Skip to main content

Advertisement

Log in

An efficient approach for metaheuristic-based optimization of composite laminates using genetic programming

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Optimization of the dynamic performance of composite laminates has become necessary in many design applications of structural engineering. Although finite element analysis-based metaheuristic search is a widely adopted approach for design optimization of composite laminates, recently there has been a tremendous impetus on the use of metamodel-based metaheuristic optimization, mainly due to significant saving in computational time as well as cost. In this paper, genetic programming-based symbolic regression (SR) metamodeling technique is introduced for predicting natural frequencies of composite laminates. The optimization performance based on SR metamodels is compared with the traditionally adopted polynomial regression (PR) metamodels. The SR and PR metamodels are further solved using three metaheuristic search algorithms, i.e. genetic algorithm (GA), repulsive particle swarm optimization with local search (RPSOLC) and co-evolutionary host-parasite (CHP) for single objective optimization problems. A comprehensive analysis reveals that the SR metamodels are more accurate and compact than the PR metamodels in addition to better interpretability. Furthermore, CHP algorithm is noticed to consistently outperform both the GA and RPSOLC algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data

Data available within the article or its supplementary materials.

References

  1. Safaei, B., Chukwueloka Onyibo, E., Hurdoganoglu, D.: Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method. Facta Univ. Ser. Mech. Eng. 20(2), 279–306 (2022)

    Google Scholar 

  2. Safaei, B., Chukwueloka Onyibo, E., Goren, M., Kotrasova, K., Yang, Z., Arman, S., Asmael, M.: Free vibration investigation on RVE of proposed honeycomb sandwich beam and material selection optimization. Facta Univ. Ser. Mech. Eng. (2022). https://doi.org/10.22190/FUME220806042S

    Article  Google Scholar 

  3. Kalita, K., Dey, P., Haldar, S.: Search for accurate RSM metamodels for structural engineering. J. Reinf. Plast. Compos. 38(21–22), 995–1013 (2019)

    Article  Google Scholar 

  4. Hajihassani, M., Abdullah, S.S., Asteris, P.G., Armaghani, D.J.: A gene expression programming model for predicting tunnel convergence. Appl. Sci. 9(21), 4650 (2019)

    Article  Google Scholar 

  5. Asteris, P.G., Kolovos, K.G.: Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 31(1), 409–424 (2019)

    Article  Google Scholar 

  6. García-Macías, E., Castro-Triguero, R., Friswell, M.I., Adhikari, S., Sáez, A.: Metamodel-based approach for stochastic free vibration analysis of functionally graded carbon nanotube reinforced plates. Compos. Struct. 152, 183–198 (2016)

    Article  Google Scholar 

  7. Ju, S., Shenoi, R.A., Jiang, D., Sobey, A.J.: Multi-parameter optimization of lightweight composite triangular truss structure based on response surface methodology. Compos. Struct. 97, 107–116 (2013)

    Article  Google Scholar 

  8. Ganguli, R.: Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods. J. Sound Vib. 258(2), 327–344 (2002)

    Article  Google Scholar 

  9. Heinonen, O., Pajunen, S.: Optimal design of stiffened plate using metamodeling techniques. J. Struct. Mech. 44(3), 218–230 (2011)

    Google Scholar 

  10. Dey, S., Mukhopadhyay, T., Khodaparast, H.H., Adhikari, S.: A response surface modelling approach for resonance driven reliability-based optimization of composite shells. Period. Polytech. Civ. Eng. 60(1), 103–111 (2016)

    Article  Google Scholar 

  11. Todoroki, A., Suenaga, K., Shimamura, Y.: Stacking sequence optimizations using modified global response surface in lamination parameters. Adv. Compos. Mater 12(1), 35–55 (2003)

    Article  Google Scholar 

  12. Dey, S., Mukhopadhyay, T., Adhikari, S.: Metamodel based high-fidelity stochastic analysis of composite laminates: a concise review with critical comparative assessment. Compos. Struct. 171, 227–250 (2017)

    Article  Google Scholar 

  13. Nik, M.A., Fayazbakhsh, K., Pasini, D., Lessard, L.: A comparative study of metamodeling methods for the design optimization of variable stiffness composites. Compos. Struct. 107, 494–501 (2014)

    Article  Google Scholar 

  14. Cevik, A., Göğüş, M.T., Güzelbey, İH., Filiz, H.: Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders. Adv. Eng. Softw. 41(4), 527–536 (2010)

    Article  MATH  Google Scholar 

  15. Singh, A.P., Mani, V., Ganguli, R.: Genetic programming metamodel for rotating beams. Comput. Model. Eng. Sci. 21(2), 133–148 (2007)

    MATH  Google Scholar 

  16. Kalita, K., Mukhopadhyay, T., Dey, P., Haldar, S.: Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses. Neural Comput. Appl. 32, 7969–7993 (2020)

    Article  Google Scholar 

  17. Kalita, K., Dey, P., Haldar, S., Gao, X.-Z.: Optimizing frequencies of skew composite laminates with metaheuristic algorithms. Eng. Comput. 36, 741–761 (2020)

    Article  Google Scholar 

  18. Kalita, K., Haldar, S.: Eigen frequencies of simply supported taper plates with cut-outs. Struct. Eng. Mech. 63(1), 103–113 (2017)

    Google Scholar 

  19. Kalita, K., Haldar, S.: Free vibration analysis of rectangular plates with central cutout. Cogent Eng. 3(1), 1163781 (2016)

    Article  Google Scholar 

  20. Kalita, K., Ramachandran, M., Raichurkar, P., Mokal, S.D., Haldar, S.: Free vibration analysis of laminated composites by a nine node isoparametric plate bending element. Adv. Compos. Lett. 25(5), 108–116 (2016)

    Article  Google Scholar 

  21. Mukhopadhyay, T., Dey, T.K., Chowdhury, R., Chakrabarti, A.: Structural damage identification using response surface-based multi-objective optimization: a comparative study. Arab. J. Sci. Eng. 40(4), 1027–1044 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Box, G.E., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 26, 211–252 (1964)

    MATH  Google Scholar 

  23. Goldberg, D.E.: Genetic Algorithms. Pearson Education India, New Delhi (2006)

    Google Scholar 

  24. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39–43 (1995)

  25. Yang, X. S., Deb, S.: Cuckoo search via Levy flights. In: World Congress on Nature & Biologically Inspired Computing, pp. 210–214 (2009)

  26. Shooshtari, A., Razavi, S.: A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates. Compos. Struct. 92(11), 2663–2675 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of Dr. Ranjan Ghadai and Dr. Salil Haldar for their constitutive comments on a previous draft.

Funding

This research has received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Chakraborty.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Polynomial regression metamodels for the test problems (TP)

TP-01

\({\left({\lambda }_{1}\right)}^{2}=219.8785+213.5809\left(\frac{{E}_{1}}{{E}_{2}}\right)+439.0622\left(\frac{{G}_{12}}{{E}_{2}}\right)+279.9152\left(\frac{{G}_{23}}{{E}_{2}}\right)+250.7809\left({ \upsilon }_{12}\right)+4.9276\left(\frac{{E}_{1}}{{E}_{2}}\right)\left(\frac{{G}_{12}}{{E}_{2}}\right)+4.5119\left(\frac{{E}_{1}}{{E}_{2}}\right)\left(\frac{{G}_{23}}{{E}_{2}}\right)-246.4965\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\frac{{G}_{23}}{{E}_{2}}\right)-252.7662\left(\frac{{G}_{23}}{{E}_{2}}\right)\left({ \upsilon }_{12}\right)-0.0551{\left(\frac{{E}_{1}}{{E}_{2}}\right)}^{2}-152.6717{\left(\frac{{G}_{12}}{{E}_{2}}\right)}^{2}-147.8168{\left(\frac{{G}_{23}}{{E}_{2}}\right)}^{2}\)

\({\left({\lambda }_{21}\right)}^{2}=-27.926+263.398\left(\frac{{E}_{1}}{{E}_{2}}\right)+1102.0988\left(\frac{{G}_{12}}{{E}_{2}}\right)+855.4249\left(\frac{{G}_{23}}{{E}_{2}}\right)+637.1448\left({ \upsilon }_{12}\right)+13.1769\left(\frac{{E}_{1}}{{E}_{2}}\right)\left(\frac{{G}_{12}}{{E}_{2}}\right)+13.7958\left(\frac{{E}_{1}}{{E}_{2}}\right)\left(\frac{{G}_{23}}{{E}_{2}}\right)-743.6287\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\frac{{G}_{23}}{{E}_{2}}\right)-738.7692\left(\frac{{G}_{23}}{{E}_{2}}\right)\left({ \upsilon }_{12}\right)-0.1493{\left(\frac{{E}_{1}}{{E}_{2}}\right)}^{2}-423.1414{\left(\frac{{G}_{12}}{{E}_{2}}\right)}^{2}-468.0938{\left(\frac{{G}_{23}}{{E}_{2}}\right)}^{2}\)

TP-02

\(ln\left({\lambda }_{1}\right)= 4.4282-0.3614\left(\frac{b}{a}\right)-1.3347\left(\frac{h}{a}\right)-1.2572\left(\alpha \right)+0.1514\left(n\right)+8.6191\left(\frac{b}{a}\right)\left(\alpha \right)-0.0742\left(\frac{h}{a}\right)\left(\alpha \right)-0.0391\left(\frac{h}{a}\right)\left(n\right)-0.0002\left(\alpha \right)\left(n\right)+0.0428{\left(\frac{b}{a}\right)}^{2}+0.0004{\left(\alpha \right)}^{2}-0.0071{\left(n\right)}^{2}\)

\(ln\left({\lambda }_{21}\right)= 5.106-1.5926\left(\frac{b}{a}\right)-4.9656\left(\frac{h}{a}\right)-0.0055\left(\alpha \right)+5.4627\left(n\right)+1.2641\left(\frac{b}{a}\right)\left(\frac{h}{a}\right)-0.0047\left(\frac{b}{a}\right)\left(\alpha \right)-0.8106\left(\frac{h}{a}\right)\left(n\right)+0.1188{\left(\frac{b}{a}\right)}^{2}-0.0232{\left(n\right)}^{2}\)

TP-03

\({\lambda }_{1}=64.7921-0.0009\left({\theta }_{1}\right)-0.0131\left({\theta }_{2}\right)-0.0011\left({\theta }_{3}\right)+0.0097\left({\theta }_{4}\right)+0.0001\left({\theta }_{2}\right)\left({\theta }_{3}\right)-0.0001\left({\theta }_{3}\right)\left({\theta }_{4}\right)-0.0029{\left({\theta }_{1}\right)}^{2}-0.0017{\left({\theta }_{2}\right)}^{2}-0.0009{\left({\theta }_{3}\right)}^{2}\)

\({\lambda }_{21}=12.3146-0.0031\left({\theta }_{1}\right)-0.0136\left({\theta }_{2}\right)-0.0188\left({\theta }_{3}\right)-0.0263\left({\theta }_{4}\right)+0.0004\left({\theta }_{1}\right)\left({\theta }_{3}\right)+0.0003\left({\theta }_{1}\right)\left({\theta }_{4}\right)-0.0002\left({\theta }_{2}\right)\left({\theta }_{3}\right)-0.0002\left({\theta }_{2}\right)\left({\theta }_{4}\right)+0.0017{\left({\theta }_{1}\right)}^{2}+0.0008{\left({\theta }_{2}\right)}^{2}-0.0004{\left({\theta }_{3}\right)}^{2}\)

TP-04

\(\sqrt{{\lambda }_{1}}=13.4425+0.0218\left(\frac{{E}_{1}}{{E}_{2}}\right)-0.0123\left(\frac{{G}_{12}}{{E}_{2}}\right)-21.0942\left(\frac{{G}_{23}}{{E}_{2}}\right)+1.3446\left({ \upsilon }_{12}\right)-1.7704\left(\frac{b}{a}\right)+22.3928\left(\frac{h}{a}\right)+0.0295\left(\alpha \right)+0.0079\left({\theta }_{1}\right)+0.0033\left({\theta }_{2}\right)- 0.0144\left({\theta }_{3}\right)+0.0289\left({\theta }_{4}\right)+0.0548\left(\frac{{E}_{1}}{{E}_{2}}\right)\left(\frac{{G}_{12}}{{E}_{2}}\right)-0.5112\left(\frac{{E}_{1}}{{E}_{2}}\right)\left(\frac{h}{a}\right)+0.0004\left(\frac{{E}_{1}}{{E}_{2}}\right)\left(\alpha \right)-0.7894\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\frac{b}{a}\right)+0.0326\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\alpha \right)- 0.0148\left(\frac{{G}_{12}}{{E}_{2}}\right)\left({\theta }_{1}\right)+0.0162\left(\frac{{G}_{12}}{{E}_{2}}\right)\left({\theta }_{3}\right)-0.0145\left(\frac{{G}_{12}}{{E}_{2}}\right)\left({\theta }_{4}\right)+0.6889\left(\frac{{G}_{23}}{{E}_{2}}\right)\left(\frac{b}{a}\right)-0.0592\left({ \upsilon }_{12}\right)\left({\theta }_{4}\right)+1.2734\left(\frac{b}{a}\right)\left({\theta }_{3}\right)-1.7528\left(\frac{b}{a}\right)\left({\theta }_{4}\right)-1.3099\left(\frac{h}{a}\right)\left(\alpha \right)- 0.0769\left(\frac{h}{a}\right)\left({\theta }_{2}\right)+2.9684\times {10}^{-5}\left({\theta }_{3}\right)\left({\theta }_{4}\right)+18.8401\left(\frac{{G}_{23}}{{E}_{2}^{2}}\right)+0.1672{\left(\frac{b}{a}\right)}^{2}+0.0016{\left(\alpha \right)}^{2}-0.0001{\left({\theta }_{1}\right)}^{2}-0.0001{\left({\theta }_{3}\right)}^{2}\)

\(ln\left({\lambda }_{21}\right)=1.2618+0.0275\left(\frac{{E}_{1}}{{E}_{2}}\right)+1.3682\left(\frac{{G}_{12}}{{E}_{2}}\right)+3.9339\left(\frac{{G}_{23}}{{E}_{2}}\right)+10.8273\left({ \upsilon }_{12}\right)-1.2377\left(\frac{b}{a}\right)-24.1563\left(\frac{h}{a}\right)+0.0191\left(\alpha \right)+0.0041\left({\theta }_{1}\right)+0.0047\left({\theta }_{2}\right)+0.0124\left({\theta }_{3}\right)-0.0247-0.0014\left({\theta }_{4}\right)-0.0449\left(\frac{{E}_{1}}{{E}_{2}}\right)\left(\frac{{G}_{23}}{{E}_{2}}\right)-6.7378\times {10}^{-5}\left(\frac{{E}_{1}}{{E}_{2}}\right)\left({\theta }_{2}\right)-9.7069\times {10}^{-5}\left(\frac{{E}_{1}}{{E}_{2}}\right)\left({\theta }_{3}\right)-0.0288\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\alpha \right)-13.9501\left(\frac{{G}_{23}}{{E}_{2}}\right)\left({ \upsilon }_{12}\right)+17.2227\left(\frac{{G}_{23}}{{E}_{2}}\right)\left(\frac{h}{a}\right)+0.0095\left(\frac{{G}_{23}}{{E}_{2}}\right)\left({\theta }_{4}\right)-0.0247\left({ \upsilon }_{12}\right)\left({\theta }_{3}\right)+5.1894\left(\frac{b}{a}\right)\left(\frac{h}{a}\right)-0.0014\left(\frac{b}{a}\right)\left({\theta }_{4}\right)+0.1978\left(\frac{h}{a}\right)\left(\alpha \right)-8.2466\times {10}^{-5}\left(\alpha \right)\left({\theta }_{1}\right)-5.6789\left(\alpha \right)\left({\theta }_{3}\right)+2.3161\left({\theta }_{1}\right)\left({\theta }_{4}\right)-+0.0798{\left(\frac{b}{a}\right)}^{2}-4.8291\times {10}^{-5}{\left({\theta }_{1}\right)}^{2}\)

Appendix B: Genetic programming metamodels for the test problems

$$\begin{aligned} \begin{array}{lll} \text{TP-01}&&\qquad\qquad {{\lambda }_{1}=46.8303+1.1436\left(\frac{{E}_{1}}{{E}_{2}}\right)+1.0631\left(\frac{{G}_{12}}{{E}_{2}}\right)+0.3715\left(\frac{{G}_{23}}{{E}_{2}}\right)}\\ & &\qquad\qquad {{\lambda }_{21}=\frac{647.6556 + 51.4718\left(\frac{{E}_{1}}{{E}_{2}}\right) + 94.2528\left(\frac{{G}_{12}}{{E}_{2}}\right)}{18.5836+0.1788\left(\frac{{E}_{1}}{{E}_{2}}\right)}}\\ \text{TP-02}&&\qquad \qquad {{\lambda }_{1}=\frac{\left\{\left.\begin{array}{c}65.3499\left(\frac{h}{a}\right)-0.0005\left(\frac{b}{a}\right)\left(\alpha \right)+0.0012\left(\alpha \right)\left(n\right)+0.0003{\left(\alpha \right)}^{2}-\\ 0.0005\left(\frac{b}{a}\right)\left(\frac{h}{a}\right){\left(\alpha \right)}^{2}+0.0012\left(\frac{h}{a}\right){\left(\alpha \right)}^{2}\left(n\right)+0.0003\left(\frac{h}{a}\right){\left(\alpha \right)}^{3}\end{array}\right\}\right.}{0.995\left(\frac{h}{a}\right)}}\\ &&\qquad\qquad {{\lambda }_{21}=\frac{\left.\left\{\begin{array}{c}-22.3145\left(\frac{b}{a}\right)\left(\frac{h}{a}\right)\left(\alpha \right)-41.3423\left(\frac{b}{a}\right)\left(\frac{h}{a}\right)\left(n\right)-1594.3957{\left(\frac{b}{a}\right)}^{2}\left(\frac{h}{a}\right)+\\ 2.2614{\left(\frac{b}{a}\right)}^{2}\left(\alpha \right)+4.1897{\left(\frac{b}{a}\right)}^{2}\left(n\right)+55.0413{\left(\frac{h}{a}\right)}^{2}\left(\alpha \right)+{101.9757\left(\frac{h}{a}\right)}^{2}\left(n\right)-\\ 34.68{\left(\frac{b}{a}\right)}^{2}\left(\frac{h}{a}\right)\left(n\right)+326.4915{\left(\frac{b}{a}\right)}^{3}+7.1016{\left(\frac{b}{a}\right)}^{3}\left(n\right)-75.5412{\left(\frac{b}{a}\right)}^{4}\end{array}\right.\right\}}{2.9875{\left(\frac{b}{a}\right)}^{4}}}\\ \text{TP-03}&&\qquad \qquad {{\lambda }_{1}=\frac{\left\{\left.\begin{array}{c}846.8593-0.1368{\theta }_{2}-26.9210{\theta }_{3}+0.0044{\theta }_{2}{\theta }_{3}-0.0362{{\theta }_{1}}^{2}-\\ 0.0221{{\theta }_{2}}^{2}-0.0086{{\theta }_{3}}^{2}+0.0012{{{\theta }_{1}}^{2}\theta }_{3}+0.0007{{\theta }_{2}}^{2}{\theta }_{3}+0.0003{{\theta }_{3}}^{3}\end{array}\right\}\right.}{13.8227-0.4387{\theta }_{3}}}\\ &&\qquad\qquad {{\lambda }_{21}=\left\{0.638\left(\mathrm{cos}\left(0.0445{\theta }_{1}\right)\right)+\mathrm{cos}\left(0.0446{\theta }_{1}\right)+\mathrm{cos}\left(\frac{0.5377{\theta }_{2}}{10.2826}\right)-\mathrm{cos}\left(\mathrm{cos}\left(\frac{0.5578{\theta }_{3}}{\mathrm{cos}\left(0.0457{\theta }_{1}\right)}\right)\right)\right\}\left(-6.1035\right)+17.8864}\\ \text{TP-04}&&\qquad\qquad{{\lambda }_{1}=\left({C}_{1}{C}_{2}+{{C}_{1}C}_{3}+29.9123\right)+4.367}\\ &&\qquad\qquad {{\mathrm{C}}_{1}=-0.000008\left(\frac{{\mathrm{E}}_{1}}{{\mathrm{E}}_{2}}\right)\left({\alpha }\right)-0.0002\left({\alpha}\right)-0.0033}\\ &&\qquad\qquad {{\mathrm{C}}_{2}=\mathrm{cos}\left(\mathrm{cos}\left(1.7609\left({\theta }_{1}\right)-0.807\left(\alpha \right)\right)\right)-300.1912}\\ &&\qquad\qquad {{\mathrm{C}}_{3}=2.0607\left({\alpha}\right)/\left\{-4.6815\left(\frac{\mathrm{h}}{\mathrm{a}}\right).\mathrm{cos}\left(\mathrm{cos}\left(1.7664\left({\uptheta }_{1}\right)+0.8064\left({\alpha}\right)\right)\right)\right\}}\\ &&\qquad \qquad {{\lambda }_{21}=\frac{\left\{\left.\begin{array}{c}-26.5903\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\frac{b}{a}\right){\left(\frac{h}{a}\right)}^{3}-1.2061\left(\frac{b}{a}\right){\left(\frac{h}{a}\right)}^{3}\left({\alpha}\right)+4.4494\left(\frac{b}{a}\right){\left(\frac{h}{a}\right)}^{2}{\left({\alpha}\right)}^{2}-1846.1715\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\frac{b}{a}\right){\left(\frac{h}{a}\right)}^{2}+\\ 32.6238\left(\frac{{G}_{12}}{{E}_{2}}\right){\left(\frac{h}{a}\right)}^{3}+0.0338\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\frac{h}{a}\right){\left({\alpha}\right)}^{2}-279.9009\left(\frac{b}{a}\right){\left(\frac{h}{a}\right)}^{2}\left({\alpha}\right)+1.4797{\left(\frac{h}{a}\right)}^{3}\left({\alpha}\right)-\\ \begin{array}{c}3.7319{\left(\frac{h}{a}\right)}^{2}{\left({\alpha}\right)}^{2}+274.4143\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\frac{b}{a}\right)\left(\frac{h}{a}\right)+2265.0778\left(\frac{{G}_{12}}{{E}_{2}}\right){\left(\frac{h}{a}\right)}^{2}-1.49\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\frac{h}{a}\right)\left({\alpha}\right)+\\ 12.4472\left(\frac{b}{a}\right)\left(\frac{h}{a}\right)\left({\alpha}\right)-1.0894\left(\frac{b}{a}\right)\left(\frac{h}{a}\right)\left({\theta }_{1}\right)+267.2716{\left(\frac{h}{a}\right)}^{2}\left({\alpha}\right)-336.6804\left(\frac{{G}_{12}}{{E}_{2}}\right)\left(\frac{h}{a}\right)-\\ 0.0083\left(\frac{{G}_{12}}{{E}_{2}}\right)\left({\theta }_{1}\right)+122.2417\left(\frac{b}{a}\right)\left(\frac{h}{a}\right)-15.2715\left(\frac{h}{a}\right)\left({\alpha}\right)+0.9138\left(\frac{h}{a}\right)\left({\theta }_{1}\right)-149.9802\left(\frac{h}{a}\right)\end{array}\end{array}\right\}\right.}{20.2929\left(\frac{b}{a}\right)\left(\frac{h}{a}\right)-24.8975\left(\frac{h}{a}\right)}} \end{array} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, K., Chakraborty, S. An efficient approach for metaheuristic-based optimization of composite laminates using genetic programming. Int J Interact Des Manuf 17, 899–916 (2023). https://doi.org/10.1007/s12008-022-01175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01175-7

Keywords

Navigation