolutionary
strategies. Our architecture provides a mapping function memory that can store several configura-
tions for the reconfigurable logic fabric, which allows quickly switching to different memory-to-cache
address mappings. To prevent storing several potentially dirty copies of the same physical address
at different indices in the cache, we flush the cache when a new mapping is activated.

The EvoCaches approach is orthogonal to other work trying to select and/or reconfigure the cache
organization in an application specific way, e.g., [24,280,412]. While Figure 7.16 displays an address
mapping for a byte-addressable architecture to a 2-way associative cache with a block size of four
words, the EvoCaches principle is applicable to all possible configurations and levels of caches.
Compared to classical modulo mappings or mappings based on bit permutations [329] and XOR
functions [375, 376], EvoCaches utilizes more complex hashing functions, allowing them to reduce
an application’s overall execution time and energy requirements.

Including EvoCaches in a processor architecture will also increase the logic area, the hit time, and the
overall number of memory cells for the cache. The increase in logic area is due to the reconfigurable
fabric itself which is assumed to be small, as the fabric comprises only a handful of look-up tables
(LUTs). Additionally, we require a mapping function memory to store the configurations for the
logic fabric. The size of a configuration is dependent on the architecture. The architecture used for
the case study comes with a configuration size of 151 bytes.
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The increase of the cache size is due to the fact that the flexibility in the hashing function requires
us to store the full address excluding block and byte offsets as tags in the cache. The additional
overhead incurred depends on the actual cache configuration. For example, a conventional 4-way set
associative cache of 16 KByte data with block size of two words for a byte-addressable architecture
with 32 bit addresses comes with an overhead of 25.56%, where the overhead includes for each cache
block the valid bit and the tag. Switching to an EvoCaches of the same data size and organization
increases the overhead to 34.88%. We think this overhead is bearable since today most processor
designs are not restricted by the silicon area but by performance and performance per energy.
The increase in hit time is more critical. The additional delay depends strongly on the depth of the
LUT network. This depth can be restricted in the optimization process to satisfy timing constraints.
Moreover, for many embedded processors with clock frequencies well below 1 GHz, the pressure on
the timing is moderate. High performance processors, on the other hand, have several levels of
cache, and only the first level is optimized for hit time. Here, the EvoCaches approach can still be
applied to the second and third level caches.

We focus on a single process system without an OS. Extending the EvoCaches approach to a
multi-application platform, we need to cope with the multiprocessing of several and different ap-
plications running concurrently. Here, we envision a canonical solution by evolving general cache
mappings covering complete application domains and avoiding the need for different concurrent
cache mappings. A more sophisticated solution could allow separate cache mappings for concur-
rent applications. However, this would introduce redundant cache blocks and could reduce the
usage. Additionally, the evolution needs to consider the multi-application situation to minimize the
potentially negative interaction effects of different cache mappings.

7.3.2 Algorithms, Representation Models, and Metrics
We model the reconfigurable cache mapping function by a single row CGP with nc = 32 nodes. Each
node implements a 4-input LUT and restrictions are imposed on its functional set. The circuit’s
inputs are fed from ni = 27 primary inputs taken from the memory address. The no = 15 bit
outputs of the circuit encode the cache line index. The levels-back parameter is set to ∞. The
circuit depth is an important parameter for EvoCaches as it is proportional to the delay of the
resulting hashing function which adds to the cache hit time. While constraining the circuit depth
during optimization can be easily done, the experiments in this paper have been conducted with
unconstrained circuit depth. Instead, in Section 7.3.3.2, we report on the depths and sizes of the
evolved circuits. For optimization, a 1 + 4 ES scheme, presented in Algorithm 3 has been employed.
The mutation operator modifies a single gene during child creation, i.e., the function of a single
logic node or the wiring of one of its inputs is affected.

For the experiments, we leverage our MOVES EHW toolbox, presented in Chapter 4. The tool setup
is presented in Figure 7.17. The MOVES toolbox includes the CGP model and the ES. Whenever
a new candidate circuit is generated, it is passed to the processor simulator SimpleScalar [35] for
fitness evaluation. SimpleScalar reads the description of the circuit and simulates the execution of a
specified benchmark and input data on a processor with given cache configuration in a cycle-accurate
manner. We have chosen SimpleScalar for system simulation as it is easily extended and it models
a variant of the widely used MIPS instruction set architecture. Two modifications to the original
SimpleScalar tool have been necessary. First, its command line interface was extended to include
the activation and specification of up to four mapping functions. These circuit specifications are
read in and stored in a data structure. Second, for the actual mapping between the addresses and
the cache line index, SimpleScalar needs to determine the logic result for the mapping function. To
this end, the circuit evaluation routine already available in the MOVES toolbox has been extracted
into a library and linked with SimpleScalar. In each simulation run, SimpleScalar determines an
application’s overall runtime and feeds it back to the evolutionary optimizer as the fitness value.

Besides the cycle-accurate runtime, SimpleScalar determines the miss rates for the different levels of
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Figure 7.17: EvoCaches tools setup: SimpleScalar is invoked by the MOVES toolbox and returns
the overall execution time in clock cycles as a fitness measure.

caches. Our interest in the miss rate is motivated by the fact that related work has used miss rates
to measure the fitness of a specific cache configuration. However, for more sophisticated processor
architectures, metrics solely based on miss rates might be less conclusive than execution time. The
downside of using the cycle-accurate execution time as the main metric is the long simulation time.
We have constrained the simulation time to three to five minutes for a single fitness evaluation,
which results in a overall runtime of roughly one week for a single and complete ES run. These
constraints on the simulation time resulted in limiting the input data size for the benchmarked
applications to some 100 KBytes, which puts sufficient pressure on the cache architecture of an
embedded processor as modeled in our work. However, a modern general purpose processor’s cache
architecture would not be stressed sufficiently and thus might require the simulation of application
runs on larger data sizes.

As energy estimate, we use a variant of the energy model presented in [412] which splits the energy
demand into two parts: static and dynamic. We model an embedded processor with up to two
levels of cache and an external memory. For each of the caches, i.e., split level one caches L1:I and
L1:D and unified level two cache L2:U, as well as for the external memory, the static or standby
energy per cycle is given by EL1:I,s, EL1:D,s, EL2:U,s, and EM,s. With c as the number of clock cycles
required for program execution, the static energy is

Estatic = c · (EL1:I,s + EL1:D,s + EL2:U,s + EM,s) .

The dynamic energies per access are given by EL1:I,d, EL1:D,d, EL2:U,d, and EM,d; the number of
accesses is aL1:I , aL1:D, aL2:U , and aM . Thus, the dynamic energy turns out to be

Edynamic = aL1:I · EL1:I,d + aL1:D · EL1:D,d +

aL2:U · EL2:U,d + aM · EM,d.

The actual values in [nJ ] for the static energy per cycle and dynamic energy per access are de-
rived from the CACTI cache model [318] for a 90 nm technology node. For the external memory,
these values have been derived from the data sheet of a standard V58C2256 DDR SDRAM module.
The overall number of clock cycles and the number of accesses are determined by the SimpleScalar
simulator. Finally, the CPU energy Ecpu is computed by assuming a CPU with an average power
consumption of 0.45 mW per MHz at a clock frequency of 200 MHz implemented in 90 nm technol-
ogy [31]. The overall energy for an application run thus adds up to

E = Ecpu + Estatic + Edynamic.
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Figure 7.18: Two memory hierarchy configurations are considered for optimization. In the first case,
the mapping functions of L1 instruction and data caches are optimized (Figure (a)), while in the
second case additionally the mapping function of the uniform L2 cache is considered (Figure (b)).

7.3.3 Evaluation

To evaluate the EvoCaches concept, we configured a processor and its memory hierarchy in a config-
uration similar to those of current ARM processors [31]. The configuration is shown in Figure 7.18
and includes a split first level cache and a unified second level cache. The L1 caches are 2-way
associative with a hit latency of one cycle, 64 sets, and a block size of 16 bytes. The L2 cache has
an associativity of four ways with a hit latency of 6 cycles, 128 sets, and a block size of 32 bytes.
The memory bus between the L2 cache and the external memory is 8 bytes wide. The external
memory shows an access time of 18 cycles and a 2-cycle delay for consecutive data transfers in burst
mode. Hence, the miss penalty for the L2 cache amounts to 24 cycles. Using this configuration,
a conventional cache system for a byte-addressable architecture with 32 bit addresses has a 22 bit
tag and a 6 bit index for the L1 caches and a 20 bit tag and 7 bit index for the L2 cache. For
EvoCaches, the original tags and indices merge into a single tag of 28 and 27 bits for the L1 and L2
caches, respectively. We have evolved mapping functions for two optimization scenarios. In the first
optimization scenario, only the first level caches (LI:I and L1:D) are EvoCaches with evolved map-
ping functions; in the second scenario, all three caches receive evolved mapping functions. Thus, a
single chromosome describing the system’s mapping functions consists of two CGP chromosomes in
the first optimization scenario and of three CGP chromosomes in the second optimization scenario.

For evaluation, we simulated the execution of two benchmarks, BZIP2 (version 1.0.4) and JPEG
(version 6a), each with different sets of input data. BZIP2 is a recent data compressor based on
the Burrows–Wheeler transformation [314] and has been reported to cause a large amount of cache
misses. The picture encoding application JPEG [384] is a commonly used benchmark for performance
analysis.

For each combination of benchmark and optimization scenario, we proceeded as follows. First,
we evolved a mapping function for a given input dataset, referred to as the training data. This
optimization step was repeated 16 times. To study the potential of EvoCaches, we analyzed the
fitness development of the best and the worst individual in each generation as well as the average
over all 16 runs over two reference systems. These are a cacheless system with a one cycle memory
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access time which, as such, is unrealistic but serves as a point of reference, and a two-level cache
with classical modulo address mapping functions.

Second, we determined the generalization behavior by evaluating the best evolved mapping functions
on different sets of input data, referred to as the test data. These results are actually more important
than the results achieved for the training data, as they reflect the practical use case of EvoCaches.
We used random mapping functions to initialize the evolutionary optimizer for both benchmarks,
but also experimented with modulo mappings as the initial individuals for BZIP2.

For BZIP2, the training dataset consists of the HyperText Markup Language (HTML) code from
Wikipedia’s page, “Genetic Programming” [81]. The test data consists of 30 datasets partitioned
into HTML data, Linux binaries, and human readable text files. For JPEG, the training dataset
originates from the standard picture contained in the JPEG source code distribution. As test data,
we use ten datasets from [373] and [166].

7.3.3.1 Training EvoCaches
Figure 7.19 presents the results for BZIP2 and optimization scenario two, i.e., evolving address
mapping functions for L1:I, L1:D, and L2:U simultaneously. In Figure 7.19(a), the evolutionary
strategy started with classical modulo mapping functions, whereas Figure 7.19(b) shows the fitness
development for the randomly initialized evolutionary search. The four curves in each graph are
plotted against the number of generations and picture the fitness which is defined as the reciprocal
of the overall execution time relative to the cacheless reference system with a one-cycle access
time. That is, since for BZIP2 to execute the training data on the cacheless reference system
requires 13’131’325 cycles, and on the classical modulo cache 34’417’080 cycles (2.62X slowdown),
the modulo cache is indicated by a straight line at 0.3815.

The remaining curves in Figure 7.19 show the maximal, minimal, and averaged execution time for
the evolved mapping functions. The main result is that it is easy to evolve mapping functions that
outperform the modulo cache. Comparing Figures 7.19(a) and 7.19(b), we can observe that starting
evolution from the classical modulo functions is not beneficial. Starting from the random mapping
functions, we obviously need more generations to beat the modulo cache mapping but the resulting
fitness values are overall better and more varied.

Optimization scenario one, i.e., evolving mapping functions for first level caches only, reveals similar
behavior. Table 7.10 lists the performance gains over the classical modulo cache mappings for both
experiments. The table shows the best and average individuals of the 16 runs. The fitness is
indicated in columns three and five. For example, the best fitness achieved in the 16 runs for
evolving mapping functions for the level one cache (L1:I, L1:D) was 0.39996, which results in a
4.7% improvement in execution time over the classical modulo mapping function.

Table 7.11 summarizes the training results for the JPEG benchmark. Here, we report only experi-
ments with randomly initialized individuals. We can observe that the average performance achieved
for optimizing both cache levels is actually higher than the performance achieved for optimizing only
level one caches. The best individual, with a 17.1% improvement in runtime, is found, however, by
optimizing only level one caches.

7.3.3.2 Testing EvoCaches
To verify the generalization performance of EvoCaches, we evaluated the execution times, miss rates,
and energy requirements for BZIP2 and JPEG and the different optimization settings. For BZIP2,
we selected the four best training individuals according to both optimization and the individual
initialization settings. The test data for BZIP2 comprise ten datasets taken from Linux binaries
(ELF benchmark), ten datasets taken from HTML dumps of popular web sites (HTML benchmark),
and ten datasets taken from RFCs (TXT benchmark). The detailed results are shown in Table 7.12.
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Figure 7.19: Development of the best, average, and worst execution time over 16 runs for the
BZIP2 benchmark and the simultaneous optimization of split L1 and unified L2 caches. Execution
time is expressed relative to a cacheless system including one-cycle access memory. In (a), the
evolutionary optimizer has been initialized with the classic modulo mapping function, in (b) a
random initialization was chosen.

149



7 Evolvable Hardware Applications

Table 7.10: Training execution times for the BZIP2 benchmark after 2500 generations. The numbers
are expressed relative to a cacheless system including one-cycle access memory and as performance
gains to a standard system with identical cache parameters (size, associativity, block size, access
times, and way prediction).

initialized: by modulo function randomly
relative to: cacheless mod cache cacheless mod cache
L1 avg 0.3952 3.6% 0.4038 5.8%

best 0.3996 4.7% 0.4086 7.1%
L1, L2 avg 0.3994 4.6% 0.4037 5.8%

best 0.4096 7.3% 0.4174 9.4%

Table 7.11: Training execution times for the JPEG benchmark after 1400 generations. The numbers
are expressed relative to a cacheless system including one-cycle access memory and as performance
gains to a standard system with identical cache parameters (size, associativity, block size, access
times, and way prediction).

initialized: randomly
relative to: cacheless mod cache
L1 avg 0.6623 11.2%

best 0.6975 17.1%
L1, L2 avg 0.6718 12.8%

best 0.6962 16.9%

The numbers for a single benchmark are averaged over the ten datasets and measured relative to the
performance of a conventional system with modulo address mappings. That is, positive percentages
indicate an improvement in execution time, a reduction in miss rate, and a reduction in energy.
The miss rates of all caches have been added to achieve the miss rate metric.

On analyzing the results in Table 7.12, the following observations can be made for the BZIP2
benchmark.

• EvoCaches generalizes well and delivers for all test data substantial performance improve-
ments. The improvements in execution time are up to 10.98% and the reductions in energy
are up to 10.70%.

• Having EvoCaches in both levels of cache (L1:I, L1:D and L2:U) leads to higher performance
gains than having EvoCaches only in level one.

• The advantage of cache mapping functions evolved from random mapping functions over
mappings evolved from modulo functions can be also observed when evaluating the cache
with test data and is even more pronounced as in the training phase.

For testing EvoCaches on JPEG, we selected ten test images from [373] and [166]. The detailed
results are shown in Table 7.13 and can be summarized as follows:

• EvoCaches again generalizes well with even larger improvements in execution time (up to
14.31%) and reductions in energy (up to 16.43%).

• The average performance when optimizing only the L1 caches is about 2% higher than when
optimizing both cache levels. This corresponds with the observation made when training
EvoCaches for JPEG where the best training performance was reached by optimizing only

150



7.3. Adaptation of Cache Mappings

Table 7.12: EvoCaches generalization performance gains in % relative to a standard system with
identical cache parameters (size, associativity, block size, access times, and way prediction) for the
BZIP2 benchmark trained on the Wikipedia “Genetic Programming” HTML page. The test data
are partitioned into compressed Linux binaries in ELF format (bash, cpio, dbus-daemon, awk, sh,
gawk, tar, tcsh, vim, zsh), web pages in HTML format (Ancient Egypt [W], Ancient Greece [W],
Ancient Rome [W], Germany [W], heise.de, Andrey Kolmogorov [W], sailinganarchy.com, spiegel.de,
wired.com, slashdot.org), and text files (rfc 2068, 2246, 845, 1000, 1001, 1002, 1005, 1008, 1009,
2658). Data sets marked with [W] have been collected from wikipedia.org.

ELF benchmark HTML benchmark
optimized: L1 L1, L2 L1 L1, L2
initialized: mod rnd mod rnd mod rnd mod rnd
exe. best 1.40 4.92 3.94 5.90 4.00 5.31 4.18 6.98
time avg 0.74 4.36 3.38 5.60 2.74 3.86 3.32 4.94

worst 0.14 3.36 2.36 4.87 1.75 2.47 2.06 3.46
miss best -0.01 6.11 5.55 9.00 3.76 5.94 5.24 8.92
rate avg -0.49 5.59 5.02 8.51 2.55 4.15 3.55 6.41

worst -1.40 4.13 3.52 7.94 1.08 1.64 1.92 4.88
energy best 1.64 4.64 3.55 5.49 4.58 5.61 5.09 7.31
req. avg 1.08 4.13 3.06 5.23 3.55 4.53 3.87 5.29

worst 0.59 3.27 2.17 4.57 2.34 3.21 2.60 3.77

TXT benchmark
optimized: L1 L1, L2
initialized: mod rnd mod rnd
exe. best 5.22 7.30 7.03 10.98
time avg 2.34 4.49 4.08 6.66

worst -5.72 -4.15 -5.56 1.95
miss best 4.27 8.45 7.27 11.38
rate avg 1.48 4.82 4.20 8.26

worst -11.00 -9.31 -11.18 2.63
energy best 4.71 6.88 6.07 10.70
req. avg 3.06 4.93 4.33 6.98

worst -4.53 -2.83 -4.33 2.16

the L1 caches. Consequently, the individual with best test performance gains better test
performance, even if not being further optimized for the L2 cache too.

• While the reductions in the miss rates are rather high, the reductions in execution times are
lower. This demonstrates that for multiple levels of cache, the total miss rate is not necessarily
a suitable and precise metric correlating with the real performance improvement of a system.

The results of our experiments are summarized in Figure 7.20, which shows for both benchmarks,
BZIP2 and JPEG, and optimization setups, the relative improvement by EvoCaches in execution
time, miss rate, and energy requirements over a modulo address mapping function.

The area (number of 4-LUTs) and the delay (depth of the circuit) parameters for the resulting
reconfigurable logic circuits are presented in Table 7.14. Besides the average and maximal values,
the values for the fittest circuit used for testing is also listed. These circuits show depths between
three and six LUTs. It has to be noted that the circuits were the result of an evolutionary design
process and thus have been optimized for neither area nor delay nor combinatorial reduction. Delay
minimization could possibly further reduce the circuits’ propagation times and thus the cache hit
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Table 7.13: EvoCaches generalization performance gains relative to a standard system with identical
cache parameters (size, associativity, block size, access times, and way prediction) for the JPEG
encoder benchmark trained on the sample image from the jpeg6a source code distribution.

initialized: randomly
optimized: L1 L1, L2
execution best 14.31% 12.96%
time avg 12.73% 10.78%

worst 11.48% 9.12%
miss best 41.25% 40.35%
rate avg 37.40% 37.19%

worst 31.64% 30.46%
energy best 16.43% 14.46%
requirement avg 14.19% 11.93%

worst 12.53% 10.49%
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Figure 7.20: Summary of the EvoCaches generalization performance gains for the BZIP2 and JPEG
benchmarks compared to a regular system with identically parametrized cache architecture. The
data is for randomly initialized mapping functions. The best, worst, and average values are indicated
for every optimization setting and metric.

times. Altogether, the best solutions evolved during the experiments have the longest path, of up
to 6, and a size of up to 19 LUTs.

7.4 Chapter Conclusion

In this chapter we have presented some of our work on EHW applications. We have selected the
contributions to demonstrate following:
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Table 7.14: Delays and areas of the evolved reconfigurable address mapping functions. Delays are
measured by the number of wires in the longest path, and areas, by the number of 4-input LUTs.

BZIP2 JPEG
delay size delay size delay size

initialized: by mod function randomly randomly
L1 avg 4.10 13.50 4.63 16.94 4.38 15.13

max 6 19 7 22 7 22
best 5 18 4 18 6 19

L1, L2 avg 4.06 14.00 4.19 15.81 4.44 15.44
max 6 20 8 24 6 22
best 5 16 3 14 4 17

Continuous multi-objective optimization can help avoiding functional drops during the adaptation
to radical changes. As shown in Section 7.2, adaptation to radical resource requirement changes can
lead to large degradation of the classification accuracy. Continuously evolving alternative solutions
with diverse architecture sizes helps switching immediately to a best suited and fully functional
solution. If the new solution does not employ all assigned resources, evolution can search for a
functionally better alternative using all assigned resources in parallel.

If an Evolvable Hardware approach is on par with conventional methods, secondary properties such
as the execution time, simplicity of an adaptive mode, learning effort, energy and compactness
become pivotal for the selection of an appropriate method. For the application of electromyo-
graphic signal classification, presented in Section 7.1, an Evolvable Hardware solution offers a lot
of properties required by a prosthesis control and can therefore be the better solution compared to
conventional methods.

The Evolvable Hardware paradigm can create intriguing use cases for applications, not have been
targeted by conventional adaptation techniques yet. We have demonstrated this for the adaptation
of processor caches in Section 7.3, where the execution time of an application could be significantly
improved by the introduction of evolved memory-to-cache address mapping functions. Additionally,
today’s global networking infrastructure together with a large amount of computing nodes allows
us to extend the evolvable caches idea to a true Evolvable Hardware system. CPUs with EvoCaches
engines can thereby be seen as local nodes of an island EA (cf. Section 2.3). In a distributed
manner, nodes may evolve and exchange their solutions, establishing a library of application- and
data-specific EvoCaches.
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Chapter 8

Summary and Outlook

8.1 Contributions

Evolvable hardware has been investigated in related work mostly regarding either its adaptation
performance to variations in the distribution of the input data or to effects due to degradation
of the computational resources. Little attention, however, has been paid to a holistic approach,
employing the very same adaptation principle for compensating both gradual and radical as well as
environmental and systemic changes.

With this thesis, we have made the following fundamentally new contributions to the area of Evolv-
able Hardware:

1. We have introduced a meaningful recombination operator for Cartesian genetic program-
ming [6]. This is a prerequisite for the employment of Pareto based multi-objective evolu-
tionary algorithms as a uniform Evolvable Hardware adaptation engine. Typically, modern
MOEAs rely on information drift among individuals by means of a recombination operator.
The implicit coding of non-functional elements within the CGP model makes the implementa-
tion of a meaningful recombination operator complex. With our realization of a recombination
operator that transfers functionally coherent genotype substructures, we have created a uni-
form EHW adaptation mechanism able to master both gradual and radical changes.

2. We have significantly improved the scalability of circuit evolution in Cartesian genetic pro-
gramming using the following measures:

a) We have established an automatic cone-based subfunction extraction and reuse [6]. Sim-
ilar to conventional engineering’s encapsulating half- and full-adder circuits in unique
functions, the automatic identification and reuse of frequently appearing circuit patterns
enables evolutionary algorithms for hierarchical designs. Especially, applications from
the arithmetic domain comprising repetitive substructures profit from this technique.

b) We have created an automatic age based subfunction identification and reuse [6]. This
method is inspired by Nature’s way of building organs from structures that persist un-
changed in the genotype for a long period of time and therefore contribute implicitly to
the genotype’s success. Our technique encapsulates genes that have not been touched by
the mutation operator for some period of time. This technique has been proven highly
beneficial for applications with irregular and randomized structures, such as pattern
matching kernels [7, 9, 10,12,17,20].

c) We have found an efficient objective weighting scheme for multi-objective Cartesian ge-
netic programming [1,4,8]. While single-objective and local search style evolutionary al-
gorithms excel in Cartesian genetic programming, Pareto based multi-objective EAs need
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to be tailored for CGP. We have analyzed the dependencies of objective functions such
as functional quality, area, and delay, and have identified a weighting scheme enabling al-
gorithms such as SPEA2 to converge quickly in the dimension of functional quality while
preserving the diversity of the evolved nondominated set. Objective weighting can even
outperform single-objective EAs in functional quality for more complex functions and
evolve better nondominated sets than state of the art MOEAS for positively correlated
objectives.

d) We have introduced a systematic approach for blending properties and convergence rates
of population based evolutionary algorithms [13]. Our method executes a sequence of
algorithms rotationally, propagating candidate solutions through each of the sequence’
algorithms. We additionally have created Evolutionary Strategies able to respect the
nondomination and diversity principles of a population created by a Pareto based MOEA.
With this, we have improved substantially the multi-objective evolution of CGP circuits.

3. We verified these methods, showing the feasibility of the Evolvable Hardware approach for
the following applications:

a) We created an Evolvable Hardware ensemble pattern matching architecture and com-
pared it to state of the art classifiers, such as support vector machines, multilayer per-
ceptrons, C4.5 decision trees, and other algorithms [7,9,10,12,15,16,18,20]. Our method
was verified as being on a par with conventional data mining techniques, and we inves-
tigated the benefits of an EHW classifier for prosthesis control.

b) We introduced reconfiguration schemes for an Evolvable Hardware classifier, significantly
reducing the negative impact of architectural reconfigurations on the classification accu-
racy [14,17,19]. By adding additional resources to the architecture, we were also able to
maintain a high accuracy recovery rate.

c) We optimized embedded processor caches using Evolvable Hardware [11, 15]. Introduc-
ing a small reconfigurable fabric to a CPU for translating memory to cache addresses,
we subjected the fabric’s configuration to evolutionary optimization. The goal of the
evolution was to find a CGP mapping function that reduces the cycle-accurate execution
time for a test application and its data set. Once such a mapping function was found, we
observed excellent generalization capabilities for unknown data, improving the execution
time and energy consumption for the BZIP2 and JPEG functions by more than 10%.

4. We implemented a versatile framework for digital circuit evolution [2]. The framework offers
a graphical interface for algorithm testing as well as a command line interface for compute-
cluster based experiment execution. For the efficient implementation of new methods, the
framework comprises a flexible software architecture separating the representation models,
algorithms, and evolutionary operators. Using our framework, we implemented genetic al-
gorithms; evolutionary strategies and genetic programming; state of the art multi-objective
evolutionary optimizers such as SPEA2, NSGAII, IBEA, and OMOEAII; and the Cartesian as
well as Embedded Cartesian genetic programming representation models. Any evolved circuit
in our framework can be exported via the EDIF hardware description format and synthesized
via the Xilinx FPGA tools.

With our methods for efficient multi-objective evolution of digital circuits, we have enabled Evolvable
Hardware for the compensation of both gradual and radical changes, facilitating a unified adaptation
method for autonomous systems. The benefits of our approach have been verified on a set of
applications including challenging real world tasks of prosthesis control and processor optimization.
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8.2 Conclusions and Lessons Learned

During our work on Evolvable Hardware systems we gained the following insights:

Although we have demonstrated how it can be tackled for CGP circuits, scalability remains one
of the central challenges in Evolvable Hardware. The reason for this lies in the very nature of the
evolutionary algorithms and is indicated by the No Free Lunch theorem. An adequate convergence
of the adaptation mechanism has to be ensured for every new and different hardware encoding
model, reconfigurable hardware platform, and application domain. In the Introduction, we outlined
the different algorithmic facets of an Evolvable Hardware system and showed how they can be
approached for the domain of Boolean gates. From our work, we have gained the insight that
when building an Evolvable Hardware system one should start by analyzing and understanding the
inner structure of the application to identify the representational and reconfigurable granularities.
With this in hand, an appropriate hardware encoding can be determined, which is a key for fast
design space exploration. Additionally, application specific as well as general knowledge can then
be embedded into the evolutionary operators.

The compensation of radical changes by the evolution of alternative solutions relies upon a tight
correlation between the fluctuating objective function and its impact on the remaining objectives.
For instance, one would assume that evolution can find asymptotically better solutions when able to
explore larger design spaces. For the area of Boolean gates, this means that one would expect that
giving evolution a larger reconfigurable area for circuit encoding solutions would result in higher
functional qualities. While this is the case for some configurations of the Evolvable Hardware clas-
sifier (cf. Section 7.2), we have typically observed evolution finding very compact Boolean circuits
with the highest functional qualities. Changing the available resource a solution may use seems to
barely affect the highest evolvable functional qualities. The ability to change the available resources
during the evolution, however, has turned out to be very beneficial for the adaptation performance.
Whenever the change rate exceeds the adaptation rate for, e.g., a hardware classifier, the classifier
architecture can be scaled up, allowing for faster adaptation. The available resources can then be
reduced gradually until no more reduction is possible, without affecting the best functional quality
and the adaptation rate. Hence, the proposed principle for the compensation of radical changes can
serendipitously be used for the improvement of the adaptation time.

Non-deterministic adaptation for autonomous systems is not yet in the standard engineering tool-
box. This is mainly due to the missing guarantees of the adaptation times. While some applications
require these guarantees, for many applications, safety considerations play a negligible role. Espe-
cially for the family of applications without a correctness measure, such as in the evolvable caches
example, adaptation time is of minor interest. Continuous adaptation allows these cases to engineer
innovative and powerful solutions, creating true alternatives to conventional ones. Moreover, the
Evolvable Hardware paradigm can open completely new perspectives on improving and adapting
systems, not yet being considered or even able to be considered by conventional engineering.

The understanding of adaptation principles and their relevance for autonomous systems as well as
the inspiration for new ideas comes, to a significant extent, from the evaluation of applications. For
instance, we have observed the utmost importance of efficient multi-objective circuit evolution and
the potential of distributed and collaborative evolution for the application of evolvable caches. The
benefit of additional resources for the adaptation performance came to us during the experiments on
classifier reconfiguration. While mostly EHW applications currently come from the digital domain,
our impression is that “Thinking in Evolvable Hardware” may spread to other areas, emphasizing
continuous run-time optimization in classic engineering and revealing novel adaptation mechanisms.

Efficient hardware reconfiguration, especially for systems with constrained computational power,
is of utmost importance. Efficient reconfiguration allows relocating complex operations directly to
hardware for adaptation performance unmatched by simulative approaches. Additionally, energy
consumption has become an essential benefit, serving autonomous operation. An example of the
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8 Summary and Outlook

potential advantages of efficient hardware reconfiguration is our experiment on the evolution of
CGP based pattern matching architectures. While we used a simulation based approach, efficiently
reconfigurable architecture for Boolean gate circuits would evaluate the accuracy of a candidate
solutions many orders of magnitude faster. We therefore argue that efficient reconfiguration, even if
needing a greater implementation effort and incurring overhead in chip resources, is a prerequisite
for many Evolvable Hardware systems.

8.3 Future Directions

Based on the work presented in this thesis, the following lines of research can be identified:

On the general scale, evolutionary algorithms’ scalability is paramount and requires fundamentally
new approaches. Biological cells and organisms demonstrate incredibly complex physical structures
and chemical regulatory networks with extraordinarily well-balanced metabolisms. The evolution
of such systems using today’s methods of artificial intelligence appears to be practically impossible.
We have often observed artificial evolution evolving compact yet complicated solutions instead of
large and complex solutions. Complicated solutions are built mostly without a visible hierarchical
structure while complex solutions comprise a hierarchical design and employ repetitive functional
patterns. The methods of Artificial Intelligence seem to be struggling with the evolution and use
of implicitly given rules of hierarchical design. A hierarchical design can be seen as a symmetry
function, reducing the representation size by reusing structures and partial solutions. A biological
cell or organism demonstrates a vast number of symmetries. On the molecular level, symmetric
patterns appear in the structure of cell membranes, in the way a protein folds, and in the way a
DNA molecule twists into a chromosome. On the cellular level, tissues are highly symmetric; and
on the organ level, redundant systems and symmetric shapes arise. Symmetry appears at many
locations and on different levels. Additionally, the kind of symmetry and the way it is expressed are
also subject to evolution. In AI, the principles of symmetry began with the automatic acquisition
and reuse of subfunctions by Koza and Lindenmayer’s generative L-systems. Today, Miller’s Devel-
opmental Cartesian Genetic Programming is an example of automatic symmetry discovery. We feel
that the key to complex design and scalability in AI lies in the evolution of nested computational
models and the implicated expression functions.

In our investigations we have concentrated on Evolvable Hardware for Boolean logic circuits. How-
ever, Evolvable Hardware applied to more coarsely grained hardware encoding models may be even
more promising, for several reasons. The implementation of efficiently reconfigurable coarse grained
architectures typically incurs a much smaller overhead than is the case for fine grained architec-
tures. Additionally, the main FPGA manufacturers have incorporated coarse-grained functional
blocks, such as arithmetical–logical units, reducing even further the overhead incurred by the im-
plementation and reconfiguration. But the main reason is that a coarse-grained hardware model
is able to encode numbers, busses, and complex mathematical functions, and is therefore much
better suited for capturing solutions for a wide set of real world applications, such as those from, for
instance, the signal processing and control domain. Especially for the latter case, where mathemat-
ical tools for convergence analysis often exist, the comparison with the non-deterministic Evolvable
Hardware approach in terms of adaptation performance and the compensation of events not covered
by the conventional controller might be of the utmost interest.

The evolvable cache application has demonstrated that distributed and island evolution may become
relevant for systems with negligible communication limitations. Similar to the raw parallelism of
the organic world, this helps distribute the computational effort among a set of nodes, reducing the
load on a single node. More importantly, distributed Evolvable Hardware may offer new ways of
capturing and defining adaptation cases and preventatively propagating solutions to other nodes.
Altogether, with the increasing number of connected and reconfigurable systems, distributed and
island evolutionary adaptation has become an even more relevant research area.
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8.3. Future Directions

The evolvable caches application has emerged as a highly promising one. For further investigation,
however, the challenges of efficient and realistic system simulation and of cache reconfiguration for
the multi-application and the multi-threaded use cases have to be solved. The former challenge
can be approached by heuristic methods and by a synthesizable and cycle-accurate CPU model
comprising a custom cache with a reconfigurable memory-to-cache address translation function.
For the latter challenge, new cache flushing and reordering strategies, universal cache mappings,
and other ideas need to be investigated.
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