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1 Preface

1.1 Format
Almost all results of this thesis which I have authored and co-authored have al-
ready been published. Some parts of these peer-reviewed publications are used and
reproduced literally in this thesis.

1.2 List of Underlying Publications
The following list describes the underlying peer-reviewed publications of this thesis
and gives information about the contributions with joint work. The publications are
sorted by the year of publication.

Conference papers

[1] Roman Kalkreuth, Günter Rudolph, and Jörg Krone. Improving convergence
in cartesian genetic programming using adaptive crossover, mutation and se-
lection. In IEEE Symposium Series on Computational Intelligence, SSCI 2015,
Cape Town, South Africa, December 7-10, 2015, pages 1415–1422. IEEE, 2015.
URL: https://doi.org/10.1109/SSCI.2015.201, doi:10.1109/SSCI.2015.
201

The self-adaptive strategy which has been proposed and evaluated in this pa-
per is described in Chapter 6. I contributed 90% of the work to this publication.

[2] Paul Kaufmann and Roman Kalkreuth. An empirical study on the parametriza-
tion of cartesian genetic programming. In Peter A. N. Bosman, editor, Ge-
netic and Evolutionary Computation Conference, Berlin, Germany, July 15-
19, 2017, Companion Material Proceedings, pages 231–232. ACM, 2017. URL:
https://doi.org/10.1145/3067695.3075980, doi:10.1145/3067695.3075980

The cooperation between Paul Kaufmann and myself led to a comprehensive
investigation of the so called 1+4 dogma in CGP. I contributed 50% of the work
to this publication. The results of an empirical study on the parametrization
of CGP are described in Chapter 5.
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[3] Paul Kaufmann and Roman Kalkreuth. Parametrizing cartesian genetic pro-
gramming: An empirical study. In Gabriele Kern-Isberner, Johannes Fürnkranz,
and Matthias Thimm, editors, KI 2017: Advances in Artificial Intelligence -
40th Annual German Conference on AI, Dortmund, Germany, September 25-
29, 2017, Proceedings, volume 10505 of Lecture Notes in Computer Science,
pages 316–322. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-67190-1_
26, doi:10.1007/978-3-319-67190-1\_26

This is an enlarged version of the previous paper and its content was also
used in Chapter 5.

[4] Roman Kalkreuth, Günter Rudolph, and Andre Droschinsky. A new subgraph
crossover for cartesian genetic programming. In James McDermott, Mauro
Castelli, Lukás Sekanina, Evert Haasdijk, and Pablo García-Sánchez, editors,
Genetic Programming - 20th European Conference, EuroGP 2017, Amster-
dam, The Netherlands, April 19-21, 2017, Proceedings, volume 10196 of Lecture
Notes in Computer Science, pages 294–310, 2017. URL: https://doi.org/
10.1007/978-3-319-55696-3_19, doi:10.1007/978-3-319-55696-3\_19

A new method of crossover for Cartesian Genetic Programming which has
been introduced in this publication is described and evaluated in Chapter 7. I
contributed 90% of the work to this publication.

[5] Jakub Husa and Roman Kalkreuth. A comparative study on crossover in carte-
sian genetic programming. In Mauro Castelli, Lukás Sekanina, Mengjie Zhang,
Stefano Cagnoni, and Pablo García-Sánchez, editors, Genetic Programming -
21st European Conference, EuroGP 2018, Parma, Italy, April 4-6, 2018, Pro-
ceedings, volume 10781 of Lecture Notes in Computer Science, pages 203–219.
Springer, 2018. URL: https://doi.org/10.1007/978-3-319-77553-1_13,
doi:10.1007/978-3-319-77553-1\_13

The cooperation between Jakub Husa and myself led to a first comparative
study on crossover in CGP. I contributed 50% of the work to this publication.
The study is described in Chapter 7.

[6] Roman Kalkreuth and Andre Droschinsky. On the time complexity of sim-
ple cartesian genetic programming. In Juan Julián Merelo Guervós, Jonathan
Garibaldi, Alejandro Linares-Barranco, Kurosh Madani, and Kevin Warwick,
editors, Proceedings of the 11th International Joint Conference on Compu-
tational Intelligence, IJCCI 2019, Vienna, Austria, September 17-19, 2019,
pages 172–179. ScitePress, 2019. URL: https://doi.org/10.5220/0008070201720179,
doi:10.5220/0008070201720179

This publication presented first theoretical results on the time complexity of
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1.2 List of Underlying Publications

Cartesian Genetic Programming. Two simple test problems have been studied
with a (1 + 1)-CGP. The content of this publication has been used for Chap-
ter 4. I contributed 80% of the work to this publication.

[7] Roman Kalkreuth. Two new mutation techniques for cartesian genetic pro-
gramming. In Juan Julián Merelo Guervós, Jonathan M. Garibaldi, Ale-
jandro Linares-Barranco, Kurosh Madani, and Kevin Warwick, editors, Pro-
ceedings of the 11th International Joint Conference on Computational In-
telligence, IJCCI 2019, Vienna, Austria, September 17-19, 2019, pages 82–
92. ScitePress, 2019. URL: https://doi.org/10.5220/0008070100820092,
doi:10.5220/0008070100820092

Two advanced phenotypic mutation techniques have been proposed and eval-
uated in this publication. The effects caused by the proposed methods have
been also analyzed. The content of this publication has been used for Chap-
ter 8.

[8] Roman Kalkreuth. A comprehensive study on subgraph crossover in cartesian
genetic programming. In Juan Julián Merelo Guervós, Jonathan M. Garibaldi,
Christian Wagner, Thomas Bäck, Kurosh Madani, and Kevin Warwick, editors,
Proceedings of the 12th International Joint Conference on Computational In-
telligence, IJCCI 2020, Budapest, Hungary, November 2-4, 2020, pages 59–70.
SCITEPRESS, 2020. URL: https://doi.org/10.5220/0010110700590070,
doi:10.5220/0010110700590070

This publication covers a comprehensive study about the subgraph crossover
in comparision to the traditional approach of using Cartesian Genetic Pro-
gramming with a (1+λ) selection strategy. The content of this publication has
been used as the basic framework for the study presented in Chapter 9.

Book chapters

[1] Roman Kalkreuth. An Empirical Study on Insertion and Deletion Mutation in
Cartesian Genetic Programming, pages 85–114. Springer International Pub-
lishing, Cham, 2021. URL: https://doi.org/10.1007/978-3-030-70594-7_
4, doi:10.1007/978-3-030-70594-7_4

The experiments of the paper Two New Mutation Techniques for Cartesian
Genetic Programming covered only one problem domain. This work extends
the analysis of both mutation techniques with comprehensive experiments in
the symbolic regression domain. This work is an extended and revised version
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of the corresponding conference paper. This work has been accepted for publi-
cation as a chapter in the book Computational Intelligence which is part of the
Springer Studies in Computational Intelligence series. The book is currently
in the Springer publication process.
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2 Introduction

Over twenty years ago, Miller, Thompson, Kalganova, and Fogarty [95, 50] published
first concepts on a graph-based representation for Genetic Programming (GP) called
Cartesian Genetic Programming (CGP). The first approach to this graph-based GP
representation was an encoding model based on a two-dimensional array of func-
tional nodes connected by feed-forward wires of an FPGA device [95, 50]. GP is
traditionally used with trees as program representation. However, since the tree rep-
resentation does not fit for all problems, development in graph-based representations
took place since the mid up to late 90s. Among all graph-based GP representations,
CGP can be considered as one of the most popular variants when compared to ex-
isting graph-based GP systems.

Reviewing the fundamental and most significant work in the field of CGP, some
points become clear:

• The state of knowledge in CGP is one-sided. Conclusions, statements and
recommendations on fundamental paradigms in CGP are mostly based on ex-
periments with Boolean function problems and are only very little validated in
other problem domains. The fundamental work of the last two decades mainly
focused on the investigation of essential dogmas of the CGP functionality such
as Redundancy, Computational Efficiency, and Neutrality. Experiments for the
study of these dogmas led to general claims about useful parametrization pat-
terns, which have not been comprehensively investigated and validated in the
past.

• Fundamental concepts of CGP have been merely validated and investigated
on an experimental level. The theoretical state of knowledge in CGP has been
significantly neglected. GP, in general, suffers from a significant lack of the-
oretical knowledge when compared to the number of experimental results. A
rigorous study of the CGP literature showed that no runtime analysis of CGP
algorithms had been done until the work which will be presented in this thesis.

• CGP has a significant lack of knowledge in the field of genetic operators. The
development and investigation of recombination operators and advanced muta-
tion techniques has been mostly disregarded. Former introduced recombination
operators have only been tested on a small range of simple benchmark prob-
lems. Advanced mutation techniques and the use of multiple mutations that
have been successful in tree-based GP have not been tested and investigated
until the work presented in this thesis.
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2 Introduction

• CGP has been mainly used and investigated with only one selection scheme
over the last two decades. CGP is mostly used mutation-only, and the 1 +
λ strategy has been established as a predominant way to use CGP. However,
other selection schemes, which have been found beneficial in the field of evo-
lutionary computation, were only little evaluated and investigated in CGP.

• CGP has been found inferior to another state-of-the-art, method for evolving
graphs on a set of well-known benchmark problems. This method is called
Evolving Graphs by Graph Programming (EGGP) and has been introduced
by Atkinson et al. [3]. The reasons for the inferiority are still unknown and
have not been investigated in the past. Consequently, there is only little knowl-
edge about the weaknesses and limitation of CGP, which influences the search
performance negatively.

The mentioned points make clear that there is still a significant lack of fundamental
knowledge in CGP. Furthermore, the development and investigation of advanced
techniques for CGP have been significantly neglected. These two points are the
primary motivation for this thesis.

2.1 The Current State of Fundamental Scientific
Knowledge in Standard CGP

This section is devoted to a brief analysis of the most significant contributions to fun-
damental knowledge of standard CGP. For this analysis, we divide the field of stan-
dard CGP into the following parts: Theoretical understanding, Redundancy, Com-
putational efficiency, Genetic operators, Selection schemes and Parametrization. A
more profound survey and analysis of the previous work of each part will be done
in the respective chapters of this thesis.

The most fundamental knowledge of standard CGP exists in the fields of Redundancy
and Computational efficiency. In one of the first empirical studies of CGP, Miller [97]
analyzed the computational efficiency on Boolean function problems. Miller analyzed
and studied the influence of population size on the efficiency of CGP. The most im-
portant key finding was that extremely low populations are most effective for the
tested problems. The experiments of this study also revealed that the use of recom-
bination reduces computational effort only marginally. This study can be seen as one
of the most fundamental works regarding the algorithmic use of CGP. The results
of this study motivated Miller et al. [99] to study the behavior of redundancy in
standard CGP with very small population size and with the point mutation tech-
nique as the sole genetic operator. The outcome of the study on the redundancy
of CGP showed that the evolutionary search in CGP benefits from extremely large
genotypes and low rates of mutation. The results of Miller’s experiments in [97] and
[99] can be seen as the origin of the popular use of CGP with a (1+4)-strategy. How-
ever, both fundamental studies focused only on Boolean function problems, which
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are characterized by discrete fitness. Consequently, the understanding of Computa-
tional efficiency is one-sided, and concepts found in the Boolean domain must be
validated in other problem domains. Another crucial point of this subfield is the ac-
curacy of the experiments. Most experiments of the key publication in this subfield
were evaluated by Koza’s computational effort measure (CE), as described in [67].
This performance measure has received significant criticism [113, 12, 85, 109, 8] for
its poor accuracy and statistical invalidity. Because of these issues of the CE, Mc-
Dermott et al. [90] recommended avoiding the use of the CE to achieve better and
more accurate benchmark experiments in the field of GP.

Regarding the field of Genetic operators, the most fundamental research focused
on the standard point mutation operator in combination with the (1 + 4)-CGP by
Miller [97]. The findings and results in the subfield of Computational efficiency of
CGP are based on the experiments with the point mutation operator. However, ad-
ditional mutation operators have not been developed and investigated. Furthermore,
the understanding of recombination in the field of CGP has been mostly neglected
in the past. First reports on initial experiments with crossover in CGP have been
done by Clegg et al. [13]. The authors reported that standard genotypic crossover
techniques failed to improve the performance of CGP. Because of these experiments,
they introduced an arithmetic crossover technique that showed good results on one
symbolic regression problem. However, after the initial reporting of the arithmetic
crossover technique for CGP, no further experiments or investigations on its behav-
ior have been presented in the framework of peer-reviewed publications.

CGP is mostly used with only one selection scheme, which is used with the (1 + λ)
algorithm. This selection scheme seeks for offspring that have the same fitness value
as the normally selected individual to preserve diversity in the population. This idea
of adapting a genetic drift that yields diverse individuals having equal fitness has
been found as highly beneficial for the performance of the (1 + λ)-CGP algorithm
by Yu and Miller [166].

Goldman and Punch [32] investigated how CGP’s method for encoding directed
acyclic graphs and its mutation operator bias the effective length
of individuals and the distribution of inactive nodes
in the genome. Unlike previous work, the experiments showed

” that CGP has an innate parsimony pressure that makes it very dif-
ficult to evolve individuals with a high percentage of active nodes.”

Goldman and Punch [32, p. 933]

Moreover, the authors found that this bias is particularly prevalent as the length of
an individual increase. These problems are also compounded by CGP’s positional
biases, which can make some problems effectively unsolvable.
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Goldman and Punch [34] also performed an analysis of CGP evolutionary mecha-
nisms and their results on Boolean problems showed that CGP evolves genomes

“that are highly inactive, very redundant, and full of seemingly useless
constants.”

Goldman and Punch [34, p. 359]

On some tested problems, the authors observed that less than 1% of the genome was
required to encode the evolved solution. Moreover, the authors found that traditional
CGP ordering results

“in large portions of the genome that are never used by any ancestor
of the evolved solution.”

Goldman and Punch [34, p. 359]

Regarding the Theoretical understanding of CGP, the only work has been done by
Woodward [165] by investigating functional complexity in CGP on a theoretical
level. The work of Woodward is the only theoretical result, which contributed to
the understanding of CGP. Moreover, there exists no work which has been done to
achieve theoretical knowledge about the time complexity of CGP.

Recently, a comparison between standard CGP and Evolving Graphs by Graph Pro-
gramming (EGGP) showed that standard CGP is significantly inferior to EGGP on
a set of well-known Boolean benchmark problems [3]. However, the exact reasons
for the inferiority of CGP are unknown. Furthermore, the results of the comparison
between CGP and EGGP call the role of CGP into question. Important analyses in
the field of CGP, which address the demonstrated inferiority are still missing.

We surveyed the most fundamental key publications for the mentioned subfield of
CGP and classified the state of knowledge empirically in each subfield. The list
of key publications is given in Table 2.1. Figure 2.1 shows a visualization of the
current state of knowledge of CGP. The visualization is based on a survey of the
refereed publications. We assessed the state of scientific knowledge by the amount
and diversity of the experiments. Other criteria were the reproducibility of the results
and future work. The red color means that the state of scientific knowledge is poor.
Orange represents that initial work has been done, but that necessary future work
has not been followed up afterward. Another criterium for this classification is an
one-sided state of scientific knowledge. The green color represents a state of scientific
knowledge, which is sufficiently fundamental in the respective field. This means that
concepts and dogmas have not been validated in different problem domains. Please
note that this evaluation of the state of fundamental knowledge in CGP is empirical
and based on the view of the author.
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2 Introduction

Cartesian Genetic Programming

Redundancy

Diversity

Selection Schemes

Parametrization

Genetic 
Operators

Theoretical Work

Computational
Efficiency

Figure 2.1: The current state of knowledge in the most significant subfields of CGP.

2.2 Thesis Contributions

This thesis presents results of research on fundamental concepts of CGP and in-
troduces advanced techniques for CGP. The objectives of this thesis are twofold on
a vertical and a horizontal level. On the one hand the contributions of this thesis
contribute vertically on the following fields in CGP: Genetic operators, Theoret-
ical work, Parametrization, Selection schemes, Diversity, and Exploration
analysis. On the other hand, this thesis horizontally contributes to more detailed
knowledge about the algorithmic use of CGP and the underlying working mecha-
nisms.

This means that the thesis presents concepts and results that shed more light on
the use of CGP, the fundamental working mechanisms, and the generalization of
popular dogmas in important subfields of CGP:

• Theoretical work: This contribution presents the first theoretical work in
CGP. The time complexity of a simple (1+1)-CGP algorithm is analyzed with
two test problems. These two problems offer different challenges for the CGP
standard point mutation mechanism. The lower and upper runtime bounds for
both problems are analyzed with the help of state-of-the-art methods such as
drift analysis and artificial fitness levels.

• Parametrization: CGP is mostly used with a parametrization pattern, which
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2.2 Thesis Contributions

has been declared as a general useful pattern for CGP. Furthermore, this pat-
tern has been considered as the most beneficial one for the efficiency of CGP
and its variants. This contribution surveys common parametrization patterns
with more detailed experiments and reviews alternative patterns. This chapter
also analyzes significant CGP literature, which led to the generalization of a
parametrization pattern, which is known as (1+4)-CGP. The results of compre-
hensive experiments lead to new insights and statements about a meaningful
parametrization of the CGP algorithm and the functioning of CGP.

• Diversity: This contribution describes the first adaptive scheme for CGP,
which can significantly contribute to the performance of the real-valued rep-
resentation. The basic principle of increasing population diversity when the
population tends to become too homogeneous is studied on a set of symbolic
regression problems. It is also demonstrated that the original introduced real-
valued CGP algorithm has a high tendency to stagnate under certain condi-
tions.

• Genetic operators: The focus of this contribution is the introduction and
investigation of genetic operators, which can significantly improve the conver-
gence behavior and search performance of CGP. Most genetic operators pro-
posed for CGP are functioning on a genotypic level and ignore the functioning
of the corresponding phenotype. This contribution introduces new crossover
and mutation techniques that work on a phenotypic level. The role of crossover
can be seen as a big open question in the field of CGP.

• Exploration and convergence analysis: The exploration abilities of CGP
algorithms are analyzed in different problem domains. In addition to the anal-
ysis of the exploration abilities, the spaces of the fitness values are investigated.
This investigation also includes a comparison between the standard point mu-
tation operator of CGP and random initialization of the genotype. The distri-
bution of the fitness values of widespread GP benchmark problems is studied,
and the convergence speed is analyzed for different CGP algorithms. Beside
this analysis, the convergence speed is measured. Another important contribu-
tion of this chapter is an investigation of the behavior of CGP in continuous
and discrete fitness spaces.

2.2.1 Research questions

The current state of scientific knowledge in CGP opens some significant research
questions:

Research Question 1 (Crossover). Can some kind of crossover effectively be used
in CGP?

Research Question 2 (Theory). How can CGP be analyzed on a theoretical level?
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Diversity

Parametrisation

Genetic 
Operators

Theoretical work

Exploration
Analysis

Efficiency of CGP

Issues of real-
valued CGP

Crossover question
in CGP

Population size
dogma in CGP

Advanced algorithmic
knowledge of CGP

Horizontal level

Vertical 
level

Figure 2.2: Visualization of the contributions of this thesis. The breadth of the tack-
led points in the thesis is depicted the vertical axis. The interdisciplinary
correlations between the respective points are illustrated on the horizon-
tal axis.

Research Question 3 (Real-valued CGP). Has the real-valued CGP algorithm
stagnation problems? Furthermore, if so, why?

Research Question 4 (Wasted fitness evaluations). Does the use of middle-sized
and big populations in CGP lead to wasted fitness evaluations?

Research Question 5 (Random Initialization vs. Point Mutation). Cause random
initialization and point mutation similar effects?

2.2.2 Hypotheses

Based on the current state of fundamental knowledge in CGP and its resulting
open research questions, we can formulate the following hypotheses, which will be
analyzed in this thesis.

Hypothesis 1 (Population size). Small populations perform most effective in CGP.

Hypothesis 2 ((1 + λ)-CGP ). The (1 + λ)-CGP algorithm is the most effective
way to use CGP.

Hypothesis 3 (Redundancy). Extremely large genotypes perform most effectively
in CGP.

Hypothesis 4 (Crossover). Crossover does not contribute to the search performance
of integer-based standard CGP.
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Hypothesis 5 (Mutation). The standard CGP point mutation operator is sufficient
for the mutative variation process.

Hypothesis 6 (Boolean function domain). The (1 + λ)-CGP algorithm performs
most effectively in the Boolean domain.

Hypothesis 7 (Symbolic regression domain). The (1+λ)-CGP algorithm performs
most effectively in the symbolic regression domain.

2.3 Thesis Organization

The structure of this thesis is as follows.

Chapter 3 is devoted to the description of Genetic Programming, Evolution-
ary Algorithms, Graph-Based Genetic Programming, and CGP. This chapter
describes the history of GP and CGP and explains important problem domains
relevant for this thesis. This chapter also presents a formal description of CGP.

Chapter 4 introduces a first runtime analysis for CGP. The work analyzes
CGP on a theoretical level using a simple (1 + 1)-CGP algorithm. For the
analyses of the (1 + 1)-CGP algorithm, two simple and artificial problems are
used. The two problems differ significantly in their problem domain and their
challenge for the CGP point mutation mechanism. The analysis presents a first
analysis of the upper and lower runtime bounds of a (1 + 1)-CGP algorithm.

Chapter 5 deals with the results and evaluation of experiments on the parametriza-
tion of CGP. This chapter mainly focuses on a detailed review of a popular
dogma of CGP, which has been generalized in CGP over time. The experi-
ments use the mutation-only CGP, which can be seen as the most used and
most popular CGP algorithm. This chapter also outlines and reviews the role
of crossover in CGP.

Chapter 6 is devoted to the diversity problem in real-valued CGP. The real-
valued variant of CGP enables the use of an arithmetic crossover technique.
However, recent literature outlined that this representation suffers from a de-
crease in diversity in the population. This chapter investigates the lack of
diversity on popular symbolic regression problems and presents an adaptive
scheme for real-valued CGP, which contributes to its diversity.

Chapter 7 introduces two new methods of crossover for CGP. The contri-
bution to the performance of CGP is evaluated in different problem domains
and compared to another crossover technique. The chapter also presents a first
comparative study of crossover for CGP. The study includes the most popular
crossover techniques proposed for CGP and compares the performance of these
techniques to the standard (1 + λ) CGP algorithm.
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Chapter 8 introduces two new mutation operators for CGP. The contribution
to the performance of CGP is evaluated in different problem domains. The
standard (1 + λ) CGP algorithm with different performance patterns is used.

Chapter 9 is devoted to a comprehensive evaluation of the proposed methods.
The study compares the fundamental and advanced CGP algorithms. Some of
these algorithms are based on the techniques proposed in this thesis. The study
also analyzes some algorithms and problems in detail.

Chapter 10 summarizes the contributions and main findings of this thesis.
The research questions and corresponding hypotheses are analyzed in this
chapter. An outlook illustrates the possibilities for future work on standard
CGP, which are based on the contributions of this thesis.
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3 Genetic Programming

Genetic Programming can be defined as an evolutionary algorithm-based method-
ology that enables the automatic derivation of programs for problem-solving. The
main idea and motivation behind GP is to evolve a population of candidate com-
puter programs toward an algorithmic solution of a predefined problem statement.
To accomplish this, GP transforms populations of programs from generation to gen-
eration into new populations of programs with (hopefully) higher fitness. GP is an
evolutionary algorithm-based methodology. Moreover, GP can be described as an
stochastic optimization process, which can consequently not guarantee to achieve
the ideal solution. GP counts to the evolutionary computation (EC) domain of the
heuristic optimizers family. The first significant work in the field of GP was done by
Forsyth [30], Cramer [15], and Hicklin [42]. GP was later significantly popularized
by Koza [66, 67, 68]. GP traditionally uses trees as program representation, but it is
also used with linear sequence [6, 114, 111], graph-based [121, 144, 97], or grammar-
based representations [159, 164, 43, 35]. GP became very popular when Koza applied
the syntax tree representation to several types of problems, for instance, symbolic
regression, algorithm construction, Boolean function learning, or classification.

GP initializes a population of randomly generated computer programs, which con-
sists of possible functions of the function set. The function set consists of possible
functions for the computer programs which are supposed to solve the given problem.
GP iteratively transforms a population of computer programs into a new generation
by applying the analogs of genetic operations known in the field of evolutionary
algorithms (EA) and applied to numerical optimization. These operations are ap-
plied to individuals selected from the population. The individuals are selected based
on their fitness values. The iterative genetic adaptation of the population toward a
predefined goal is performed inside the main generational loop of the run of genetic
programming.
GP adapts the principles of familiar evolutionary operators and mechanisms, such
as selection, recombination, and mutation. The most popular crossover operator for
tree-based GP is the subtree-crossover, which swaps randomly selected sub-branches
of two selected trees. The principle of this crossover technique is presented in Fig-
ure 3.1. The most popular mutation is named subtree-mutation and generates a
random sub-branch, which replaced the sub-branch at a randomly chosen mutation
point. The principle of this subtree-mutation is presented in Figure 3.2.
An interesting property of GP is the automatic definition and reuse of subfunctions.
Automatically defined functions (ADF) introduce a divide and conquer-like concept
to heuristic search. The dynamic extension of the functional block alphabet by new
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3 Genetic Programming

composite functions, which themselves are subject to evolutionary pressure, allows
increasing the functionality and complexity level of the alphabet.

GP can be used for a wide range of problems. According to GP survey results [160],
trees are the most used representation model in GP. However, since the tree rep-
resentation does not fit for all types of problems, a graph-based representation is
a necessary extension for certain problems. For instance, a syntax tree in standard
tree-based GP has only one output. However, for evolving Boolean functions or dig-
ital circuits such as digital multipliers or digital adders, a multiple output problem
representation is necessary.

The traditional GP model variates candidate programs on a syntactical level. One
of the latest introduced GP models, called Geometric Semantic GP, also variates
candidate programs on a semantic level.
Besides the main motivation for GP to evolve computer programs, GP has been
applied to a diverse set of problems. Some of the most popular problem classes
beside to program derivation are symbolic regression, Boolean function learning,
classification, and planning. A list of important genetic programming terms, which
will be used in the following chapters is given in Table 3.1. A defintion of GP is
given in Definition 3.2.

Definition 3.1 (Genetic Programming). Genetic Programming is an evolutionary
algorithm-based method for the automatic derivation of computer programs. Let Θ be
a population of |Θ| individuals and let Ω be the population of the following generation:

• Each individual is represented with a genetic program and a fitness value.

• Genetic Programming transforms Θ 7→ Ω by the adaptation of selection, re-
combination and mutation.

Definition 3.2 (Genetic Program). A genetic program P is an element of T ×F×E:
• F is a finite non-empty set of functions

• T is a finite non-empty set of terminals

• E is a finite non-empty set of edges

Let ϕ : P 7→ Ψ be a decode function which maps P to a phenotype Ψ
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function set | the set of operators and functions used in a genetic program

terminal set | a set from which all end nodes in the parse trees
| or input nodes of a graph, representing the programs, must be drawn.

terminal | a variable, constant or a function with no arguments.

non-terminal | functions used to link parse trees together

automatic defined function | a set of sub-trees which can be used as functions in main trees

bloat | phenomenon characterized by the gradual increase
| of the phenotypes in size during the evolutionary run

goal function | a function (e.g. of mathematical or boolean type)
| which should be evolved or regressed by the GP algorithm

Table 3.1: List of important terms which are commonly used in the field of Genetic
Programming and Cartesian Genetic Programming. These terms and def-
initions will be used throughout this thesis.
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Figure 3.1: Subtree crossover in tree-based GP. The crossover points within of the
selected trees are chosen by random. Afterward, the subtrees are swapped
and as a result, two offspring are achieved.
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Figure 3.2: Subtree mutation in tree-based GP. A mutation point is chosen by chance
and a randomly generated subtree replaces the existing subtree at the
mutation point.
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3.1 Evolutionary Algorithms

3.1 Evolutionary Algorithms
Definition 3.3 (Evolutionary Algorithm). A metaheuristic optimization algorithm,
mostly used for black-box optimization, which adapts the principle of biological evo-
lution.

Evolutionary Algorithms (EA) adapt the principle of biological evolution, which is
commonly referred to as "the survival of the fittest", which was investigated by the
English naturalist Charles Darwin in his book On the Origin of Species by Means
of Natural Selection [16].

Darwin noted with more precise words:

“As many more individuals of each species are born than can possibly
survive; and as, consequently, there is a frequently recurring struggle for
existence, it follows that any being, if it vary however slightly in any
manner profitable to itself, under the complex and sometimes varying
conditions of life, will have a better chance of surviving, and thus be
naturally selected.”

Darwin [16, p. 5]

In the field of EC, EAs refer to a group of methodologies which have been in-
troduced in the middle of the 20th century. EA can be considered as metaheuristic
optimization algorithms for black-box optimization. Beside the adaption of the main
principle of biological evolution, EA mostly adapts two primary genetic operations
from nature:

Crossover or recombination
A new possible solution (offspring) is produced from the genetic material of
two or more parent individuals.

Mutation
A new possible solution is produced by randomly altering a randomly chosen
part of the genetic material of a single individual.

An example of an EA is given in Algorithm 3.1. An EA starts with the initialization
of a population with random candidate solutions. A population can be considered
as a set of candidate solutions, and each candidate solution owns a genotype. The
genotype consists of genes that typically encode a function. A gene can be, for
example, a floating-point number, a graph vertex, or a single bit.
In this thesis, we focus on discrete structures such as directed acyclic graphs encoded
within a genotype. The encoding and decoding between genotypes and phenotypes
are known as genotype-to-phenotype mapping. Consequently, a phenotype is the ex-
pression or behavior of a genotype. The next step of Algorithm 3.1 is the breeding

29



3 Genetic Programming

population | a set of individuals
species | individuals, which share common characteristics
candidate solution | member of the population, part of the search space
individual | a candidate, potential solution
breeding | the genetic adaption, variation procedure
parent | an individual selected for breeding
offspring | a candidate solution produced by variation

genotype | representation model of an individual, set of genes, vector of numbers
phenotype | expression, behavior of the genotype
chromosome | a set of genotypes
gene | a region of the genotype that encodes functionality

crossover | genetic operator, which combines genetic information of two or more parents
| to produce new offspring

arithmetic crossover | weighted average recombination (i.e. for real-valued vectors)
one-point crossover | single point recombination (i.e. for discrete bit and real-valued vectors)
mutation | genetic operator, which varies information on the genome of a individual

| (mostly according to a given probability distribution)

selection | procedure which choses genomes from a population for later breeding
tournament selection | selection strategy that performs multiple tournaments and selects the winners
plus-strategy | parents for breeding are selected from the set of parents and offspring
comma-strategy | parents for breeding are selected only from the set of offspring

fitness function | an objective function to assess and compare individuals by their fitness
fitness | a measurement of the individual’s phenotype against the ideal functionality
fitness evaluation | a procedure to evaluate the fitness of each individual

epistasis | expresses the links and interaction between genes in a chromosome
| and the corresponding effects on the phenotype.
| Minimal epistasis corresponds to the situation where every gene is
| independent of all other gene, this is contrary to maximal epistasis
| where no genes is independent of any other gene.

Table 3.2: List of the important terms which are commonly used in the field of
evolutionary algorithms. Some of the listed terms will be used throughout
this thesis.
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Algorithm 3.1 Example of a simple EA with genetic adaptation, evaluation and
selection mechanism

1: procedure Evolutionary Algorithm
2: initialize(P ) ▷ Initialize set of candidate solutions
3: repeat ▷ Until termination criteria not triggered
4: Q← breed(P) ▷ Breed new individuals with crossover and mutation
5: Evaluate(Q) ▷ Evaluate the fitness of each individual
6: if Q meets termination criterion then
7: return Q
8: end if
9: P ← select(P,Q) ▷ Select high-fitness individuals

10: until P meets termination criterion
11: return P
12: end procedure

procedure that performs genetic adoption and the exchange of genetic material on
the population. More precisely, former selected individuals are recombined and mu-
tated. Thereby, a new individual is created by blending genes from a set of parent
individuals. Afterward, a mutation operator modifies some genes with a certain
probability. The quality of the newly created individuals is computed in the fitness
evaluation step. If at least one individual reaches the optimization goal, the EA ter-
minates its execution. Otherwise, a selection method, which can be deterministic or
randomized, picks some individuals regarding their fitness or objective values for the
next reproduction step. Table 3.2 provides the explanation of important terms which
are frequently used in the field of EAs. A defintion of EA is given in Definition 3.3.

Remarkable historical developments of EAs can be presented and summarized as
follows:

1954 • Barricelli: Evolutionary simulations [106]
1960s - early 1970s • Rechenberg, Schwefel: Evolutionary strategies [131, 135]

same period of time • Fogel: Evolutionary programming [29, 27, 28]
same period of time • Holland: Genetic algorithms [44, 45]

1980s • Forsysth, Cramer, Hicklin: Genetic programming [30, 15, 42]

Two popular types of EAs are Evolutionary Strategies (ES) [131, 130] and Genetic
Algorithms (GA) [46]. An ES operates predominantly in a search space that con-
sists of real values. A vector of real values represents the individuals, and a vector
is mutated by adding random numbers. The most popular form of crossover is a
weighted average between two real-valued vectors. The weight for the weighted av-
erage operation is a random value in the range of 0 and 1. This form of crossover
is known as arithmetic crossover. The arithmetic crossover is also known as inter-
mediate recombination [105]. An ES is described and denoted with the number of
parents µ and the number of offspring λ. Another important information is the selec-
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tion strategy. A plus-strategy (denoted by the + operator) selects new parents from
the set of offspring and of parents. In contrast, a strategy called comma-strategy,
which is denoted with a comma, selects parents only from the set of created off-
spring. The offspring are selected by the rating of their fitness value. If only one
parent is used, which creates one offspring, and the new parent is selected from the
set of the offspring and the current parent, the ES is denoted as (1+1)-ES. If the ES
creates λ offspring from a single parent in each generation, the ES is called (1+λ)-ES.

In contrast, a typical GA operates in a search space of discrete bit values. More
precisely, GAs typically represent individuals as a vector of bit values. Each new
offspring is produced by combining parts of the bit vector from each parent. This
is analogous to the way chromosomes of DNA, which contains the inherited genetic
material, are passed to children in natural systems. One popular method of recom-
bining the genetic material is called one-point crossover. This method chooses a
random point in the vector and transfers the front part from the first parent to
the offspring. The rear part is then transferred from the second parent to the off-
spring. GAs are often used with a generational EA and a selection method called
tournament selection. Tournament selection is a strategy to select parents from the
selection pool where their fitness value compares a predefined number of randomly
selected individuals. These sets of randomly selected parents are called tournaments.
The individual with the best fitness value wins the tournament. A big advantage of
this selection method is that the size of the tournament can control the selection
pressure of the EA. The evolutionary procedure, which is shown in Figure 3.4 refers
to the GA, which has been proposed by Holland and is known as Canonical Genetic
Algorithm.

GP can be seen as one outcome and derivation of the development of GAs. Especially
conventional tree-based GP is mostly used with a basic GA. However, CGP is also
used with an algorithmic pattern which is derived from ESs. CGP can be seen as a
derivation from GP. The visual taxonomy of the development toward GP and CGP
is given in Figure 3.3.

3.2 Graph-based Genetic Programming

One of the first graph-based GP approaches was introduced by Poli [121, 120, 122,
123, 124] called parallel distributed Genetic Programming (PDGP), a form of GP for
the evolution of parallel programs, which reuses partial results. PDGP uses a rect-
angular or irrectangular grid representation. In PDGP, the graphs are represented
with nodes that stand for functions and terminals. Each node occupies a position in
the grid.
The edges of the PDGP representation stand for the control of the data flow. The
genetic operators of PDGP are crossover and mutation.
PDGP uses a direct representation of graphs. The representation is based on the
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Figure 3.3: Taxonomy of some popular evolutionary algorithms. Since the first ap-
proaches to GP used genetic algorithms, the field of GP grew out of the
developments, which occurred in the field of genetic algorithms. CGP
can be seen as an extension of GP. However, since CGP also uses algo-
rithmic selection schemes which are used to run evolutionary strategies,
CGP was also influenced by this type of evolutionary algorithms.
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Figure 3.4: Flowchart of a typical canonical genetic algorithm. Recombination and
mutation are mostly used for the breeding procedure. Among genetic al-
gorithms, tournament selection can be seen as the most popular method
for the selection process.
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Figure 3.5: Program representation in PDGP for the program: A visual represen-
tation is achieved with grids and a syntactic representation is achieved
with lists. The listing contains the label, the coordinates of the node,
and the horizontal displacement of the nodes in the previous layer whose
value is used as an argument for the node.

idea of assigning each node in the graph to a location in a multi-dimensional and
evenly spaced grid with a regular or irregular shape and limiting the connections
between nodes and be upwards. The PDGP representation allows connections to
exist only between nodes belonging to adjacent rows. The representation for
parallel distributed programs is illustrated by an example program in Figure 3.5,
where the program has a single output at coordinates (0,0) and the y axis is pointing
downwards. Pass-through nodes can be constructed by adding the identity function
to the function set. In this way, any parallel distributed program can be rearranged
in a way that it can be described with the grid-based graph representation of PDGP.
Besides the grid-based representation it is possible to describe any program by list-
ing of the following parameters for each node: 1) the label, 2) the coordinates of the
node, and 3) the horizontal displacement of the nodes in the previous layer whose
value is used as argument for the node.

Another graph-based GP approach called Parallel Algorithm Discovery and Orches-
tration (PADO), which has been proposed by Teller [144], uses a combination of GP
and linear discrimination to obtain parallel classification programs. PADO programs
include three parts: the main loop, some automatically defined functions (ADFs),
and an indexed memory. The main loop is repeatedly executed for a fixed amount
of time. When the time is up, PADO programs are forced to halt by some external
control structure. The output of a program is the weighted average of the outputs
produced at each iteration of the loop. The weights are proportional to the iteration
count so that more recent outputs count more.
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Figure 3.6: Examplification of an allowable graph transformation of a Boolean func-
tion which is not allowed in CGP. An EGGP mutation which changes
a connection (red) from node 2 to node 1 is replaced with a connection
(blue) directed to node 3. This mutation produces a valid circuit but is
impossible in standard CGP as mutations on the connection genes have
values less than the node position which is done to guarantee feedforward
property.

The most popular and dominant graph-based GP approach is CGP, which was finally
introduced by Miller [97, 100], will be described in the next section. Compared to
the other graph-based GP approaches, CGP can be considered as the most used
graph-based GP approach, which can be applied to a wide range of problems.
A comparatively new method for evolving graphs has been proposed by Atkinson
et al. [3, 4, 2]. It is called evolving graphs by graph programming (EGGP) and
evolves graphs directly instead of using a grid-based genotype. Basically, EGGP
utilzes a probabilistic extension for the graph programming language GP2 [119, 118].
GP2 itself is a rule-based, nondeterministic programming language for solving graph
problems at a high level of abstraction. In EGGP, some mutations are not possible
in the standard form of CGP due to the feed-forward preservation. Figure 3.6 shows
an allowable mutation in EGGP which is not allowed in standard CGP.

3.3 Cartesian Genetic Programming
CGP is a form of Genetic Programming, which offers a graph-based representa-
tion. In contrast to tree-based GP, CGP represents a genetic program via genotype-
phenotype mapping as an indexed, acyclic, and directed graph. Originally, the struc-
ture of the graphs was a rectangular grid of nr rows and nc columns, but later work
focused on a representation with one row. The CGP decoding procedudure processes
groups of genes, and each group refers to a node of the graph, except the last one,
which represents the outputs of the phenotype. Each node is represented by two
types of genes which index the function number in the GP function set and the node
inputs. These nodes are called function nodes and execute functions on the input
values. The number of input genes depends on the maximum arity na of the function
set.
Given to the number of outputs no, the no last genes in the genotype represent
the indexes of the nodes, which lead to the outputs. A backward search is used to
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Figure 3.7: The exemplification of the decoding procedure of a CGP genotype to its
corresponding phenotype. The nodes are represented with two types of
numbers which index the number in the function lookup table (under-
lined) and the inputs (non-underlined) for the node. Inactive function
nodes are shown in gray. The identifier IP1 and IP2 stand for the two
input nodes with node index 0 and 1. The identifier OP stands for the
output node of the graph.

decode the corresponding phenotype. An example of the backward search of the
most popular one-row integer representation is shown in Figure 3.7. The backward
search starts from the program output and processes all nodes which are linked in
the genotype. In this way, only active nodes are processed during evaluation. The
genotype in Figure 3.7 is grouped by its function nodes. The first (underlined) gene
of each group refers to the function number in the corresponding function set in
the figure. The decoding procedure of one function nodes is shown in Figure 3.8.
The decoded part of the genotype and its corresponding part in the phenotype are
highlighted in orange. The integer-based representation of CGP phenotypes is mostly
used with mutation only.
Early studies on efficiency showed that several genetic crossover operators do not
contribute to the search performance of CGP. The number of inputs ni, outputs no,
and the length of the genotype is fixed. Every candidate program is represented with
nr ∗nc ∗ (na +1)+no integers. Even when the length of the genotype is fixed for each
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Figure 3.8: Decoding procedure from genotype to phenotype illustrated for one func-
tion node with node number 4 (highlighted in colour). The function of a
certain function node is represented with the function gene. In the figure,
the function gene is underlined. The input connections from the outputs
of former function nodes are represented by the input genes which follow
the function gene in the genotype.
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candidate program, the length of the corresponding phenotype in CGP is variable,
which can be considered as a advantage of the CGP representation.
CGP is traditionally used with a (1+λ) selection scheme of EAs. A pseudo-code
is given in Algorithm 3.2. The new population in each generation consists of the
best individual of the previous population and the λ created offspring. The breeding
procedure is mostly done by a point mutation that swaps genes in the genotype of
an individual in the valid range by chance. An example of a point mutation is given
in Figure 3.9. The figure shows the flip of the value of a connection gene, which
rewires the corresponding function node. Another point mutation is the flip of the
functional gene, which changes functional behavior of the corresponding function
node.

Algorithm 3.2 (1+λ)-EA
1: initialize(P ) ▷ Initialize parent individual
2: repeat
3: Q← breed(P) ▷ Breed λ offspring by mutation
4: Evaluate(Q) ▷ Evaluate the fitness of the offspring
5: if at least one individual of Q has better fitness then P then
6: P ← best(Q) ▷ Replace the parent by the best offspring
7: end if
8: until P meets termination criterion ▷ Until termination criteria not triggered
9: return P

The (1+λ)-CGP is often used with a selection strategy called neutrality, the idea
that genetic drift yields to diverse individuals having equal fitness. The genetic drift
is implemented into the selection mechanism in a way that individuals that have
the same fitness as the normally selected parent are determined, and one of these
same-fitness individuals is returned uniformly at random. The connectivity of the
graph can be controlled with the parameter l called levels-back which constrains
from which previous columns a function node can receive its input connections.

Some pivotal advantages of CGP are:

• The maximal size of encoded solutions is bounded, saving CGP to some extent
from “bloat” that is characteristic to GP [75, 71, 140, 92].

• CGP encodes a directed acyclic graph (DAG), which allows the evolution of
structures which can be represented as DAGs. In this way, CGP also facilitates
to evolve topologies. An example is the evolution of artificial neural network
using CGP [149].

• CGP offers an implicit way of propagating redundant information throughout
the generations. This is accomplished using extremely high levels of redun-
dancy where over 95% of the genes in the CGP genotype are inactive. Since
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Figure 3.9: Exemplification of the standard point mutation operator in integer-
encoded CGP. Genes of the genotype are selected by chance, and their
values are randomly flipped within the legal range of possible values. The
connection gene of node 4 is mutated from a value of 2 to a value of 3.
This causes rewiring of the second input of node 4 from the output of
node 3 to the output node of node 2.
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many genes in CGP are redundant, these genes can be used as a source of
randomness and memory for evolutionary artifacts that have no effect on the
phenotype. Redundant genes in CGP assist in effective evolutionary search [99].

• The implementation complexity of CGP is low, where no special programming
language properties are necessary, in contrast to tree-based GP where the
ability to handle tree structures efficiently is crucial.

Along with the mentioned advantages, CGP suffers as a combinatorial representa-
tion model from the usual sources of epistasis. For instance, rewiring a single input of
a functional node can change the phenotype dramatically. Additionally, the spatial
arrangement of functional nodes on a two-dimensional grid introduces restrictions
on the topology of the evolved solutions. Moving a function node among the grid re-
quires rearranging the genotype, if possible. Additionally, the connection settings of
the input of a function node strongly depend on the location of the node on the grid.
These dependencies implicitly have impact on the evolvability and make it challeng-
ing to realize structural methods for CGP. A trial to free CGP from grid-induced
epistasis was made in [139] by assigning a signature to each input and output of a
node. Best-fitting signatures were used to clamp wires and in this way the mapping
between the genotype and phenotype is determined by self-organized binding of the
genes which is inspired by enzyme biology.

In contrast to tree-based GP, CGP is used primarily with mutation as the sole
genetic operator. The reason for this is that standard genotypic operators failed
to improve the search performance of standard CGP. A defintion of CGP is given
in Definition 3.4. The described functionality relates to standard CGP. Later work
enabled several variants of CGP, which will be surveyed in the historical overview.

Definition 3.4 (Cartesian Genetic Programming). Cartesian Genetic Programming
is a form of Genetic Programming, which offers a graph-based representation model
for Genetic Programming based on a rectangular grid or row of nodes.

3.3.1 Formal description of CGP

For the formal definition of CGP we first formally define a Cartesian Genetic Pro-
gram (CP) in Definition 3.5:

Definition 3.5 (Cartesian Genetic Program). A cartesian genetic program P is an
element of Ni ×Nf ×No ×F :

• Ni is a finite non-empty set of input nodes

• Nf is a finite set of function nodes
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• No is a finite non-empty set of output nodes

• F is a finite non-empty set of functions

All nodes of a CP are continuously indexed with a node number. The indexing starts
with the a value of 0 at the first input node and ends at the last output node. At
each node, the node number is increased by one. Let N = |Ni|+ |Nf|+ |No| be the
number of nodes of a CP.

Given the number of input nodes ni, the set Ni = {θj
i | j ∈ {0, . . . , ni−1}} consists of

ni input nodes. An input node θi can be formally described as a 2-tuple θi = (xi, vi):

• xi ∈ {0, . . . , ni − 1} is the number of the input node
• vi is the value of the input node

Given the number of function nodes nf, the set Nf = {θj
f | j ∈ {0, . . . , nf − 1}},

consists of nf function nodes. Given the maximum arity na, a function node θf can
be formally described as a tuple θf = (xf , gf , g0

c , ..., gna−1
c ) of dimension na + 2:

• xf ∈ {ni, . . . , ni + nf − 1} is the number of the function node
• gf ∈ {x ∈ N0 | 0 ≤ x ≤ |F | − 1} is the function gene
• g0

c , ..., gna−1
c ∈ {x ∈ N0 | 0 ≤ x ≤ xf − 1} are the connection genes

Given the number of output nodes no,the set No = {θj
o | j ∈ {0, . . . , nf − 1}},

consists of no output nodes. An output node θo can be formally described as a
2-tuple θo = (xo, go):

• xo ∈ {nf, . . . , N − 1}} is the number of the output node
• go ∈ {x ∈ N0 | 0 ≤ x ≤ |Gi|+ |Gf| − 1} is the output gene

An item ρ of the function set F can be described as a 3-tuple ρ = {iρ, fρ, aρ}:

• iρ ∈ {x ∈ N | 0 ≤ x ≤ |F | − 1} is the index

• fρ is the function

• aρ ∈ N is the arity of fρ
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The output gene go of each output node contains the node number of a function
or input node whose node number is smaller than the node number of the output
node. The output gene is used as a reference when the graph is decoded. When the
output gene references to a function node, the respective function node is decoded
in two ways: (1) The function gene gf of the function node θf is used to decode the
function fρ in the function set F which is executed by the node. The function gene
contains the index iρ of an item ρ in the function set F . (2) The connection genes
g0

c , ..., gna−1
c represent inputs of the node which are connected with the outputs

of previous function and input nodes. The values of the connection genes must
be smaller than the node number of the respective function node to ensure the
feed forward structure of the graph after decoding. The decoding itself starts at
the output nodes and continues until the inputs nodes are reached. The decoding
procedure is done for all output genes. The result of the decoding procedure can be
described as a set of directed paths Ω. Given the input set I and the output set O,
let ω = I × Ω 7→ O be an output function.
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Table 3.3: Identifiers for various CGP algorithms

Identifier Description
(1 + λ)-CGP (1 + λ selection strategy with neutral genetic drift
(µ + λ)-CGP (µ + λ) selection strategy without neutral genetic drift
Canonical-CGP Canonical EA with tournament selection
Pop50-CGP Canonical EA with a population size of 50 individuals
Real-valued-CGP Canonical EA with real-valued representation

3.3.2 Real-valued Representation of CGP

To enable the use of crossover in CGP, Clegg et al. [13] introduced a real-valued
representation for CGP. The real-valued representation of the CGP genotype, as
shown in Figure 3.10 enables the recombination of two genotypes by an arithmetic
crossover technique. The values of the genes vary in the interval [0,1].

The genotype containing P genes of an real-valued CGP individual is initialized with
a tuple G =

{
xp
}P

p=1, xp ∈ U [0, 1] set of P continuous uniform distributed random
points.
The genes are decoded to the integer-based representation by using normalization
values (e.g. the number of functions or maximum input range) as shown in Fig-
ure 3.10. The decoding procedure is also illustrated in Figure 3.10. The mutation on
this representation is done by replacing the gene value with a decimal random value
which varies in the interval [0,1]. For mutation, certain genes in the genotype are
selected with respect to a predefined mutation rate and the gene values are altered
by chance in the interval [0,1]. Clegg et al. outlined that the real-valued and integer-
based representations show similar convergence behavior when only mutation is used
as the sole genetic operator.

Furthermore, Clegg et al. concluded that the new representation, along with crossover
improves the convergence behavior for the first generations. For the latter genera-
tions, the use of crossover in real-valued CGP was found as not beneficial for the
search performance on one of the two tested symbolic regression problems. Later,
work [55] demonstrated that the efficiency of real-valued CGP can be improved by
maintaining population diversity.

Some identifiers for EAs and certain selection schemes, used with CGP, are oriented
with identifiers which are known in the CGP community and have been used in CGP
literature. The identifiers which are used in this thesis are listed in Table 3.3.
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Figure 3.10: Exemplification of the decoding procedure from real-valued to the
integer-based genotype. In real-valued CGP, the values of all genes vary
in the interval [0,1] and are decoded to a non-negative integer number.
The function gene is decoded by its value and the number of functions
in the function set. This is done by multiplying the value of the function
gene with the number of functions in the function set. In this example,
we find four functions in the function set. The input genes are decoded
by the node number of the respective function node. The decoding is
also done with a multiplication, in this case between the node number
and the value of the connection gene. After the multiplications for the
function and connection gene, the floor function is applied to the result
of the multiplications.
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3.4 Historical Overview of GP and CGP

Forsyth [30], Cramer [15] and Hicklin [42] are considered to have published the ear-
liest work on GP. Forsysth introduced BEAGLE, which evolves programs using an
algorithm that is similar to basic GA. The rules are tree-structured Boolean expres-
sions, including arithmetic operations and comparisons. The rules of BEAGLE use
their own language, but Forsyth did also suggest that at some point in the future,
LISP might also be suitable. In his work, Cramer presented a representation for
the adaptive generation of simple sequential programs. Hicklin used a genetic algo-
rithm for the automatic program generation. The created functions were written in
the simple "number-string" computer language JB [15], and in TB [15], a modified
version of JB with a tree-like structure. Cramer discussed the use of an adaptive
GA to permit the adaptive generation of simple computer functions from low-level
computational primitives. Koza [66, 67, 68] can be considered as one of the main
establishers of the field of Genetic Programming and significantly popularized GP
in the early 90s. Koza’s work on a syntax tree representation model for the pro-
gramming language LISP outlined the powerful abilities of GP in different problem
domains. Furthermore, Koza presented first ideas applied on a grammar-based vari-
ant of GP, which led to the introduction of grammar-based Genetic Programming
by Wong and Leung [163]. With the intention to evolve modular and hierarchical
structures, Koza introduced automatically defined functions (ADFs) [68] which are
considered to be the most widely used method of evolving reusable components.
Basically, ADFs use a fixed architecture, which are specified in advance by the
user. Koza later extended this using architecture-altering operations which allow
the architecture to evolve along with the programs. The use of a stepwise adapta-
tion of weights technique (SAW) applied to GP led to the development of Adaptive
GP [23, 24]. The SAW mechanism has been originally developed for and successfully
used in EAs for constraint satisfaction problems [25, 26, 5]. Other representations
of GP such as graph-based [144, 121, 100] and linear-based GP [7] (LGP) can be
considered because of Koza’s effort. A further development on linear-based GP was
made with the introduction linear-graph GP [58], which has been developed with the
goal of giving a program the exibility to choose different execution paths for different
inputs. This should enable the evolution of programs of higher complexity, that can
compete with the complexity and possibilities of hand-written programs. Autocon-
structive evolution was illustrated with Pushpop, an approach of evolving population
of programs which are expressed in the Push programming language [141, 142]. A
new approach to program representation was made with the introduction of Enzyme
GP [82, 79, 81, 80] where interactions between program components are expressed
in terms of a component’s behavior and not through its relative position within a
representation. Geometric Semantic Genetic Programming (GSGP) as introduced
by Moraglio [102] can be considered as one of the most recent works and develop-
ment for tree-based GP. Motivated by the issue of code disruption in LGP, a new
form of LGP called Parallel LGP (PLGP) was introduced [22]. PLGP programs con-
sist of lists of instructions which are executed in parallel. The resulting vectors are
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then combined to produce the output of the program. PGLP limits the disruptive
effects of crossover and mutation, which allows PLGP to significantly outperform
regular LGP. An interesting and practical subfield of GP is Genetic Improvement
(GI), which means the use of optimization and machine learning techniques, such as
GP, to improve existing the code of software [73, 115].

The timeline of GP can be represented as follows:

1981 • Forsysth: BEAGLE
1985 • Cramer: Adaptive Generation of Simple Sequential Programs
1986 • Hicklin: Application of the genetic algorithm to automatic program generation
1990 • Koza: Genetic Programming on LISP Syntax Trees
1990 • Koza: First Ideas on Grammar Based Genetic Programming
1993 • Banzhaf: Linear Genetic Programming
1994 • Koza: Modular Genetic Programming
1995 • Wong, Leung: Grammar Based Genetic Programming
1996 • Poli: Parallel Distributed Genetic Programming
1996 • Teller: Parallel Algorithm Discovery and Orchestration
1997 • Miller, Thompson, Kalganova, Fogarty: Steps forward Cartesian Genetic Programming
1999 • Miller: Cartesian Genetic Programming
1999 • Eggermont, Eiben, van Hemert: Adaptive GP
2001 • Spector: PushGP
2002 • Kantschik, Banzhaf: Linear-Graph GP
2003 • Lones and Tyrell : Enzyme Genetic Programming
2011 • Parallel Linear Genetic Programming
2011 • Moraglio: Geometric Semantic Genetic Programming
2015 • Langdon: Genetic Improvement
2018 • Atkinson, Plump, Stepney: Evolving Graphs by Graph Programming

Related to CGP, the historical overview starts with the earliest work published by
Miller, Thompson, Kalganova, and Fogarty, which included the first proposals for the
standard CGP encoding model inspired by the two-dimensional array of functional
nodes connected by feed-forward wires of an FPGA device [95, 50]. Miller [97, 100]
finally introduced CGP and demonstrated its abilities to solve Boolean function
problems. A first extension to the standard CGP model was made with the intro-
duction of Modular CGP by Walker et al. [155], which enables the use of ADFs in
CGP. Embedded CGP, as introduced by Walker et al. [157] is an extension of CGP,
which is capable of automatically acquiring, evolving, and re-using partial solutions
in the form of modules. With the intention to use a representation in which the
specific location of genes within the chromosome has no direct or indirect influence
on the phenotype, Smith et al. [139] introduced an implicit context representation
for CGP. Self-Modifying-CGP was developed by Harding et al. [36]. It uses functions
that cause the evolved programs to change themselves as a function of time. By us-
ing this technique, it is possible to find general solutions to classes of problems and
mathematical algorithms (e.g. arbitrary parity, n-bit binary addition, sequences that
provably compute π and e to arbitrary precision). An approach to CGP encoded ar-
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tificial neural networks, which was introduced by Turner et al. [148] offers a powerful
training method for neural networks. This is because CGP can simultaneously evolve
the network connection weights, topology, and neuron transfer functions. It is also
compatible with Recurrent-CGP, which enables the evolution of recurrent neural
networks. Recurrent-CGP, as introduced by Turner et al. [146, 151] allows evolution
to create programs that contain cyclic, as well as acyclic, connections. This enables
the application to tasks that require internal states or memory. It also allows CGP
to create recursive equations.
Iterative CGP, as introduced by Ryser-Welch [132] enables the automatic creation
of human-readable algorithms. In Positional CGP [162] (PCGP), node positions are
evolved and nodes can be added or removed from a genome without disturbing the
existing connection scheme, unlike in CGP, where a node addition and deletion cause
a shift in all downstream node positions.
Reviewing the most significant literature of CGP, the timeline of CGP can be rep-
resented as follows:

1999 • Miller, Thompson: Standard CGP
2004 • Walker, Miller: Modular CGP
2005 • Smith, Leggett, Tyrrell: Implicit Context Representation of CGP
2007 • Clegg, Walker, Miller: Real-valued representation of CGP
2008 • Walker, Miller: Embedded CGP
2011 • Harding, Miller, Banzhaf: Self-Modifying CGP
2011 • Harding, Graziano, Leitner, Schmidhuber: Multi-type CGP
2013 • Turner, Miller: CGP encoded artificial neural networks
2014 • Turner, Miller: Recurrent CGP
2015 • Kalkreuth, Krone, Rudolph: Adaptive real-valued CGP
2016 • Ryser-Welch, Miller, Swan and Trefzer: Iterative CGP
2018 • Wilson, Miller, Cussat-Blanc, Luga: Positional CGP

3.5 Problem Domains of GP and CGP

To describe some of the most prevalent problem domains of GP and CGP of the
present and past, we survey three problem domains in this section. However, the
set of possible application areas of GP is diverse. As a compromise, this section
focuses on areas where GP and CGP have been successfully applied and that are
most relevant for the experiments of this thesis.

3.5.1 Symbolic Regression

Symbolic regression is one of the most popular problem domains in GP. Symbolic
regression problems can easily be represented as syntax trees, and in this way, these
problems can be solved using evolutionary adaptation. In the first place, the sym-
bolic regression domain is often used for the tuning of new algorithms. It is also
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widely used in real-world applications, where other regression methods are unsuc-
cessful. Symbolic regression problems are often tackled with a set of arbitrary data.
The challenge for GP is to find a solution (e.g. mathematical expression) that fits
the data points of the given regression function. An example for a mathematical
expression, which is represented as a tree is given in Figure 3.11. Usually, a cost
function with a measure like root mean square error or the absolute difference be-
tween the data points of a possible solution and the actual values of the regression
function is used to evaluate the fitness of the individuals.

A symbolic regression problem in GP can be formally described with the following
definition:

Given a training dataset T =
{
xp
}P

p=1 of P random points, a function find(xp) that
returns the value of an evaluated individual and a functions fref(xp) which returns
the true function value, let

C :=
P∑

p=1
|find(xp)− fref(xp)|

be the cost function, which calculates the sum of absolute differences between the
value of the evaluated individual and the true function value.
In most cases, after a solution was found which fits the given training dataset, the
generalization abilities of the solution are evaluated with an independent validation
dataset.

Basically, symbolic regression is not restricted to numerical data sets. The induction
of compact Boolean expressions based on truth tables can also be applied with GP.
For these types of problems, independent and dependent variables are of Boolean
type.

Symbolic regression, along with GP, got popular through Koza’s experiments with
four, five, and six order polynomial functions. Today, these types of problems are of
insignificant meaning in terms of practical application in GP and are mostly referred
to as toy problems. However, for the analysis of GP algorithms, these problems are
significant and can lead to more profound insight into the specific behavior of GP
algorithms and techniques.

3.5.2 Boolean Functions
A range of Boolean functions can be composed of GP syntax trees. The terminals
(leaves) of the trees represent the Boolean inputs. This problem domain has been
mainly used for benchmarking GP algorithms and techniques by evolving Boolean
single output problems such as multiplexers or parity-even functions. CGP has been
successfully applied to multiple-output problems such as multiplier, adders, or sub-
tractors. The challenge for GP is to fit a truth table for the given Boolean function.
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+
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- 2

Y 3

X + (  (Y - 3) * 2 )Expression:

Figure 3.11: The mathematical expression X+((Y −3)·2) represented as a parse tree
as it is used in tree based GP. The mathematical expression is decoded
by starting at the leafs, which represent the terminals and constants.
In this case X, Y are terminals and 3 and 2 are constants. The leafs of
a node are the arguments for the respective mathematical functions.

The number of different bits represents the fitness. Another way how fitness is repre-
sented in the Boolean domain is the number of parity-even or parity-odd bits of the
given problem. The high interest of CGP’s application in the Boolean function do-
main turned out from the motivation for developing CGP. Since directed and acyclic
graphs can have multiple outputs, CGP can easily be applied to the design of digital
circuits, which gates consist of Boolean functions such as AND, OR, NAND or XOR.
Furthermore, since the genotype of the CGP representation is fixed and can be set
to a maximum number of function nodes, CGP can easily evolve digital circuits
or other compositions of Boolean functions, which must be limited to a maximum
number of nodes.

3.5.3 Image operator design

Image operator design problems can be considered as a typical case where a graph
representation can be beneficial. For the design of specific image operators, for in-
stance, operators of FPGA devices, a matrix of pixel values from a particular image
is used for the input of the genetic program. Since a graph representation offers
connections from one specific function node to any previous node of the graph, this
behavior can be used for the automatic design of image operators. Image operators
also require flexible connections between function and input nodes, which can easily
be handled by a graph representation. Furthermore, the graph representation can
also be used for the design of operators with multiple outputs.
An example is the design of an edge detector for which the detection of edges in
horizontal and vertical direction is significant. The function set for these types of
problems typically exists of low-level image processing operations such as logical and
arithmetic functions. The fitness functions for this type of problem are often defined
as the mean difference between the pixel values of the input image and the pixel
values of a reference image. An example for the use of this fitness function is the
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Figure 3.12: An exemplification 1-Bit boolean comperator which can be evolved with
represented with the CGP representation model. The circuit has two
boolean inputs A and B and three boolean outputs which represent
the boolean conditions A < B, A = B and A > B. The corresponding
truth table is used to evaluate the fitness of candicate solutions. The
fitness function is often defined as the number of similar bits between
the output bits of the candidate solution and the output bits of the
truth table.
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Figure 3.13: Illustration of an image operator evaluation procedure in CGP

design of specific noise reduction operators. The inputs of the genetic program are
pixel values of a noisy image, and the output of the program is compared to the pixel
values of a clear image. In this way, CGP can easily be used for the design-specific
operators that fulfill a predefined standard. A visual example of the image operator
design problem is given in Figure 3.13. The following presented technique for evolving
and evaluating image operators is based on a procedure called convolution. Beside
to the application of so called convolution filters and operators in image processing,
the basic idea of convolution is commonly used in the field of Convolutional Neural
Networks for image processing neural networks. In this reseach field, the method is
known as Padding.
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In this chapter, a first theoretical runtime analysis of CGP will be introduced. The
analysis is based on the use of two simple test problems called SUM and COUNTING
OPERATORS. The runtime analysis of these problems is based on one of the state-
of-the-art techniques for analyzing evolutionary algorithms. This technique is called
Multiplicative Drift Analysis.

4.1 Drift Analysis
Drift analysis is one of the state-of-the-art techniques to analyze the runtime of
randomized search heuristics, such as evolutionary algorithms. Furthermore, drift
analysis is a powerful tool to analyze the optimization behavior of a randomized
search algorithm over a search space by measuring the progress of the algorithm
with respect to a potential function. Such a function maps each search point to
a non-negative real number, where a potential of zero indicates that the search
point is optimal. Drift analysis has significantly contributed to the analysis of meta-
heuristics. Many significant results about the optimization time of meta-heuristics
were achieved with drift analysis.

Multiplicative Drift Analysis

Multiplicative Drift Analysis as introduced by Doerr et. al. [18, 20, 19] is based
on Additive Drift Analysis which has been proposed by He et al. [41, 40]. The multi-
plicative drift theorem can be considered as the multiplicative version of the additive
drift theorem.

Theorem 1 (Additive Drift [41]). Let S ⊆ R be a finite set of positive numbers and
let (X(t))t∈N over S be a sequence of random variables over S ∪ {0}. Let T be the
random variable that denotes the first point in time t ∈ N for which X(t) = 0.
Suppose that there exists a constant δ > 0 such that

E[X(t) −X(t+1)|T > t] ≥ δ (4.1)

holds. Then

E[T ] ≤ X(0)

δ
(4.2)
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Figure 4.1: Illustration of drift measurement for a process X. Xk and Xk+1 are two
measurements of the potential function g(x) over time. The value of ∆
represents the drift of the process between the measurements.

The additive drift theorem describes how to relate the expected time at which the
potential value reaches zero to the first time at which the expected value of the
potential reaches zero. If the potential decreases in each step and in expectation
by δ then after X(0)/δ steps the expected potential is zero. To apply the previous
theorem to the analysis of randomized search heuristics over a finite search space
S, the defined potential function h : S → R maps all optimal search points to zero
and all non-optimal search points to values which are larger than zero. The random
variable X(t) is defined as the potential h(X(t)) of a search point X(t) in the t-th
iteration of the algorithm. The random variable T is defined as the optimization
time of the algorithm, which is the number of iterations until the algorithm finds an
optimum.
When applying Theorem 1, the expected difference between h(X(t)) and h(X(t+1))
is called the drift of the random process {X(t)}t∈N with respect to h. This drift is
additive if condition (4.1) holds.
The multiplicative method allows easier analyses in those settings where the opti-
mization progress is roughly proportional to the current distance to the optimum.
This method requires a progress which multiplicatively depends on the current po-
tential value. That is the reason why the method was named multiplicative drift
analysis. It has been found that for several problems, such potential functions are a
natural choice [18, 20]. According to Doerr et al. [19]:

”Multiplicative drift analysis allows to largely separate the structural
analysis of an optimization process from the actual calculation of a bound
on the expected optimization time.”

[19, p. 2]
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Furthermore, Doerr et al. [19] stated that:

”The runtime bounds obtained by multiplicative drift analysis are of-
ten sharper than those resulting from previously used techniques.”

[19, p. 3]

However, since multiplicative drift analysis is derived from the original additive
result, it is clear that the multiplicative version cannot be stronger than the original
theorem.

Theorem 2 (Multiplicative Drift [18]). Let S ⊆ R be a finite set of positive numbers
with minimum smin. Let (X(t))t∈N over S be a sequence of random variables over
S ∪ {0}. Let T be the random variable that denotes the first point in time t ∈ N for
which X(t) = 0. If there exists δ, cmax, cmin > 0 such that

E[X(t) −X(t+1)|X(t)] ≥ δ ·X(t) (4.3)

and

cmin ≤ X(t) ≤ cmax (4.4)

for all t < T , then

E[T ] ≤ 2
δ
· ln(1 + cmax

cmin
) (4.5)

The drift of a random process concerning a potential function g is multiplicative
if condition (4.3) holds for the affiliated random variables. The advantage of the
multiplicative approach is that it allows using potential functions that are more
natural. The most natural potential function can be considered as the distance of
the objective value of the current solution to the optimum. This condition is a good
choice in the analysis of combinatorial optimization problems [18, 20].

4.2 Single Active Gene Mutation Strategy
The single active gene mutation strategy as proposed by Goldman et al. [33] mutates
at least one active gene of an individual in one generation. This means that all genes
of active function nodes and the output nodes can be selected for mutation. The
position of a gene of an active function node is chosen at random with a discrete
uniform distributed random value:
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Given a set Ga of active function nodes. Let na = |Ga| be the number of active
function nodes of an CGP individual and let θa be an active function node. Given
the number of function nodes nf, the number of inputs ni and the maximum arity a of
the function nodes, θa can be formally described as a tuple θa = {xa, gf , g0

c , ..., ga−1
c }:

• xa ∈ {x ∈ N | ni ≤ x ≤ ni + nf − 1} is the number of the function node

• gf ∈ {x ∈ N0 | 0 ≤ x ≤ |F | − 1} is the function gene

• g0
c , ..., ga−1

c ∈ {x ∈ N0 | 0 ≤ x ≤ xf − 1} are the connection genes

Given a set Go of output genes. Let no = |Go| be the number of output genes of an
CGP individual. Each output gene can vary in the intervall go ∈ {x ∈ N0 | 0 ≤ x ≤
ni + nf − 1}:
The number of active genes ga can be calculated by ga = na ∗(1+a)+no. The active
gene which will be mutated is selected uniformly at random with probability 1

ga

The mutation on the selected gene of an active function node or output node is done
by a flip of the gene value in the interval of a particular gene which is defined above.
The starting index pa (e.g. their index of the function gene) of an active function
node in the genotype can be calculated by pa = (xa − ni) ∗ (a + 1) This procedure
is equal to the standard probabilistic CGP mutation: The value of a connection
gene is flipped between zero and a value less than the current node number, the
value of a function gene is flipped with a value between zero to the maximum index
of the function lookup table. Either a function gene and a connection gene of an
active function node or an output gene can be mutated when the single active gene
mutation strategy is performed.

4.3 Previous Theoretical Work on GP and CGP
The understanding of GP behavior on a theoretical level has been considered rela-
tively poor in the past when compared to the number of successful practical appli-
cations [110, 126]:

”There remain a number of significant open issues despite the suc-
cessful application of GP to a number of challenging real-world problem
domains and progress in the development of a theory explaining the be-
havior and dynamics of GP.”

[110, p. 339]

However, the lack of theoretical results in the field GP was already known over 20
years ago:
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”One of the most important deficiency in GP at the moment is the
lack of sound theoretical foundations.”

[74, p. 28]

Furthermore, theoretical models for GP seem to be hard to obtain even if the com-
plexity of GP algorithms can be considered as low [70]. A major theoretical con-
tribution to the understanding of GP behavior has been made by applying schema
theory [72, 127, 128, 125, 129]. However, the results of these works do not contribute
to the runtime analysis of GP.

According to Mambrini et al. [88], the first studies of runtime analysis in GP fo-
cused on two functions, which are called ORDER and MAJORITY. For these types
of problems, the fitness of an individual depends on the structure of the syntax tree
and not on its execution. However, these types of problems can be considered as
very simple compared to the problems to which GP is usually applied. However,
according to Neumann et al. [107], the results of the mentioned problems show that
GP can optimize both functions efficiently.

In their work, Mambrini et al. [88] reported that a recent study [65] analyzed the
same simple GP systems on the MAX Problem. The analysis included a set of func-
tions, a set of terminals, and a bound on the maximum depth of the solution. The
goal is to evolve a tree that returns the maximum value given any combination
of functions and terminals [65]. The results of the analysis show that simple GP
systems can efficiently evolve MAX with a function set F=[+; ∗] and one constant
as the terminal set. Compared to the previous functions, MAX is more similar to
those evolved by GP in practical applications since the fitness indeed depends on
the behavior of the computed function on the input. Still, dependence is not very
strong, since the space of possible inputs can be partitioned into two subsets such
that for every input in a subset, the optimal solution to the problem is the same.

Moraglio et al. [103] and Mambrini [104] obtained two more theoretical results by
the runtime analysis of mutation-based Geometric Semantic Genetic Programming
for evolving Boolean and basic regression functions.
Recently, Mambrini et al. [88] presented a theoretical analysis of two simple GP
algorithms on two Boolean problems called AND and XOR. Both algorithms were
equipped with a minimal function set with a maximum of two functions. It has been
rigorously proved that both algorithms can solve both easy problems with minimal
sets efficiently. However, Mambrini et al. [88] stated that:

“If an extra function (i.e. NOT) is added to the function set, the
algorithms require at least exponential time to evolve the conjunction
of n variables. ”

[88, p. 99]
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Recently, Lissovoi et al. [78, 77] presented results on the time and space complexity of
GP for evolving Boolean conjunctions. The authors present a performance analysis
that sheds light on the behavior of simple GP systems for evolving conjunctions of
n variables (ANDn).
On the one hand the analysis of a random local search GP with minimal terminal
and function sets revealed the relationship between the number of iterations and
the expected error of the evolved program on the complete training set. The authors
also considered a more realistic GP system equipped with a global mutation operator
and proved that it could efficiently solve ANDn by producing programs of a linear
size that fit a training set to optimality and with high probability generalize well.
Based on the results of Lissovoi et al. , Doerr et al. [21] made a considerable step
forward by analyzing the behavior and performance of the GP system for evolving a
Boolean function with unknown components, i.e., the function may consist of both
conjunctions and disjunctions. In their work Doerr et al. rigorously proved that if
the target function is the conjunction of n variables, the random local search GP
using the complete truth table to evaluate program quality evolves the exact target
function in O(ℓ log 2n) iterations in expectation, where ℓ ≥ n is a limit on the depth
of any accepted tree.
Regarding the theoretical knowledge of CGP, Woodward [165] investigated the func-
tional complexity in CGP. To our best knowledge, the work of Woodward seems to
be the only theoretical work contributed to the understanding of CGP behavior. Fur-
thermore, Woodward’s work does not contribute to the knowledge of the runtime
complexity by obtaining upper and lower runtime bounds of the CGP algorithm
itself. This significant lack of theoretical knowledge in CGP has been the motivation
for our work.

4.4 Preliminaries

We will analyze a (1+1)-CGP algorithm on test problems called SUM and COUNT-
ING OPERATORS. We say that an algorithm solves a problem efficiently if it can
evolve a solution in expected polynomial time, where time is defined as the number
of fitness function evaluations. As a genetic operator, the single-active-gene muta-
tion strategy is in use. Since only one gene is chosen for mutation, the mutation can
be performed on a connection gene or the function gene. The offspring replaces the
parent only if the offspring has a better fitness value. We will analyze two scenarios.
For the SUM problem, the runtime analysis of the algorithm depends on the number
of n arity connections of a function node, which are represented by the connection
genes of the CGP genotypes.
On the other hand, the runtime analysis of the algorithm depends on the number of
n inputs (terminals) for the given COUNTING OPERATORS problem. We define
Artificial Fitness Levels for the analysis of the SUM and COUNTING OPERA-
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TORS problem. For our analysis, we use the Multiplicative Drift Theorem, which
has been described in Section 4.2. For the analysis of the SUM problem, the CGP
is equipped with a function set consisting of three mathematical functions, SUM,
MIN, and AVG. For the analysis of the COUNTING OPERATORS problem, the
function set only consists of the COUNT function.

For both problems, the number of function nodes is fixed and set to 1. The reason
for this is that we will focus more on the theoretical analysis of the mutation abilities
of CGP to build and reconnect arity connections. This behavior has been found as
one of the key features of CGP and is considered highly beneficial for the efficiency
of CGP. The output node is connected to the function node, which represents a
configuration of the levels back parameter with a value of 1.

4.4.1 The SUM problem

The SUM problem is a very simple mathematical test problem for the theoretical
analysis of CGP behavior. With the SUM problem, we will analyze the (1+1)-CGP
algorithm depending on the number n of arity connections of a function node. For
the analysis of this problem, the number of function nodes in the genotype is limited
to 1, and the genotype has two input nodes. The first input node is a terminal with
a constant value of x = 0, and the second input is a constant with a value of y = 1.
The goal of this problem is to connect all arity connections of the function node to
the second input and to sum up the "1" values. The genotype has one output which
is connected to the function node. The function set F consists of three functions
F={SUM, MIN, MAX}. In the first place, we have a function SUM, which adds
up all values of the connected inputs of the function node. The function set also
consists of a function MIN, which calculates the minimum of the given input values.
The third function of the function set is a function AVG, which calculates the average
of the input values. An example of the SUM problem is shown in Figure 4.2.

4.4.2 The COUNTING OPERATORS problem

The COUNTING OPERATORS problem is simple counting problem. With the
COUNTING OPERATORS problem we will analyze the (1 + 1)-CGP algorithm
depending on the length of n input nodes. The number of function nodes in the
genotype is set to 1. The COUNTING OPERATORS problem represents a simple
maximize count problem, which has the goal to build up connections between all
input nodes and the function node. The goal of this problem is to connect all n input
nodes to the given function node. The count of different inputs which are connected
to the function node is used as the fitness value of an individual. The background
of this problem is the design of boolean circuits for which CGP is commonly used.
To design boolean circuits with CGP, it is necessary to evolve boolean functions,
such as AND or OR. In this case, a function node, which performs a certain boolean
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Figure 4.2: An example of the SUM problem which is used for the analysis. In the
example, the function node has two arity connections and adds the input
value of the second input node. The sum of this value is then given to
the output.

operation has to be connected to previous input or function nodes. An example of
the COUNTING OPERATORS problem is shown in Figure 4.3.

4.5 Analysis of the SUM problem
Theorem 3. The (1+1)-CGP using n arity function node connections with a func-
tion set F={ SUM, MIN, AVG } of size m := |F | solves SUM in expected time
Θ(n log n).
Proof. First, we prove the upper bound using multiplicative drift analysis, cf. Propo-
sition 1. Second, we prove the lower bound by estimating the probability that at least
one connection to the first node does not switch to the second after a certain number
of steps, cf. Proposition 2.

Proposition 1. The expected upper time bound for the SUM problem as defined
above is O(n log n).
Proof. Let i be the number of arity connections which have not been connected to
the second input node with the constant. The fitness of the individuals is defined
by the value of the output. The fitness value depends on the respective function of
the function node and the amount of arity connections which have been connected
to the second input. A single connection gene is chosen with probability 1/(n + 1).
Therefore, the probability to achieve a higher fitness in a certain generation is i/(n+
1). The negative drift is 0 since solutions with fewer connections to the second input
will not be accepted. We have

E[X(t) −X(t+1)|X(t)] ≥ i

n + 1 = 1
n + 1 ·X

(t).

Choosing δ = 1/(n + 1), cmin = 1, and cmax = n fulfills the requirements of Theo-
rem 2. From it we obtain

E[T ] ≤ 2
δ
· ln(1 + cmax

cmin
) = 2 · (n + 1) · ln(1 + n

1 ) = O(n log n).
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Figure 4.3: An example of the COUNTING OPERATORS problem which is used
for the analysis. In the example, the function node has five arity connec-
tions and has build up connections to all five inputs nodes. The number
of different inputs are counted by the function node which performs a
COUNT function. The COUNT function determines the number of dif-
ferent input nodes which are connected to the function node.
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For now, we did not consider the function gene. We analyze the expected time independently
from the connection genes. With probability 1/(n + 1) the function node is chosen for
mutation. If SUM is not the current function operator and at least one arity connection is
connected to the second input, then with probability 1

2 the function operator is mutated to
SUM. The probability that at least one arity connection is connected to the second input
is at least 1 − 1

2n . If SUM is the current operator, the function SUM is kept as executing
function. The reason for this is that neither the use of the MIN function nor the use of
the AVG function can achieve a higher fitness value than the SUM function. Assuming the
SUM operator has not yet been chosen, then the probability to mutate to SUM is at least

1
n+1 ·

1
2 · (1−

1
2n ), which implies an upper bound for the expected number of turns to mutate

to the SUM operator of O(n).

Proposition 2. The expected lower time bound for the SUM problem, as defined
above, is Ω(n log n).

Proof. We assume the function node is set to SUM during initialization; the expected
running time with random initialization of the function node cannot be lower. A
given connection flips with probability p := 1/(n+1). It does not flip in t steps with
probability (1 − p)t. Therefore, each of n/2 inputs switch at least once in t steps
with probability (1− (1− p)t)n/2. With p as above and t := n log n we have

(
1− (1− p)t

)n
2 =

(
1−

(
1− 1

n + 1

)n log n
)n

2

≤
(

1−
(1

e

)log n
)n

2

=
(

1− 1
n

)n· 1
2
≤
(1

e

) 1
2

< 0.61

Therefore, with constant probability c > 1− 0.61 = 0.39 at least one of n/2 inputs
does not switch after t steps.
With probability, at least 1/2 at least n/2 connections are initialized to the first
input. This follows from the binomial distribution. With the results above we obtain
the following estimation on the lower bound.

E(T ) =
∞∑

t=1
t · p(t) ≥ n log n · 1

2 · 0.39 = Ω(n log n)

4.6 Analysis of the COUNTING OPERATORS problem
Theorem 4. The (1+1)-CGP using n input nodes and F = { COUNT } solves the
COUNTING OPERATORS problems in expected time O(n2 log n).

Proof. Let i be the number of input nodes that have not been connected to the
function node of the genotype. The output of an individual is the number of inputs
which are connected to the function node. This number represents the fitness of
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the individuals. To classify the fitness of an individual more precisely, we define
Artificial Fitness Levels (A1, A2, Aj . . . , An), where j is the number of input nodes
which have been connected to the function node. We observe that in level Aj , at
least i + 1 connections share another connection to the same input node. A higher
artificial fitness level is achieved, if and only if such a connection is mutated to an
unconnected input. The probability to mutate to an unconnected input is i/(n− 1).
In level An, all n input connections have been connected to the function node, and
the COUNTING OPERATORS problem is solved. We again use multiplicative drift
analysis to prove the upper bound. The negative drift is 0 since solutions with more
unconnected nodes will not be accepted. We have

E[X(t) −X(t+1)|X(t)] ≥ i + 1
n
· i

n− 1

= i + 1
n(n− 1) · i ≥

2
n2 · i = 2

n2 ·X
(t).

Choosing δ = 2/n2, cmin = 1, and cmax = n− 1 fulfills the requirements of Theorem
2. From it we obtain

E[T ] ≤ 2
δ
· ln(1 + cmax

cmin
) = n2 · ln(1 + n− 1

1 ) = O(n2 log n).

Theorem 5. The (1+1)-CGP using n input nodes and F = { COUNT } solves the
COUNTING OPERATORS problem in expected time Ω(n2).

Proof. The lower bound of Ω(n2) is obvious. The probability to start in fitness level
An−1 is at most 1/2, if n > 1. The probability to proceed from fitness level An−1 to
An is 2/n · 1/n, therefore the expected time is Ω(n2).

4.7 Discussion
The results of our time complexity analysis show that CGP can solve the SUM prob-
lem in expected time Θ(n log n) . For the COUNTING OPERATORS problem, we
proved an upper bound O(n2 log n) and a lower bound Ω(n2). If a function is part
of the function set, which cannot lead to the correct solution, CGP can efficiently
solve the SUM problem. Compared to the conventional tree representation of GP,
the graph-based representation enables multiple connections between former nodes
and the inputs. Consequently, the probabilities that beneficial mutations are per-
formed, and the algorithm proceeds toward the global optimum can be quite low.
Therefore, the result for the SUM problem, when the function set includes functions
that do not contribute to the evolutionary search, is quite interesting. Regarding
the analysis of Mambrini et al. [88] that found that if an extra function was added
to the function set, the algorithms require at least exponential time to evolve the
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simple Boolean problems, our result sheds more light on the behavior of CGP when
such function sets are in use on the SUM problem. However, we want to point out
that our finding cannot be generalized yet as we only analyzed one problem on this
behavior. According to the findings of Mambrini et al. [88], it may be possible that
such problems also exist in CGP.

One point which should be discussed is the use of the single active gene mutation
strategy. This strategy has been found as more beneficial for the search perfor-
mance of CGP as the use of classical mutation probabilities on a practical level.
However, flipping merely one gene may reduce the probability that a mutation is
performed, which hopefully processes the algorithm toward the global optimum.
Moreover, the use of the single active gene mutation strategy has only been inves-
tigated and compared on an experimental level. Therefore, we think a theoretical
analysis of a (1 + 1)-CGP algorithm with classical mutation probabilities is needed
and should be considered in future work.

Another point which should be discussed is the fact that both test problems only
include one function node. As a first step foward, we focused on the behavior and
efficiency of the point mutation operator. Especially in terms of building and recon-
necting connections between input nodes and arity connection genes. This behavior
has been considered highly important for the search performance of CGP but has
never been investigated on a theoretical level. For the COUNTING OPERATORS
problem, we proved a higher upper bound as for the SUM problem. The results
indicate that the expected time of CGP can significantly increase when the given
problem enables a high number of combinatorial possibilities.

The last point which should be discussed is the complexity of the test problems itself.
From a practical point of view, these problems can be considered as toy problems
that have the limitation of being very simple and with characteristics of regularity
that makes them rather different from any real-life application or practical problem.

Furthermore, compared to the state of theoretical knowledge in tree-based GP, our
analysis with the introduced test problems is quite simple. For instance, Mambrini et
al. also investigated incomplete training sets. Nevertheless, as a first step forward, we
focused more on the development of suitable test problems and studied the feasibility
of runtime complexity analysis in CGP. The complexity of our problem can easily be
increased for further analyses. For instance, the COUNTING OPERATORS prob-
lem can be extended to a COUNTING NEGATED OPERATORS problem. To solve
this problem, two functions (COUNT & NOT) are necessary, and at least two func-
tion nodes are needed to find the correct solution. Therefore, the analysis of the
COUNTING NEGATED OPERATORS problem would be a natural next step.
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4.8 Conclusion
A first time complexity analysis for CGP has been presented. We introduced a simple
mathematical test problem and a simple Boolean test problem for CGP, which can
be used for the drift analysis of the (1 + 1)-CGP algorithm. Our analysis has shown
that CGP can solve the mathematical SUM problem in time Θ(n log n). Furthermore,
adding functions to the function set, which do not contribute to the evolution of the
correct solution does not degrade the time complexity of the (1 + 1)-CGP for this
problem. However, for the COUNTING OPERATORS problem, we proved an upper
bound of O(n2 log n) and a lower bound of Ω(n2). Our result clearly shows that even
a simple Boolean problem can lead to a significant level of complexity in CGP, which
makes it difficult to find the ideal solution in polynomial time.
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5 On The 1+4 Dogma of CGP

5.1 Introduction
The first systematic investigation on an efficient optimization scheme for CGP was
done by Miller 1999 in [97]. Miller studied the behavior of a canonical EA with
a genotypic uniform recombination operator and a (1 + λ) selection scheme. He
configured CGP as a square grid of functional nodes with the maximal length of feed-
forward wires of two. In 1999, it was already known that a “neutral selection” scheme
that is preferring offspring individuals for propagating into the next generation if
they are on par or better than the parent individual is highly beneficial for CGP.
In a series of experiments, Miller observed that the evolution of digital circuits
using CGP can be solved better by local search-like approaches employing “neutral
selection” than by the canonical EA deployed by Miller. Miller also concluded that
recombination only marginally contributes to the search performance of CGP.
In this chapter, we address the question, whether the popular choice of (1 + 4)
selection scheme in combination with the single-line CGP genotype can be gener-
alized. For this, we rely on an unbiased parameter tuning method to identify (i)
well-performing parameterizations of CGP and (ii) efficient optimization schemes.
While initially CGP’s selection scheme has often been labeled as a (1+4) Evolution-
ary Strategy (ES) in the CGP literature, we would like to use a different and a more
precise notion in this chapter. ES is a well-known method for real-valued numeri-
cal optimization incorporating auto-adaptation mechanisms. CGP borrows from the
conventional ES only the selection scheme, i.e., using µ parent individuals to pro-
duce λ offspring individuals and select the best individuals for the next generation
deterministically. While the original (1+4) selection scheme could be seen as a very
close derivative of the regular Hill Climbing (HC), i.e., one could use the “(1+4) HC”
notion, in this chapter, we are also investigating general (µ + λ) selection schemes.
These schemes are not simple single-trajectory style algorithms, as realized by the
conventional HC, and we, therefore, switch to the more general “(µ + λ) CGP”
notion to label the search strategy.
Discrete and combinatorial search spaces usually lack understanding for their topo-
logical properties and the notion of a “gradient”, which would allow using efficient
techniques common to discrete and continuous search spaces. Furthermore, informa-
tion drift among individuals cannot be implemented easily, rendering global meth-
ods relying on a recombination operator infeasible. In consequence, trajectory-based
local-search techniques are typically used to solve combinatorial problems.
An incomplete illustration exemplary of some famous trajectory-based metaheuristic
families regarding their algorithmic principles for escaping local optima is presented
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Figure 5.1: An incomplete exemplary illustration of some popular trajectory-based
metaheuristic families regarding their algorithmic principles for escaping
local optima.

in Figure 5.1. On the left-hand side of Figure 5.1, HC is presented as the most
straightforward method that implements no or only rudimentary measures, such
as neutral drift. HC accepts no solutions during the search that are worse than the
best solution found so far. When relaxing this strict rule, Iterated Local Search (ILS)
and variants of the Variable Neighbourhood Search implement search restart from a
solution selected randomly in the proximity of a solution found so far. The Metropolis
Algorithms (MA) and Simulated Annealing (SA) are extending this idea by regularly
accepting worse solutions at some probability in the hope of reaching remote search
spaces goes one step further and deterministically receives the best solution in the
neighborhood of current solution. However, the refinement of these techniques for
escaping local optima not necessarily results in faster convergence rates. In previous
work, we could observe HC excelling for small optimization functions, while for
larger goal functions, more elaborate techniques, such as SA, are converging better.
A reason for this can be that the selection schemes of SA, Tabu Search (TS). . .
allows the algorithms in the final search stages to escape from equipotential fitness
plateaus more effectively.

5.2 Computational Effort
The computational effort (CE) is a measure introduced by Koza in [67]. The CE
statistic is used to report the amount of computational effort to solve a problem with
a 99% probability with a GP System. We use the minimum of the computational
effort, as shown in Equation (5.5). This methodology has been used by Koza to
describe experiments on several problems.
To calculate this measure, we first have to define a cumulative probability of success
P (N, l) which represents the number of runs (Ns(l)) that have been successful after
l generations in relation to the number of totals runs Rtotal by using N individuals
in each run.

P (N, l) := Ns(l)
Rtotal

. (5.1)
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Since we hope that our GP System can solve the problem with 99% probability,
we have to determine the number of runs that are required to find the solution.
However, because of premature convergence, a 99% probability of success in every
run may never occur. If R runs are independent, the odds of failure for all runs can
be calculated by

Pall fail := (1− P (N, l))R (5.2)

and with odds of failure, we can compute the number of independent runs R(z),
which are required to get a solution with a confidence interval of z where z is often
chosen as a probability of 99%.

R(z) :=
⌈ log(1− z)

log(1− P (N, l))

⌉
(5.3)

The CE statistic I(N, z, l) describes the number of evaluations that have to be
performed to solve a problem to a proportion of z. This is done by multiplying the
total number of individuals processed at the end of generation number l to R(z).

I(N, z, l) := (N · l ·R(z)) (5.4)

Koza defined the statistic overall generation numbers l to find the minimum com-
putational effort Imin(N, z) to solve a given problem. For the determination of
Imin(N, z) we take the minimum of all sampled individuals I(N, z, l) as shown in
Equation (5.5).

Imin(N, z) := arg min
l

(N · l ·R(z)) (5.5)

5.3 Common Parametrizations of Cartesian Genetic
Programming

The origins of knowledge about the efficient use of CGP can be found in an empirical
study by Miller [97]. Four Boolean functions were used to investigate the effectiveness
of CGP with different parameters which are highly relevant for the use of CGP. The
empirical study focused on the investigation of different settings for the geometries
of the CGP representation and the population size. A genetic algorithm was used
for CGP with a uniform crossover operator and point mutation. Miller investigated
geometries of 4 x 4 up to 30x30. For investigating the population size, a range with a
minimum of 4 and a maximum of 50 individuals was used for each geometry setting.
Related to the population size, it was found that small populations perform most
effectively on the tested functions, which was one of the primary research questions
of the study. Moreover, a population size of 3 up to 6 individuals performed best on
the tested problems whereby the setting the of 4 individuals performed best most
often in this range. However, Miller showed that when the maximum number of
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allowed nodes was tiny, the dependence of computational effort with population size
is reversed. Another key finding of the study was the fact that recombination does
only seem to contribute marginally to the search performance of the evolutionary
search.

Yu and Miller [166] continued the use of very low population sizes with a (1+4) CGP
by the study of neutrality in the context of CGP when applied to Boolean function
learning. The study on Even-Parity benchmarks outlined a positive relationship
between neutrality and evolvability, and the authors concluded that neutrality im-
proves evolvability.

In later work, Yu and Miller [167] applied the concept of neutrality to four needle-in-
a-haystack even-parity benchmarks. The combination of neutrality and the chosen
(1+λ) CGP has been found as very successful in solving these complex functions.
Furthermore, the configuration also included a high level of genotypic redundancy
of about 100 function nodes, which has been found successful for solving the four
needle-in-a-haystack functions.

CGP has been successfully extended for the Automatic Definition and reuse of Func-
tions (ADF) by Walker et al. [156] and Kaufmann et al. [61], which is known as Em-
bedded Cartesian Genetic Programming (ECGP). For the ECGP, Walker used (1+4)
CGP. Kaufmann et al. adopted module creation for cone- and age-based recombi-
nation schemes elaborated on a Genetic Algorithm (GA) with medium population
sizes and compared it to (1+4) CGP. The GA with cone-based crossover showed
good performances for functions with repetitive inner patterns, such as arithmetic
operations, while the age-based recombination excelled for functions with more ran-
domized internal structures, such as pattern matching kernels.

Miller et al. investigated the role of genotypic length and mutation rates in CGP
with more detailed experiments in [99]. The best performances were identified for
large genotypes and low mutation rates. However, the study only included a small
set of Boolean functions.

Later work focused on a more detailed investigation of the neutral genetic drift with
the use of CGP. The authors used (1+4) CGP, which we assume as the best setting
for the experiments.

Our survey on the most significant work , which contributed to the understanding
and development of CGP shows that (1 + 4)-CGP seems to be a popular choice.
Moreover on a set of boolean function problems the (1 + 4)-CGP performed best
when compared to other settings of the λ . However, the results from previous work
open the question if the use of the (1+4)-CGP with a extremely large genotype can
be generalized. Furthermore, it is not answered yet, if small population sizes are the
right choice for CGP in general since former experiments only focused on boolean
function problems. This motivates our research.
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Benchmarks Functional set
(i, i, 1)-add, (i, i)-mul a ∧ b, a ∧ b̄, ā ∧ b, a⊕ b, a|b
even parity a ∧ b, a ∧ b̄, ā ∧ b, a|b, a|b̄, ā|b
Koza +, −, ∗, /, sin, cos, ln(|n|), en

Keijzer +, ∗, n−1, −n ,
√

n

Table 5.1: Functional set of all benchmarks.

5.4 Experimental Setup

The basic methodology of this work is that we first define a set of goal functions
f1, f2 . . . and a set of optimization algorithms a1, a2 . . .. Then, we execute for each
tuple (fi, aj) an automatic parameter-tuning tool. The resulting configurations are
evaluated at the end in separate experiments to derive their convergence behaviors
and for comparison. In this section, we are describing the selected benchmarks,
optimization algorithms, and the parameter-tuning setup.

5.4.1 Boolean Benchmarks

We evaluate CGP parameterizations for pure combinatorial and partially continuous
sets of goal functions.
Boolean circuits:
The first class of benchmark functions consists of the Boolean adder, multiplier,
and even parity functions. An (n, n, 1) adder computes the n + 1-bit sum of two
n-bit binary encoded numbers and an carry-in wire. An (n, n) multiplier computes
the 2n-bit binary-encoded product of two n-bit binary-encoded numbers. An n-bit
even parity circuit computes an output bit such that when counting all 1-bits in the
inputs and outputs, their sum is even. The set of 2-input Boolean functions that
may be used as functional nodes in CGP genotypes is presented in the first rows
of Table 5.1. An experiment is stopped if a perfect solution has been found, or the
maximal number of fitness evaluations has been exceeded.

5.4.2 Regression Benchmarks

The second set of benchmark consists of twelve symbolic regression functions (Koza-
2, -3, Nguyen-4 . . . -10, Keijzer-4, -6, Pagie-1) from the work of McDermott et al. [90].
The functions are shown in Table 5.2. A training data set U[a, b, c] in Table 5.2
consists of c uniformly sampled from an interval [a, b]. E[a, b, c] is defined as a set
of c equidistantly sampled numbers in the same interval. For the Keijzer-6 problem
the upper bound of the summation x was calculated as the floor of the current
data point. The cost function is defined as the sum of absolute differences between
functional values of the reference and evolved function at the data points of the
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training set. An experiment is terminated if the cost function reaches a value below
or equals to 0.01, or the maximal number of fitness evaluations has been exceeded.
We omit to investigate the Koza-1 benchmark (“quartic”) and resort to Keijzer-6,
Nguyen-7 and Pagie-1, which have been proposed as a replacement for Koza-1 by
White et al. [160]. The functional sets for Koza and Keijzer functions are presented
in the last two rows of Table 5.1.

Table 5.2: Symbolic regression benchmarks
Goal function Objective Function Vars Training Set
Koza-2 x5 − 2x3 + x 1 U[-1,1,20]
Koza-3 x6 − 2x4 + x2 1 U[-1,1,20]
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U[-1,1,20]
Nguyen-5 sin(x2) cos(x) − 1 1 U[-1,1,20]
Nguyen-6 sin(x) + sin(x + x2) 1 U[-1,1,20]
Nguyen-7 ln(x + 1) + ln(x2 + 1) 1 U[0,2,20]
Nguyen-8

√
x 1 U[0,4,20]

Nguyen-9 sin(x2) + sin(y2) 2 U[-1,1,20]
Nguyen-10 2 ∗ sin(x) ∗ cos(x) 2 U[0,2,20]
Keijzer-4 x3 ∗ e−1 ∗ cos(x) ∗ sin(x)(sin2(x) ∗ cos(x) − 1) 1 E[0,10,0.05]
Keijzer-6

∑x

i=1
1
i

1 E[1,50,1]
Pagie-1 1/(1 + x−4) + 1/(1 + y−4) 2 E[-5,5,0.4]

5.4.3 Optimization Algorithms

As the baseline method, we select the (1+4) CGP, which is used in related work
predominantly. The second and third algorithms are (1 + λ) CGP and (µ + λ)
CGP, where the number of offspring individuals λ and the number of parents µ are
subject to optimization. For all CGP schemes, “neutral selection” has been realized.
For optimizing Boolean circuits, we have additionally selected Simulated Annealing
(SA) [117, 63, 49, 153] with the following cooling strategy:

A←
(Tstart − Tend)(N + 1)

N
; B ← Tstart −A; Tt ←

A

t + 1 + B.

Tstart is the start temperature, Tstop is the stop temparature. N is the maximum
number of iterations and t is the iteration index. Consequently, Tt is the temperature
in the t-th iteration. In our experiments, we have evaluated eight temperature control
strategies, presented in Table 5.3, and selected the third cooling scheme T

(3)
t for

further experiments, as it showed the best results for Boolean functions. Random
sampling and random walk have also been investigated in preliminary experiments
and sorted out because of inferior results. A visualization of the temperature control
strategy T

(3)
t is shown in Figure 5.2.
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Table 5.3: SA temperature control strategies. T0, TN , and Tt are the start, terminal,
and current temperatures. N is the maximal number of SA iterations.

T
(1)
t ← T0 − T0−TN

N

T
(2)
t ← T0

(
Tn
T0

) t
N

A ←
(Tstart−Tend)(N+1)

N
B ← Tstart −A

T
(3)
t ← A

t+1 + B

T
(4)
t ← 0.5(T0 − TN )(1 + cos(πt

N )) + TN

T
(5)
t ← 0.5(T0 − TN )(1− tanh(10t

N − 5)) + TN

T
(6)
t ← T0−TN

cosh( 10t
N

) + TN

T
(7)
t ← T0 exp(− 1

N ln( T0
TN

)t)
T

(8)
t ← T0 exp(− 1

N2 ln( T0
TN

)t2)
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Figure 5.2: Visualization of temperature control strategy T
(3)
t with Ta = 100000,

Te = 1 and N = 10000.
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5.4.4 Automatic Parameter Tuning

To detect suitable parameterizations, we are using the iRace package [83]. We ported
it to the torq batch system and parallelized the computations on the PC2 cluster at
the Paderborn University. For Boolean benchmarks iRace v2.1 and regression bench-
marks iRace v0.7 were used. iRace was configured to execute 2000 trials for each
tested algorithm-benchmark pair. Each trial consisted of multiple candidate algo-
rithm runs. Boolean benchmarks returned the median number of fitness evaluations
required to evolve a correct solution over three runs or the maximal positive integer
in case the evolution failed. Regression benchmarks reported the median fitness over
seven runs.
The parameter space explored by iRace is presented in Table 5.4. We extended the
definition range of the number of columns of the (1 + 4)-CGP to 2000 for the (3, 3)-
multiply and (8, 9)-parity benchmark after observing that iRace always evolving
configurations with a maximal number of columns allowed so far (300). For the
remaining experiments, the maximal number of columns remained unchanged. iRace
usually evolves multiple good-performing configurations for an algorithm-benchmark
pair. To verify the results of iRace, we have computed for each configuration, the
median performance in 100 runs. For small benchmarks, as the (2,2,1)-add and
(2,2)-mul, 10000 runs have been executed. We have then selected for each algorithm-
benchmark pair the best performing configuration and report it here. For the tuning
of the SA parameters, we defined the rule that the starting temperature Tstart
had to be smaller than the stopping temperator Tstop. Otherwise, the setting was
rejected.

5.5 Results

The results of our experiments are presented in Table 5.5 and Table 5.6. Before
going into details, we would like to shortly describe why we are reporting median
fitness values instead of averages. For goal functions with a “correctness” property,
i.e. Boolean circuits or regression functions with a functional quality requirement, an
optimization algorithm may reach the maximal number of fitness evaluations without
finding a valid solution. Computing the average number of function evaluations for
finding a solution with the desired properties is, however, valid only if, in all runs, the
goal fitness has been reached. Additionally, one must test first, whether the numbers
are normally distributed. To avoid these issues, we report the median number of
fitness evaluations for evolving a solution with a desired functional quality. For
better interpretability, we also use the CE metric at z = 99%. It is widely criticized
but more useful for us than significance tests and effect measure sizes, because CE
allows for a more direct comparison of differences in algorithm performances.
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5.5 Results

Table 5.4: Parameter space explored by iRace.
Boolean benchmarks, CGP

rows 1, 2, 3, 4, 6, 8, 10, 14, 20, 30, 50, 100
mut.[%] (0.1, 7.0)
l ∞
µ, λ 1, 2, 3, 4, 8, 16, 32
columns 4, 6, 8, 10, 15, 20, 30, 50, 70, 100, 150, 200, 300

Boolean benchmarks, (1+4) CGP, (3, 3)-mul, 8, 9-parity
columns 4, 6, 8, 10, 15, 20, 30, 50, 70, 100, 150, 200, 300,

400, 500, 600, 700, 800, 1000, 1500, 2000

Boolean benchmarks, SA
Tstart (0.001, 10000)
Tstop (0.0000001, 1.0)

Regression benchmarks, CGP
rows 1, 2, 3, 4, 6, 8, 10, 14, 20, 30, 50, 100
columns 4, 6, 8, 10, 15, 20, 30, 50, 70, 100, 150, 200, 300
µ 1, 2, 3, 4, 8, 16, 18, 22, 32
λ 2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,

4096, 8192
mut.[%] 1, 2, 5, 7, 10, 15, 20

Regression benchmarks, SA
Tstart (0.001, 10000)
Tstop (0.0000001, 1.0)

5.5.1 Evolution of Boolean Circuits

In Table 5.5, results for the Boolean benchmarks are presented. The table is subdi-
vided vertically by benchmarks. In the “evolved parameters” columns, the CGP and
algorithmic parameters found by iRace are presented. Dashed cells indicate that the
according parameters are either irrelevant or fixed and have not been optimized by
iRace.
The first observation that can be made is that the baseline (1+4) CGP on a single-
line CGP is never a clear winner regarding the median number of fitness evaluations
when evolving functionally correct Boolean circuits (c.f. Table 5.5). Except for the
smallest benchmarks, the (2, 2, 1)-adder and the (2, 2)-multiplier, and for the 8-
parity benchmark, SA is always a clear winner. For the 8-parity benchmark SA is
passed by (µ+λ) CGP only by roughly 2%. For more extensive benchmarks, like the
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5 On The 1+4 Dogma of CGP

(3, 3, 1)- and (4, 4, 1)-adder, (3, 3)-multiplier, and the parity benchmarks, the best
performing algorithm is 1.3 to 3 times faster than the baseline (1+4) CGP. When
looking at the CE metric, SA is the clear winner for all but the smallest and the
(3, 3, 1)-adder benchmarks. Sometimes, the best performing algorithm regarding the
median number of fitness evaluations is not the winner regarding the CE. However,
the differences in medians and CE values between the winner algorithm regarding
the median and the winner algorithm regarding the CE are small to marginal.
Although we have shown for Boolean benchmarks that the conventional way of
parameterizing CGP can always be outperformed, we would like to emphasize the
following fact: Neither the best performing algorithm regarding the median nor the
best algorithm regarding the CE metric can be in general considered dominant
when it comes to the computational complexity of optimization and with it, time.
The reason for this is the inaccurate assumption that the computational complexity
of a fitness evaluation is constant among all CGP parameterizations. For example,
(µ+λ) CGP is the best-performing algorithm regarding the median and CE metrics
for the (2, 2, 1)-adder. However, despite a worse median and CE values, (1+4) CGP
operating on a single-line CGP and SA evolve functionally correct adders in a much
shorter time. This is because the genotype sizes found by iRace are much smaller
for the two algorithms than for the (µ + λ) CGP. But even with identical CGP
geometries, the functional evaluation complexity can vary greatly, as the number of
active genes that are processed by the fitness evaluation procedure can be different.
With this observation in mind, we will investigate in future work how the algorithms
compete when optimizing for absolute normalized CPU time on single-core and
parallel architectures.
The second observation is that when tuning for λ or for λ and µ, small values are
identified by iRace as beneficial. With this, HC and its close derivatives seem to
work better for CGP when optimizing Boolean circuits.
In related work [99], it was shown that the efficiency of (1+4) CGP on single-line
CGP increases with rising nc. This can also be observed in Table 5.5. However,
the efficiency of CGP can be improved using rectangular grids and slightly different
(µ + λ) CGP schemes as well as SA. This is our third observation for the evolution
of Boolean functions.

5.5.2 Evolution of Symbolic Regression Function

For symbolic expression, we have skipped experiments with SA, as we must investi-
gate more cooling schemes to make SA competitive.
The first observation of Table 5.6 is that the regular (1+4) CGP can always be out-
performed regarding approximation accuracy except for the Nguyen-8 benchmark.
The second observation is that (µ + λ) CGP is very successful. Except for three
benchmarks, it is constantly better than the other algorithms. For the symbolic re-
gression, we cannot observe increased efficiency for single-line CGP when increasing
nc. However, and this is our next observation, the number of offspring individuals is
usually very large. This is similar to regular GP, where often large populations are
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used.
The last two findings in Table 5.6 are: Similar to Boolean functions, rectangular
CGP geometries are more efficient than single-line CGP and successful mutation
rates are rather high, which is in contrast to prior findings suggesting to set the
mutation rate as low as possible.

5.6 Conclusion
This chapter described an empirical study investigating if the usual way CGP is
parametrized in related work is actually the best choice. The results are that, indeed,
the single-line CGP with an (1 + 4) CGP scheme is good for Boolean benchmarks
but that much better results can be achieved for Boolean and symbolic regression
functions when using rectangular CGP grids and differently parametrized (µ + λ)
CGP schemes as well as SA. Furthermore, we could observe that similar to GP,
CGP greatly benefits from large exploration rates, i.e. large offspring populations
and high mutation rates, when evolving symbolic regression functions. This behavior
is surprising and requires further investigation. It is especially interesting if the
previous results on inner CGP mechanisms, like “neutrality”, are still valid.
The following recommendations can be drawn from our experiments.

• For simple Boolean functions the (1+1)-CGP with 30 to 50 rows, and 100 to
200 columns perform best.

• For complex Boolean functions, SA applied on CGP with 3 to 10 rows, and
30 to 300 columns perform best. Increasing the number of rows to 100 might
help in the case of heavy functions, such as multiplication.

• For Boolean functions, the best-observed mutation rate interval is [0.1, 1.6]%.

• For continuous functions, CGP with 3 to 20 rows and 80 to 200 columns
performs best.

• For continuous functions CGP with µ = 2 . . . 22 and λ = 2048 . . . 4096 performs
best. However, it is worth investigating λ = 8 . . . 32 in cases where large λ
values do not result in fast convergence.

• For continuous functions, the mutation rate may vary from 1% to 15%, with
higher mutation rates being more successful for larger genotypes.

Finally we can conclude, that we have demonstrated that the (1+4)-CGP is not the
best choice for a set of popular GP benchmark problems in two different problem
domains. Our experiments clearly show that the choice of the (1+4)-CGP is inferior
to other (µ + λ) settings.

79
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6.1 Introduction
This chapter introduces an adaptive strategy for real-valued CGP, which is based on
the population statistics of modern GP systems. Moreover, the chapter shows how
these statistics can be used to maintain population diversity. Our experiments show
that our strategy improves the convergence rate. The new strategy has been tested
on several regression problems. Our strategy benefits from locating suitable points
in the evolutionary process to adapt the probabilities of the genetic operators. As a
result, population diversity is increased, which may lead to better convergence. On
harder problems, the new strategy also benefits from adapting the selection pressure.
To locate opportunities for adaption, a new metric for CGP is introduced, which
measures the healthy population diversity.

6.2 Related Work
For the real-valued representation of CGP, Clegg et al. [13] demonstrated the prob-
lem of low convergence in real-valued CGP on a regression problem and introduced
a variable crossover. On the issue of algorithm stagnation of EAs, previous research
in genetic algorithms [46] showed that adaptive genetic operators and selection,
which are using population statistics, are helpful to maintain population diversity.
Many adaptive strategies benefit from adapting the probabilities of crossover and
mutation [17, 134, 143]. Later, McGinley et al. [91] proposed an adaptive genetic
algorithm that also uses an adaptive selection method by measuring the healthy
population diversity. Clegg et al. introduced a variable crossover operator for CGP,
though it merely performs a change to mutation only CGP by gradually decreas-
ing the crossover probability.The variable crossover is based on their observation of
regression problems and does not solve the problem itself.

6.3 Population Statistics in CGP
In CGP, two types of population statistics can be used. Information about the pop-
ulation can be received by exploring the fitness landscape and the phenotype space.
On the problem of premature convergence, many adaptive approaches react on a
homogeneous fitness landscape by increasing the influence of the mutation operator
to increase population diversity. Besides the classical approach of using population
statistics by exploring the fitness landscape, Meier et al. explored the phenotype
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space for the forking operator [93], a genetic operator which replaces solutions which
have a high phenotypic frequency within the population with genotypic variations
to achieve more population diversity. The phenotype of every individual can be ex-
pressed as a string representation called fingerprint. In CGP, different genotypes can
refer to the same phenotype. This property is an example of neutrality in CGP and
was outlined by Miller and Thomson [100]. The fingerprint of a phenotype is used
to determine its frequency in the population. To accomplish this, the textual rep-
resentation of the phenotype can be used as the fingerprint. The number of unique
phenotypes can be used to classify the diversity of the population. In this way, ho-
mogeneous areas in the solution space can be detected. This can be more effective
than merely exploring the fitness landscape.

6.4 Adaption of Genetic Operators

Evolutionary algorithms handle with two primary abilities — exploitation of the
genetic material in the population and exploration of the search space.In the field of
EAs, exploitation is mostly done by crossover, and mutation is used for exploration.
Exploitation and exploration can be controlled by the probabilities of crossover and
mutation.Let crossover probability be the probability that the crossover occurs when
two parents have been selected; otherwise, one of the parents is passed through by
random. Let mutation probability the probability that a gene of the genotype is mu-
tated (replaced by a random number). Finding the right probabilities of the genetic
operators is the key to an efficient search. Running the algorithm with inappropriate
probabilities can lead to premature convergence, algorithm stagnation or excessive
diversity. During the evolutionary process, the conditions are changing from one
generation to the next so that the probabilities can be adapted to the current cir-
cumstances. Previous research showed that increasing crossover probability at high
population diversity and increased mutation probability at low diversity has a ben-
eficial effect [91]. The key to success for an adaptive strategy is the estimation of
the right moments for adapting the conditions for convergence toward the global
optimum or in contrast to explore the solution space further. Besides the adaption
of the probabilities of the genetic operators, controlling selection pressure has also
shown a beneficial effect [91].

6.5 Introducing the New Strategy

o0 = * (- 1.0 (* 1.0 (* x x)))
(- (* 1.0 (* x x)) (* (* x x) (* x x)))

Listing 6.1: Textual representation of an phenotype of fitting the function x6−2x4 +
x2 "
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6.5.1 Measuring Phenotype Space Diversity

Measuring the diversity of the phenotype space is the core of our adaptive strategy.
Where other strategies measure the diversity only in genotype space, our strategy
also benefits from measuring the diversity in phenotype space. Let S be the phe-
notype space. Individual s ∈ S with s = Σ∗ over the alphabet Σ is the textual
representation of a certain phenotype. An example of a textual representation of s is
shown in Listing 6.1. Let N be the number of individuals and S∗ ⊂ S the subset of
phenotypes described by all individuals. Phenotype space diversity θ can be split into
two terms, standard phenotype diversity θs and healthy phenotype diversity θh. We
receive information about the diversity of the whole phenotype space from θs, where
θh refers to the ratio of healthy phenotypes in the population. A healthy phenotype
is of high fitness and unique in the phenotype space, which is of high value for the
evolutionary process. To determine θs, we define a dictionary M : S → N0, which
shares all fingerprints of the phenotype space. As the value of M(j), the frequency
of a phenotype in the population is stored. The value of θs is calculated by the size
of the dictionary in ratio to the number of individuals, as shown in Equation (6.4).
When every individual refers to one phenotype, the dictionary size is equal to the
population size, which is the best standard diversity in phenotype space. For θh, we
first have to determine the phenotype health of every individual in the population.
For calculating the phenotype health, the fitness rate F Rate (Equation (6.2)) of an
individual and the frequency of the phenotype in relation to the diversity of the pop-
ulation fRate (Equation (6.1)) have to be determined. In Equation (6.1), fRate(j)
stands for the frequency rate of j-th phenotype which is stored in the dictionary M .
In Equation (6.2) F (i) stands for the fitness value of i-th individual in the popula-
tion. Furthermore, F Worst and F Best represent the best and worst fitness value in
the population. The frequency rate fRate is multiplied with an amplifier α as shown
in Equation (6.3) to amplify lower frequencies and is limited to a maximum with a
value of 1. In the discussion section, we advise the parametrization of the amplifier,
which is based on our experiments. Finally, phenotype health can be determined as
the product of the fitness rate and negated frequency rate, since lower frequency
rates are better. The sum of the phenotype health values over the population can be
used to describe θh and is normalized by N , consider Equation (6.5). To calculate

83



6 A Self-adaptive Strategy for CGP

θ, we average θs and θh as shown in Equation (6.6).

fRate(j) := M(j)
|M |

, for all j ≤ |S∗| (6.1)

F Rate(i) := F (i)− F Worst

F Best − F Worst , for all i ≤ N (6.2)

w(j) := min(α · fRate(j), 1), for all j ≤ |S∗|, α ∈ N (6.3)

θs := |M |
N

(6.4)

θh := 1
N

N∑
i=1

(1− w(i)) · F Rate(i), for all i ≤ N (6.5)

θ := θs + θh

2 (6.6)

6.5.2 Adapting Crossover Probability
With information about the phenotype space diversity, the crossover probability
can be adapted to the current conditions. When θ is high, the population consists
of healthy phenotypes and less homogeneous areas. The diversity of the individu-
als is high, which is a good point to convert the population. In this case-crossover
probability is increasing to progress the population toward the global optima. Oth-
erwise, when θ is low, we have to handle with more homogeneous areas where a high
crossover probability can convert the population to a local optimum. In this case,
crossover probability is reduced to increase diversity through mutation. A lower and
upper limit limits the crossover probability within the range [CL,CH ] ∈ R where
0 ≤ CL < CH ≤ 1. This prevents crossover probability from exceeding boundaries.
Equation (6.7) shows the adaption of the crossover probability. The limits CL and
CH are mostly set empirically. In CGP, the crossover probability often varies between
the value CL = 0.5 and CH = 1.

pCross = θ · (CH − CL) + CL (6.7)

6.5.3 Adapting Mutation Probability
In contrast, to adapt a global crossover probability, mutation probability is adapted
locally. Since mutation has a strong effect on the phenotype in CGP, a global adap-
tive mutation is not recommended. By increasing the mutation probability for all
phenotypes, good solutions with high fitness would not be protected by altering
their genotype through mutation. Also, the population is becoming too homogeneous
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when the mutation probability is too low. The mutation probability is adapted di-
rectly in phenotype space based on the health of the phenotype. Healthy phenotypes
are protected by a lower probability where unhealthy phenotype will be mutated with
higher probability. As a result, diversity is increased in areas where the population
is too homogeneous. Its frequency can determine the need for a higher mutation rate
for a phenotype. The mutation probability is calculated as shown in Equation (6.8)
with the limits ML and MH. Since each individual has its mutation probability,
the probabilities of two individuals are averaged if crossover occurs. Like the limits
of the crossover probability, ML and MH are mostly set empirically. In GGP, the
mutation probability often varies between a value of 0.01 and 0.3.

pMut(i) = w(i) · (MH −ML) + ML (6.8)

6.5.4 Adapting Selection Pressure
On more complex problems we also adapt the selection pressure in relation to θh. We
adapt the selection pressure by adjusting the tournament size for the tournament
selection method since we use this method in combination with our adaptive strategy.
When θh is high, the selection pressure is increased to select individuals with high
fitness. At low θh, selection pressure is decreased, to give lower fitting individuals a
greater chance of being selected. Normally we handle the principle of survival of the
fittest, but in situations with a homogeneous population, higher selection pressure
is not beneficial. By selecting lower fit individuals who are of higher diversity, θh is
increased. As we use tournament selection, the tournament size is adapted, as shown
in Equation (6.9). Like in traditional GP, we tend to use higher selection pressure.
The limits T H and T L are set empirically, as we show in the next section.

T Size = θs(T H − T L) + T L, T Size ∈ N (6.9)

6.6 Results
In this section, we compare our new strategy with the traditional real-valued CGP [13]
on four different regression problems. We perform two different types of experiments.
The first experiment is similar to the experiments of Meier et al. [93] with a fixed
tournament size to evaluate the use of adaptive crossover and mutation. For the first
experiment we chose the regression problems f1 and f2. The second experiment was
performed on the more complex regression problems f3 and f4. For this experiment
we also use adaptive selection pressure. Let D =

{
xp
}P

p=1, xp ∈ [−1, 1] be a training
dataset of P random points and find(xp) the value of an evaluated individual and
fref(xp) the true function value. Let

C :=
P∑

p=1
|find(xp)− fref(xp)|
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be the cost function. When the difference of all absolute values becomes less than
0.01, the algorithm is classified as converged. To evaluate the results, we use a
methodology based on the work of Meier et al. [93] and Clegg et al. [13], which
includes the average number of generations until convergence and the computational
effort. For calculating the computational effort, we take the minimum computational
effort (Min. CE), as shown in Equation (5.5). For each average number, e.g. 89±216,
the first number refers to the average value and the second to the standard deviation.
Furthermore, we classify every run, which exceeds 1000 generations as a slow run and
summarized the number of slow runs for each problem. We perform 1000 independent
runs with different random seeds on every regression problem and use the Mann-
Whitney-U-Test to classify the significance of the results. The average number of
generations is denoted with a∗ if the significance level is P < 0.05 or a† if the
significance level is P < 0.01. To illustrate the convergence behavior, the function
value of the best solution has been averaged for each generation over all runs.

f1(x) = x6 − 2x4 + x2 (6.10)

f2(x, y) = (x2 · y2)/(x + y) (6.11)

f3(x) = x5 − 2x3 + x (6.12)

f4(x) = x4 + x3 + x2 + x (6.13)

6.6.1 Experiment I

For the first experiment, we use the same parameter configuration as Meier et al. for
the traditional real-valued CGP, which seem to be good choices for the probabilities
for mutation and crossover on the tested regression problems. The parameter con-
figuration for the traditional real-valued CGP and our adaptive approach is shown
in Table 6.1. Our adaptive strategy uses the same configuration except the muta-
tion and crossover probability. For the adaptive probabilities and the amplifier, we
define a general configuration for all problems, which is marked as general. This
setting is the same for all tested problems and has been determined empirically on
the set of benchmark problems. Additionally, we determined a specific configuration
for each problem, which is marked as specific and represents the optimal strategy
parametrization for the given problem. The reason for the use of a general and
specific configuration is to demonstrate the generalization abilities of our strategy
as well as the increase of the performance For example, for Problem 1, we use a
crossover probability ranging from 0.7 to 1.0, and α is set to 5. The optimal strategy
parametrization has been determined empirically. Since our strategy maintains pop-
ulation diversity, we can use higher crossover probabilities with less risk of trapping
into local optima.
Table 6.2 shows the results for the first problem, which outlines that the adaptive
strategy convergences faster with general and specific settings. Figure 6.1 shows
a comparison of the average convergence between the traditional Real-Value CGP
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Table 6.1: Algorithm configuration for the first experiment
Property Traditional Adaptive
Maximum node count 10 same
Function lookup table + (0), - (1), * (2), / (3) same
Population size 50 same
Maximum Generations 20,000 same
Crossover operator weighted average same
Crossover probability (P Cross) 0.75 0.5 - 1.0 (general)
Mutation operator Reset gene ∈ [0, 1] same
Mutation probability (P Mut) 0.2 0.2 - 0.3 (general)
Tournament selection size (T Size) 20 same
Elitism size 2 same
Amplifier - 3 (general)

Table 6.2: The average number of generations and computational effort required by
CGP for the problem f1(x) = x6 − 2x4 + x2

Algorithm Avg. Generations Min. CE Slow Runs
Traditional 151± 712 22622 17
Adaptive (general) 101± 169∗ 20380 5
Adaptive (specific) 89± 128† 17828 3

Table 6.3: The average number of generations and computational effort required by
CGP for the problem f2(x, y) = (x2 · y2)/(x + y)

Algorithm Avg. Generations Min. CE Slow Runs
Traditional 313± 612 60689 71
Adaptive (general) 222± 444† 44559 31
Adaptive (specific) 214± 422† 42915 33
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Figure 6.1: Average convergence for the first generations covering traditional Real-
Value CGP and adaptive Real-Value CGP with specific settings on
f1(x) = x6 − 2x4 + x2.

and our adaptive approach with specific settings for the former generations. Our
adaptive method converges faster and reaches the convergence criteria faster, as
illustrated in Figure 6.2. Table 6.3 shows the result of the second regression problem.
As illustrated, the number of generations until convergence and the computational
effort is better in comparison to the traditional Real-Value-CGP. Figure 6.3 and 6.4
underline the faster convergence of our adaptive approach.

6.6.2 Experiment II

For the second experiment, we use the same algorithm configuration as shown in
Table 6.1, except for the tournament size. The configuration of the tournament size
is shown in Table 6.4. For the problems f3 (Equation 6.12) and f4 (Equation 6.13) we
also use the general and specific set of probabilities as we did in our first experiment.
For this experiment, we use the plot style, as shown in Figure 6.5, because the
presented problems use high polynomials, which produce high fitness values. As a
result, the detailed convergence for the given problems is difficult to plot. Table 6.5
shows the result for the third regression problem, and as illustrated, the average
generation number and the computational effort is also better. The adaptive selection
pressure helps to maintain population diversity but also in processing the population
toward the global optimum by adjusting high selection pressure at the right time.
Table 6.6 shows the result for the last regression problem, which also shows a better
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Figure 6.2: Average convergence for the latter generations covering traditional Real-
Value CGP and adaptive Real-Value CGP with specific settings on
f1(x) = x6 − 2x4 + x2.

Figure 6.3: Average convergence for the first generations covering traditional Real-
Value CGP and adaptive Real-Value CGP with specific settings on
f2(x, y) = (x2 · y2)/(x + y).
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Figure 6.4: Average convergence for the latter generations covering traditional Real-
Value CGP and adaptive Real-Value CGP with specific settings on
f2(x, y) = (x2 · y2)/(x + y).

Table 6.4: Tournament size configuration for the second experiment
Algorithm Tournament Size (T Size)
Traditional 8
Adaptive 4-10

outcome for our adaptive approach. Also, the number of generations to convergence
is better, as shown in Figure 6.6. Our adaptive approach has also slow runs but
prevents the occurrence of prolonged runs.

6.6.3 Diversity Comparison

Since f4(x) is the most complex problem of our test suite which we used for our
experiments, we choose this problem for a diversity comparison in phenotype space.
We average the diversity value θ (Equation 6.6) of 100 runs which exceed 500 gener-
ations for each generation. Based on our second experiment, we use adaptive genetic
operators and selection pressure for the adaptive strategy. Since the diversity value θ
is normalized and ranges between 0 and 1, a value of 1 represents a phenotype space
where every phenotype is unique. The diversity comparison is shown in Figure (6.7),
and as shown, the average diversity value of the adaptive algorithm is much higher.
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Table 6.5: The average number of generations and computational effort required by
CGP for the problem f3(x) = x5 − 2x3 + x

Algorithm Avg. Generations Min. CE Slow Runs
Traditional 524± 1005 104965 126
Adaptive (general) 351± 564† 70337 70
Adaptive (specific) 349± 551† 69892 67

Table 6.6: The average number of generations and computational effort required by
CGP for the problem f4(x) = x4 + x3 + x2 + x

Algorithm Avg. Generations Min. CE Slow Runs
Traditional 1009± 1425 252378 328
Adaptive (general) 713± 909∗ 178296 265
Adaptive (specific) 620± 820† 155246 217

Figure 6.5: The number of generations to convergence over the slowest 200 runs for
traditional Real-Value CGP and adaptive Real-Value CGP with specific
settings on f3(x) = x5 − 2x3 + x.
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Figure 6.6: The number of generations to convergence over the slowest 200 runs for
traditional Real-Value CGP and adaptive Real-Value CGP with specific
settings on f4(x) = x4 + x3 + x2 + x.

Figure 6.7: Phenotype space diversity comparison for traditional Real-Value CGP
and adaptive Real-Value CGP with specific settings on f4(x) = x4 +
x3 + x2 + x.
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6.7 Discussion

Our experiments on the four regression problems show that using adaptive genetic
operators and selection could be beneficial for real-valued CGP. By maintaining
population diversity, the occurrence of algorithm stagnation could be prevented. As
shown in our first experiment, our strategy improves convergence in the former and
latter generations by maintaining population diversity. In the first generations, our
strategy benefits from the ability to use higher probabilities of crossover. Using high
crossover probabilities with traditional CGP may increase the risk of the occurrence
of algorithm stagnation. The population converges to local optima, and the effect of
mutation for exploration of the search space is too low. In this case, our new strategy
reacts by increasing the impact of mutation, which prevents the populations from
getting too homogeneous. The behavior of the adaption process for the mutation
and crossover probability is illustrated and stylized in Figure 6.8. It is visible that
the mutation probability increased and the crossover probability is simultaneously
decreased. The use of a general set of parameters showed the flexibility of our new
strategy when the optimal configuration is not set. Our adaptive strategy uses one
new parameter α and the lower and upper bounds for the respective intervals, which
depends on the complexity of the problem and size of the population. For the choice
of the amplifier value α, we have found no general approach yet. Since this value
was chosen empirically, we observed that a higher value for the harder problems of
our tested regression problems was beneficial. Since modern evolutionary computa-
tion systems produce population statistics which can be used for our strategy, the
determination of the phenotype space diversity becomes easier. Since our strategy
operates with two types of population statistics, the use of our strategy with a GP
system which has no built-in statistic module is difficult. However, our analysis of
the most used evolutionary computation systems showed that nearly every modern
system produces statistics. This also includes fingerprints for GP. Since most GP
systems provide fingerprints for tree representation, the use of our new strategy in
traditional GP is feasible. For selection, we only used the fitness value as a selection
criterion. In our experiments, we showed that the crossover of unique and high fitted
individuals is beneficial for CGP. For better selection in our strategy, an improved
selection method is necessary, which works with two selection criteria, fitness and
the frequency of the phenotype in the population. Using the textual representation
as a fingerprint is a simple form to map the phenotype space but has the disadvan-
tage that different textual phenotypes are similar in their function. This behavior of
neutrality in phenotype space must be investigated in detail to develop more pre-
cise mapping techniques. In our experiments, we only used four possible functions
and ten nodes per CGP program, but Miller and Smith showed that increasing the
number of function node improves the search performance, too [99].
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6.8 Conclusions
A first adaptive strategy for CGP has been proposed. Our strategy maintains pop-
ulation diversity by adapting the probabilities of the genetic operators and selec-
tion pressure based on measurements in phenotype space. Also, our new metric
for measuring the ratio of healthy phenotypes helps to determine opportunities for
the adaption. Our strategy works similar to the adaptive strategy of McGinley et
al. [91] by adapting crossover probability globally and mutation probability lo-
cally. Since some adaptive schemes handle with a global mutation probability, this
approach showed no beneficial effect in our experiments. Also increasing mutation
and crossover probability simultaneously if the population diversity becomes less as
proposed by Srinivas et al. [143], this behavior influenced the convergence in our
experiments negatively.
Increasing mutation probability in homogeneous areas of the search space and reduc-
ing crossover probability if the population diversity is low as proposed by McGinley
et al. [91] was the most successful approach to adapt the genetic operators. It has
been shown that mapping phenotype space is beneficial for CGP on several symbolic
regression problems so that future work should focus on the improvement of these
measurement techniques. Choosing the textual representation as a fingerprint of a
CGP program is the simplest form of mapping phenotype space. To improve the
measurement of phenotype space, more detailed methods must be found which can
handle phenotype neutrality, which means that phenotypes different in their textual
representation are semantically equal.

95





7 Advanced Crossover Operators

7.1 Introduction

Tree-based GP was originally introduced with a crossover technique , which swaps
randomly chosen sub-branches of the parent trees to produce new offspring. Koza
considered crossover as the dominant genetic operator because of his experiments [67,
68]. However, later research with more comprehensive and detailed experiments
found that the beneficial effects of crossover cannot be generalized in GP [86, 87, 161]
. In contrast to comprehensive knowledge about crossover in tree-based GP, the state
of knowledge in CGP appears to be ambiguous and ambivalent. Furthermore, the
potential and understanding of crossover in CGP seem to be an open and remaining
question. In this chapter, we introduce two new methods for crossover in CGP.
The proposed crossover techniques are evaluated on symbolic regression, Boolean
function, and image operator design problems. In this chapter, we also present the
results of a comparative study on crossover in CGP , which includes the comparison
of different crossover techniques to the 1 + λ strategy.

7.2 Previous Work on Crossover in CGP

First attempts of crossover in CGP included four variations of crossover, which were
tested on the simple regression problem x2 + 2x + 1. Clegg et al. [13] reported that
all four techniques failed to improve the convergence of CGP. Compared to running
CGP with mutation only, the addition of these crossover techniques hindered the
performance. The four methods were tested on the standard integer-based represen-
tation of CGP. For instance, the genetic material was recombined by swapping parts
of the genotypes of the parent individuals or randomly exchanging selected nodes.
Clegg et al. [13] reported that merely swapping the integers (in whatever manner)
in the CGP representation disrupts the performance.
This was the motivation for the introduction of a real-valued representation and new
crossover technique for CGP by Clegg et al. [13]. The real-valued representation of
CGP represents the directed graph as a fixed length list of real-valued numbers
in the interval [0,1]. The genes are decoded to the integer-based representation by
their normalization values (e.g. number of functions or maximum input range). The
recombination of two genotypes is performed by an arithmetic crossover with a ran-
dom weighting factor, which can also be found in the field of real-valued GAs. Clegg
et al. showed that the new representation, in combination with crossover improves
the convergence behavior of CGP. However, for the later generations, Clegg et al.
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demonstrated that the use of crossover in real-valued CGP disrupts the convergence
on one of the two tested problems. The improved convergence of the arithmetic
crossover was evaluated in the domain of symbolic regression and has been found
useful in this problem domain [13]. Later work by Turner [147] presented results on
three additional classes of computational problems, digital circuit synthesis , func-
tion optimization and agent-based wall avoidance. On these problems, it was found
that the real-valued representation together with the crossover operation performed
worse than standard CGP.

Slaný et al. [138] analyzed the fitness landscapes of functional-level CGP on image
operator design problems, including single and multipoint crossover operators. It
was demonstrated that the mutation operator and the single-point crossover opera-
tor generate the smoothest landscapes for the tested problems.

For a multi-chromosome approach to CGP, Walker et al. [158] investigated a multi-
chromosome crossover operator which joins the best chromosome parts from all
individuals. This crossover technique was found useful for problems with multiple
outputs and independent fitness assignments.

Another positive effect of crossover in CGP was obtained by the use of an implicit
context representation for CGP in which recombination is useful for the Even Parity-
3 problem [10].

CGP has been extended for the automatic definition and reuse of functions by Walker
et al. [155] and Kaufmann et al. [62]. Kaufmann et al. adopted the module creation
mechanisms for a cone- and age-based CGP crossover [62]. Cone-based crossover
showed good results for functions with repetitive inner patterns, while age-based
crossover excels for randomized inner structures.

To our best knowledge, the arithmetic crossover seems to be the only approach that
aims at standard CGP and has been able to demonstrate a better convergence if
two chromosomes are recombined directly. However, for the harder problem of the
two tested symbolic regression problems, Clegg et al. concluded that the arithmetic
crossover technique does not have a good effect on convergence. Furthermore, it was
found that the arithmetic crossover causes occasional runs with a vast number of
generations to converge. This has been the motivation for developing a new crossover
technique.

7.3 The Subgraph Crossover

The proposed subgraph crossover for CGP is inspired by the subtree crossover found
in tree-based GP. However, a directed acyclic graph enables more connections be-
tween the nodes, merely choosing one crossover point within the graph is not suffi-
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7.3 The Subgraph Crossover

cient. Furthermore, to recombine subgraphs by just swapping parts of the genotype
would be a disastrous approach according to the reportings by Clegg et al. Our
approach to recombine two directed acyclic graphs is performed by respecting the
CGP phenotype. The phenotype of each individual is represented by the active path
of the graph and is determined through the evaluation process. Furthermore, the
active path of a graph leads to the semantic value of a certain individual in CGP. As
a consequence, we exclusively want to recombine the genetic material of the active
paths.

For describing the subgraph crossover procedure, let Ninputs be the predefined num-
ber of input nodes. In CGP, the nodes are indexed from 0 to N − 1 and the input
nodes of each graph are indexed from 0 to Ninputs− 1. The nodes which lie between
the input and output nodes are denoted as function nodes. The crossover is done
with two parents which are denoted as P1 and P2. For the crossover procedure, the
node numbers of the active function nodes are necessary. The node numbers of the
active nodes of P1 and P2 are stored in two arrays M1 and M2. The active nodes
are determined by the backward search in the evaluation procedure.

To define one suitable crossover point, we define two possible crossover points CP1
and CP2 of the two parents. With information about the active nodes and the length
of the path, we can choose two possible crossover points. The possible crossover
points CP1 and CP2 are chosen by chance in the range of the active function nodes
which are stored in M1 and M2. The possible crossover points may not be input or
output nodes. A defintion of the subgraph crossover is given in Definition 7.1.

Definition 7.1 (Subgraph crossover). The subgraph crossover is a variation oper-
ator for CGP which exchanges and links subgraphs of function nodes between two
selected parents, producing one or two offspring.

The crossover procedure is done by performing the following steps:

1. Define a general crossover point

A general crossover point CP is defined by choosing the smaller crossover point
from CP1 and CP2. The reason for this is that the subgraphs of the parents,
which will be placed in front of or behind the crossover point of the offspring’s
genome should be balanced. The representation of CGP allows active paths of
an individual, which can start in the middle or back of the graph. The subgraph
which will be placed in front of the crossover point must start at more leading
active nodes. If CP is defined as the possible point CP1, the subgraph of P1 in
front of CP will be placed in front of CP in the offspring genome. The subgraph
behind CP of P2 will be placed behind CP in the offspring genome

2. Copy the genetic material in front of the crossover point
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7 Advanced Crossover Operators

The genetic material for the section in front of CP is copied from the parent
P1 to the offspring genome. This includes the function nodes from the start of
the genome of P1 until the function node given by CP . Since the inactive nodes
are also genetic material that can become active, we also copy these nodes for
further genetic variation steps.

3. Copy the genetic material behind the crossover point

The genetic material for the section behind the crossover point of the offspring
genome is copied from the parent P2 starting at the crossover point until
the output. The resulting subgraph S2 including the output is copied to the
offspring genome behind the crossover point. However, the active nodes of the
section behind the crossover point can alter the active path in front of the
crossover point by referring to inactive nodes. Further steps are necessary to
connect both sections.

4. Connect both sections of the offspring genome

a) Both sections are connected with a special step that we call neighbourhood
connect. This step refers to the first active node of the section behind the
crossover point which is connected to the last active node of the section
in front of the crossover point. This is done by adjusting the connection
gene of the first active node of the section behind the crossover point.

b) To ensure that active nodes of the section behind the crossover point do
not refer to inactive nodes of the section in front of the crossover point, we
perform a step which we call random active connect. All connection genes
of the active nodes of the section behind the crossover point are adjusted
to the active nodes of the section in front of the crossover point, previous
active nodes of S2 or input nodes. The nodes which are suitable for a
random active connection are named as permissible nodes. The connection
is done by changing the connection gene of a node which refers to an
inactive node to a randomly chosen permissible node.

The crossover procedure produces a new genome, which represents the offspring
concerning the phenotypes of both parents. In the case that two children should
be produced, the crossover procedure is performed twice with two different general
crossover points. Since the representation of CGP provides connections to any pre-
vious function node of the graph, performing only the neighbourhood connect could
result in a monotone data flow of the resulting phenotype.

The crossover procedure is illustrated in Figure 7.1. At the top of the figure, the
arrays with the active nodes and crossover points are listed. Below this information,
the genotypes are shown. The figure also shows the phenotypes of the parents and
the offspring, the selected subgraphs are marked with dashed boxes.
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7.3 The Subgraph Crossover

Algorithms 7.2, 7.3, 7.4 and 7.5 provide pseudo code of the core elements of the sub-
graph crossover technique. The function RandomNodeNumber in Algorithm 7.1 de-
termines a random node number from given lists. The function DetermineCrossover-
Point in Algorithm 7.2 calculates and returns the general crossover point and the
function SubgraphCrossover in Algorithm 7.3 executes the recombination process.
The functions NeighbourhoodConnect and RandomActiveConnect in Algorithm 7.4
and 7.5 handle the rewiring process between the nodes.

101



7 Advanced Crossover Operators

2  0  0 2  1  0 0  2  1 3  2  3 0  4  5 4

3  0  0 1  1  1 0  2  0 3  3  3 3  5  2 6

2  0  0 2  1  0 0  2  0 3  2  1 3  5  2 6

Parent P1

Parent P2

Offspring

2 3 4 5 6 OP1

2 3 4 5 6

2 3 4 5 6

M1 = {2,4}
M2 = {2,3,5,6}

CP1 := 3
CP2 := 6

CP := 3

Function Lookup Table

Index Function

0 +
1 -
2 *
3 /

Parent P1

IP1

IP2

*

*

+

/ +

OP2
 

OP2

OP1
2

3

4

5 6

0

1

Parent P2

IP1

IP2

/

-

+

/
/ OP2

2

3

4

5

6

0

1

Subgraph S1

Subgraph S2

Offspring

IP1

IP2

*

*

2

3

0

1

Subgraph S1

+

/
/ OP2

4

5

6

Subgraph S2

Neighbourhood connected edge
Random connected edge

 

Node number

Figure 7.1: The subgraph crossover procedure
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Algorithm 7.1 Function for the determination of a random node number
Arguments
I: List with input nodes, null by default
NF: Sorted list of function nodes. null by default
m: Upper node number limit, null by default
ni: Number of inputs
Return
NR[r]: Selected random node number

1: function RandomNodeNumber(I = null, NF = null, m = null, ni)
2: ▷ Initialize an empty list to store random input and function node numbers
3: NR ←EmptyList()
4: if NF ̸= null then ▷ Check if function node numbers have been passed as argument
5: if m ̸= null then ▷ Check if a node number limit has been passed to the function
6: ▷ Determine a sublist of NF where the list elements X of NF are less or equal m

7: Nm ← NF.sublist(X ≤ m)
8: if |Nm| = 0 then ▷ If the sublist is emtpy, there are no function nodes before m

9: i← RandomInteger(0, ni) ▷ Determine a random input node
10: NR.append(i) ▷ Append the random input to the list
11: else
12: ▷ Generate a random integer in the range from 0 to Nm| − 1 inclusive
13: i← RandomInteger(0, |Nm| − 1)
14: NR.append(Nm[i]) ▷ Use i as index and get the node number from NF

15: end if
16: else
17: ▷ Otherwise, randomly select a node number in the range from 0 to |NF| − 1 inclusive
18: i← RandomInteger(0, |NF| − 1)
19: NR.append(NF[i]) ▷ Use i as index and get the node number from NF

20: end if
21: end if
22: if I ̸= null then ▷ If the input node are passed to the function
23: ▷ Select a input node number in the range from 0 to |I| − 1 inclusive by chance
24: j ← RandomInteger(0,|I| − 1)
25: NR.append(j) ▷ Append it to the possible random nodes
26: end if
27: ▷ Select one node number from the list NR by chance
28: r ← RandomInteger(0, |NR| − 1)
29: return NR[r] ▷ Return a random input or function node number
30: end function
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Algorithm 7.2 Subgraph crossover procedure: Determination of the crossover point
Arguments
P1: Genome of the first parent
P2: Genome of the second parent
M1: List of active nodes of the first parent
M2: List of active nodes of the second parent
Return
CP: Determined crossover point

1: function DetermineCrossoverPoint(P1, P2, M1, M2)

2: a← min(M1) ▷ Determine the minimum node number of M1

3: b← max(M1) ▷ Determine the maximum node number of M1

4: ▷ Choose the first possible crossover point by chance in the range from a to b inclusive
5: CP 1 ← RandomInteger(a, b) ▷ Choose the first possible crossover point by chance

6: a← min(M2) ▷ Determine the minimum node number of M2

7: b← max(M2) ▷ Determine the maximum node number of M2

8: ▷ Choose the second possible crossover point by chance in the range from a to b inclusive
9: CP 2 ← RandomInteger(a, b)

10: CP ← min(CP 1,CP 2) ▷ The crossover point is the minimum of the possible crossover
points

11: return CP

12: end function
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Algorithm 7.3 Subgraph crossover procedure: Recombination of the genomes
Arguments
P1: Genome of the first parent
P2: Genome of the second parent
nI: Number of inputs
Return
Go: Genome of the offspring

1: function SubgraphCrossover(P1,P2,nI)
2: G1 ← Genome(P1) ▷ Store the genome of parent P1 in G1

3: G2 ← Genome(P2) ▷ Store the genome of parent P2 in G2

4: M1 ← DetermineActiveNodes(P1) ▷ Store the active nodes of parent P1 in M1

5: M2 ← DetermineActiveNodes(P2) ▷ Store the active nodes of parent P2 in M2

6: ng ← |G1| ▷ Determine the number of genes

7: CP ← DetermineCrossoverPoint(P1, P2) ▷ Determine the crossover point (Alg. 7.2)

8: pc ←NodePosition(CP + 1) ▷ Determine the crossover point position in the genome
9: Go[0, pc− 1]← G1[0, pc− 1] ▷ Copy the part before the crossover position from G1 to Go

10: Go[pc, ng]← G2[pc, ng] ▷ Copy the part behind the crossover position from G2 to Go

11: ▷ Create the list of active function nodes of the offspring

12: ▷ Determine and store a sublist of M1 where the list elements X of M1 are less or equal CP

13: NA1 ←M1.sublist(X ≤ CP)

14: ▷ Determine and store a sublist of M2 where the list elements X of M2 are greater than CP

15: NA2 ←M2.sublist(X > CP )

16: if |NA1| > 0 and |NA2 > 0| then ▷ Check if both lists contain active function node
numbers

17: ▷ Determine the first active node number before the crossover point CP

18: nF ← NA1.last()
19: ▷ Determine the first active node number behind the crossover point CP

20: nB ← NA2.first()

21: Go ← NeighbourhoodConnect(nF ,nB,Go) ▷ Neighbourhood connect (Alg. 7.4)
22: end if

23: NA.append(NA1) ▷ Append the sublist NA1 to NA

24: NA.append(NA2) ▷ Append the sublist NA2 to NA

25: if |NA| > 0 then ▷ Check if any function nodes are active
26: Go ← RandomActiveConnect(nI,NA, CP ,Go) ▷ Random active connect

(Alg. 7.5)
27: end if

28: return Go

29: end function



Algorithm 7.4 Subgraph crossover procedure: Connecting two recombined sub-
graphs with the NeighbourhoodConnect step

Arguments
nF : Number of the first active node before the crossover point
nB : Number of the first active node behind the crossover point
Go : Genome of the offspring
Return
Go : Genome of the offspring

1: function NeighbourhoodConnect(nF, nB, Go)

2: GC ← GetConnectionGenes(nB, Go) ▷ Store the connection genes of nB in GC

3: GC [0]← nF ▷ Adjust the first connection gene of node nB to the node number nF

4: Go ← SetConnectionGenes(GC ,nB, Go) ▷ Put the modified gene back to Go

5: return Go
6: end function

Multiple Outputs

The proposed subgraph crossover primarily focuses on single output problems, but
we also investigate multiple output problems in this chapter. On this kind of prob-
lems, we deal with multiple active paths that share one genotype. The proposed
step neighbourhood connect connects two nodes for one active path. This procedure
becomes more complicated if numerous active paths are involved. Therefore, on mul-
tiple output genotypes, we only connect the two parts of the parent genotypes by
performing the random active connect. This procedure is also applied to all output
nodes since they can refer to inactive nodes in the newly produced genotype.

7.4 The Block Crossover

The block crossover technique focuses on the one-dimensional representation of CGP
where the number of rows is limited to one. The block crossover basically swaps the
function genes between blocks of active function nodes which have been selected from
each parent. Given the previously selected genotypes of two individuals serving as
parents, the block crossover first determines a list of the active nodes by evaluating
the genotype’s active path. Afterward, the function nodes blocks are constructed
with respect to the a predifned maximum block size B. The construction is done by
randomly selecting a subset of active function nodes from each active function list.
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Algorithm 7.5 Subgraph crossover procedure: Connecting two recombined sub-
graphs with the RandomActiveConnect step

Arguments
nI : Number of inputs
NA : List of active function nodes
CP : The crossover point
Go : Genome of the offspring
Return
Go : Genome of the offspring

1: function RandomActiveConnect(nI,NA, CP,Go)
2: I ← InputNodes(Go) ▷ Get the input nodes Go

3: for each n ∈ NA do ▷ Iterate over the active nodes
4: ▷ If the node number is greater than the crossover point
5: if n > CP then
6: GC ← GetConnectionGenes(n) ▷ Get the connection genes of the node
7: for each gc ∈ GC do ▷ Iterate over the connection genes
8: ▷ If the current connection gene is not connected to an active function node
9: if not NA.contains(gc) then

10: ▷ Replace the connection with a random active function node which is located
before the crossover point or an input node(Alg. 7.1)

11: gc ← RandomNodeNumber(I, NA, CP, nI)
12: end if
13: end for
14: end if
15: end for
16: ▷ Adjust the output genes which are currently linked to passive nodes to active function nodes
17: O ← OutputGenes(Go) ▷ Get the output genes of Go

18: for each go ∈ O do ▷ Iterate over the output genes
19: if not NA.contains(go) then ▷ If an output is connected to an inactive node
20: go ← RandomNodeNumber(I,NA) ▷ Rewire the output to an input or active

function node
21: end if
22: end for
23: return Go

24: end function
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These random subsets of active function nodes serve as the blocks and are used for
the recombination procedure. The procedure ensures that the blocks have the same
size. The block crossover then iterates over the blocks and exchanges the function
gene between all function nodes which are stored in the blocks. Since the blocks of
the two selected parents have the same dimension, the function genes of the nodes
are swapped pairwise at each position.
First the active paths are determined and are stored in the lists M1 and M2. When
at least one parent has no active function nodes, the crossover procedure is aborted.
Otherwise, two blocks N1 and N2 containing randomly selected active function nodes
from their respective lists are determined, This is done with respect to the maximum
block size. If at least one parent has less active function nodes then the predefined
maximum block size, the minimum size of active nodes is determined between the
parents. Afterward, the minimum is taken as block size. To produce the first offspring
O1, the first parent P1 is cloned, and the function genes of the nodes inside the block
N1, are replaced by the function genes of the nodes from block N2. The second
offspring O2 is produced in the same way but instead of P1 and N2, the second
parent P2 and the block N1 are used. Figure 7.2 illustrates the crossover procedure.
At the top of the figure, the active function nodes of the parents and the determined
node block are listed. These listings are followed by the genotypes of the parents and
the offspring. The function genes which have been swapped are highlighted in red
and blue colors. Below the listing of the genotypes, the corresponding phenotypes
are shown. The function nodes, which have been altered by the swapping process
are also highlighted in red and blue colors. A defintion of the block crossover is given
in Definition 7.2.

Definition 7.2 (Block crossover). The block crossover is a variation operator for
CGP which exchanges blocks of function genes between two selected individuals, pro-
ducing two offspring.

The crossover procedure is described in more detail in Algorithms 7.6, 7.7 and 7.8.
The function DetermineSwapNodes in Algorithm 7.6 describes the algorithmic im-
plementation of the creation and handling of the active function blocks which are
later used for the swapping of the respective function genes. The swapping itself is
performed by the SwapGenes function as listed in Algorithm 7.7. Algorithm 7.8 de-
scribes the recombination process in which the functions DetermineSwapNodes and
SwapGenes are called.

7.5 Evaluation of the proposed Methods
7.5.1 Experimental Setup
We performed experiments with symbolic regression, Boolean functions, and im-
age operator design problems. To evaluate the search performance of the subgraph
crossover, we measured the number of generations until the CGP algorithm ter-
minates successfully (generations-to-success) and the best fitness value which was
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Figure 7.2: The procedure of the proposed block crossover technique
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Algorithm 7.6 Block crossover: Determinations of swap nodes
Arguments
NA: List of active nodes
B : Predefined block size
Return
NS: List of active nodes which have been chosen for swapping

1: function DetermineSwapNodes(NA,B)
2: j ← 0 ▷ Initialize loop counter
3: n← |NA| ▷ Get the number of active nodes
4: ▷ Initialize NP , the list of possible nodes, with all active nodes from NA

5: NP ← NA
6: NS ← EmptyList() ▷ Empty list for the nodes of the block
7: while j < B do ▷ While j is smaller than the block size
8: r ← RandomInteger(0,n) ▷ Get a random index in the range 0 and n

9: nr ← NP [r] ▷ Get the node number at radom index r

10: NS .append(nr) ▷ Append the node number to the block node list
11: NP .remove(nr) ▷ Decrease the selection of possible nodes
12: j ← j + 1 ▷ Increase loop counter
13: end while
14: return NS ▷ Return the block list
15: end function
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Algorithm 7.7 Block crossover: The procedure for the swap of the function genes
Arguments
O1: Genome of the first offspring
O2: Genome of the second offspring
NS1: Swap nodes of the first offspring
NS2: Swap nodes of the second offspring
I: The number of input nodes
A: The maximum arity
Return
O1, O2: Genome of the first and second offspring

1: function SwapGenes(O1,O2, NS1, NS2, I, A)
2: j ← 0 ▷ Initialize loop counter

3: while j < B do ▷ Iterate from 0 to B − 1
4: n1 ← NS1[j] ▷ Get the node number at index j from the block list NS1

5: n2 ← NS2[j] ▷ Get the node number at index j from the block list NS2

6: g1 ← (n1 − I) · (1 + A) ▷ Calculate the function gene position of node n1

7: g2 ← (n2 − I) · (1 + A) ▷ Calculate the function gene position of node n2

8: h← O1[g1] ▷ Save the function gene of the P1 genome in h

9: O1[g1]← O2[g2] ▷ Transfer the function gene to be exchanged from P2 to O1

10: O2[g2]← h ▷ Transfer the function gene to be exchanged from h to O2

11: j ← j + 1 ▷ Increase loop counter
12: end while
13: return O1, O2 ▷ Return the genomes of the offspring
14: end function
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Algorithm 7.8 Block crossover: The recombination procedure
Arguments
P1: Genome of the first parent
P2 : Genome of the second parent
B : The maximum block size
I : The number of input nodes
A : The maximum arity
Return
O1, O2: The genomes of the offspring

1: function BlockCrossover(P1,P2, B, I, A )
2: NA1 ← DetermineActiveNodes(P1) ▷ Determine the active nodes of parent P1

3: NA2 ← DetermineActiveNodes(P2) ▷ Determine the active nodes of parent P2

4: na1 ← |NA1| ▷ Determine the number of active nodes of parent P1

5: na2 ← |NA2| ▷ Determine the number of active nodes of parent P2

6: if na1 = 0 or na2 = 0 then ▷ Validate the number of active function nodes
7: ▷ If at least one parent has no active function nodes, abort the crossover procedure
8: return
9: end if

10: ▷ If at least one parent has less active nodes than the maximum block size
11: if na1 < B or na2 < B then
12: ▷ Determine the minimum of active function nodes between the two parents
13: B ← min(na1,na2)
14: end if

15: ▷ Determine the blocks which will be swapped (Alg. 7.6)
16: NS1 ← DetermineSwapNodes(NA1, B)
17: NS2 ← DetermineSwapNodes(NA2, B)

18: O1 ← P1 ▷ Initialize the first offspring with the genome of the first parent
19: O2 ← P2 ▷ Initialize the second offspring with the genome of the second parent

20: O1, O2 ← SwapGenes(O1, O2, NS1, NS2, I, A) ▷ Perform the swaps (Alg. 7.7)
21: return O1, O2 ▷ Return the offspring
22: end function
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Table 7.1: Symbolic regression problems of the first experiment
Problem Objective Function Vars Training Set
Koza-2 x5 − 2x3 + x 1 U[-1,1,20]
Koza-3 x6 − 2x4 + x2 1 U[-1,1,20]
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U[-1,1,20]
Nguyen-5 sin(x2) cos(x)− 1 1 U[-1,1,20]
Nguyen-6 sin(x) + sin(x + x2) 1 U[-1,1,20]
Nguyen-7 ln(x + 1) + ln(x2 + 1) 1 U[0,2,20]
Keijzer-6 ∑x

i 1/i 1 E[1,50,1]
Pagie-1 1/(1 + x−4) + 1/(1 + y−4) 2 E[-5,5,0.4]

found after a predefined number of generations (best-fitness-of-run). In addition to
the mean values of the measurements, we calculated the standard deviation (SD) the
median and the first and third quartile. To classify the significance of our results, we
used the Mann-Whitney-U-Test. The mean values are denoted a† if the p-value is
less than the significance level 0.05 and a‡ if the p-value is less than the significance
level 0.01 compared to the use of mutation as the sole genetic operator. We show
the convergence behavior by plotting the average fitness function value against the
number of generations. For this type of diagram, the fitness function value of the
best solution was used.

Tournament selection was used to select new parent individuals. We performed pre-
liminary experiments to determine the best configuration. A tournament size of four
and seven individuals performed best for our experiments.

We performed 100 independent runs with different random seeds. Different rates
of crossover were investigated, 0%, 20%, 50%, 70% and 90%. We also investigated
different chromosome lengths, which are shown in the configuration of the exper-
iments. The termination criteria are explained in the particular experiments. The
levels back parameter l was set to ∞. For the block crossover we used a block size
of 2 function nodes.

7.5.2 Symbolic Regression
For our first experiment, we chose eight symbolic regression problems from the work
of Clegg et al. [13] and McDermott et al. [90] for better GP benchmarks. The func-
tions of the problems are shown in Table 7.1. A training data set U[a, b, c] refers to
c uniform random samples drawn from a to b inclusive and E[a, b, c] refers to a grid
of points evenly spaced with an interval of c, from a to b inclusive. We replaced the
investigation of the problem Koza-1 ("quartic") by the problems Keijzer-6, Nguyen-
7, and Pagie-1, which have been proposed as alternatives by White et al. [160] to
this overused problem and have different reputations.
For our first experiment, we chose eight symbolic regression problems from the work
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Table 7.2: Configuration of the first experiment
Property Koza-2,3/Nguyen-4,5,6 Nguyen-7/Keijzer-6/Pagie-1
Maximum node count 10 20/30/30
Maximum generation - 1000
Number of inputs 2 2
Number of outputs 1 1
Population size 50 50
Function set Koza Koza/Keijzer/Koza
Mutation rate 0.2 0.05/0.04/0.04
Tournament selection size 4 4
Evaluation method generations-to-success best-fitness-of-run

of Clegg et al. [13] and McDermott et al. [90] for better GP benchmarks. The func-
tions of the problems are shown in Table 7.1. A training data set U[a, b, c] refers to
c uniform random samples drawn from a to b inclusive and E[a, b, c] refers to a grid
of points evenly spaced with an interval of c, from a to b inclusive. We replaced the
investigation of the problem Koza-1 ("quartic") by the problems Keijzer-6, Nguyen-
7, and Pagie-1, which have been proposed as alternatives by White et al. [160] to
this overused problem and have different reputations.
Tables 7.3 and 7.4 show the results of the first experiment, and it is visible that
the use of the subgraph and block crossover reduces the number of generations until
the termination criterion triggers and results in a better fitness value. The standard
deviations are also clearly reduced by the use of higher crossover rates.

Figures 7.3 and 7.4 show the convergence behavior. It can also be clearly seen that
the use of the subgraph and block crossover results in improved convergence curves
for the presented number of generations.

7.5.3 Boolean Functions

To investigate the use of the subgraph crossover with one output in the Boolean do-
main, we chose the three Even-Parity problems with n = 5, 6, and 7 Boolean inputs.
The goal was to find a program that produces the value of the Boolean even parity
depending on the n independent inputs. The fitness was represented by the number
of fitness cases for which the candidate solution failed to generate the correct value
of the Even-Parity function.

Since former work by White et al. [160] outlined that this problem type was ex-
cessively used and investigated in the past, we also investigated multiple output
problems as the digital adder, subtractor and multiplier. This sort of problem differs
markedly from the parity problems, and the multiple output multiplier has been
proposed as a suitable alternative. As a result, we receive a diverse set of problems
in this domain.
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Figure 7.3: Convergence curves for all problems of the first experiment when sub-
graph crossover is used
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Table 7.3: Results for the symbolic regression problems Koza 2,3 and Nguyen 4,5,6
of the first experiments

Problem Crossover Crossover rate [%] Mean SD 1Q Median 3Q
Generations

Koza-2

Subgraph

0 23512 32265 4049 12627 30102
20 16657 18745 4368 10243 21947
50 10132‡ 11636 2639 6140 14732
70 8882‡ 9570 1900 5734 112551
90 8642‡ 10021 2419 5538 12194

Block

20 10436‡ 10982 957 7805 15972
50 5600‡ 6262 794 3204 8284
70 2535‡ 4128 289 782 2729
90 1636‡ 2166 288 677 2033

Koza-3

Subgraph

0 9733 12645 1106 4662 12958
20 5512‡ 9649 700 1629 4281
50 4044‡ 5644 581 1709 5825
70 4324‡ 6836 697 1553 4967
90 2493‡ 2456 546 1543 3996

Block

20 1282‡ 1583 260 809 1816
50 950‡ 2331 144 347 752
70 820‡ 2236 112 225 495
90 861‡ 2120 185 363 657

Nguyen-4

Subgraph

0 2464455 3318452 270870 1286193 3777324
20 1958761 2376462 293119 1002406 2536421
50 434317‡ 549211 43429 294556 580821
70 182694‡ 246221 19823 66307 260541
90 161754‡ 190997 24570 95716 233140

Block

20 1705286 2359957 236279 779322 2049142
50 286420‡ 334450 58742 213758 360332
70 195483‡ 208052 27222 117247 271800
90 182651‡ 220627 31223 93438 272722

Nguyen-5

Subgraph

0 22703 63646 2281 6365 15032
20 11883 28970 1366 4107 9395
50 5453‡ 6591 1282 2863 7556
70 3772‡ 4208 835 1905 5090
90 3262‡ 4106 576 2007 4176

Block

20 9354 12387 1732 4866 12375
50 5801‡ 11099 911 2664 5920
70 7747‡ 14900 1531 3262 5669
90 6254‡ 13885 1145 2571 7221

Nguyen-6

Subgraph

0 98394 186370 1006 10462 94350
20 47796† 108905 766 3517 43571
50 24096‡ 62941 591 2199 10848
70 12480‡ 37103 489 1109 5704
90 4552‡ 12332 292 750 2040

Block

20 13872‡ 30196 508 1748 10722
50 7608‡ 19366 679 1693 5786
70 6618‡ 17202 679 1357 4209
90 7673‡ 26876 650 1942 4367
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Table 7.4: Results for the symbolic regression problems Nguyen-7, Keijzer-6, and
Pagie-1 of the first experiment

Problem Crossover Crossover rate [%] Mean Best SD 1Q Median 3Q
Fitness

Nguyen-7

Subgraph

0 0.62 0.31 0.44 0.67 0.68
20 0.57 0.26 0.39 0.65 0.68
50 0.54† 0.28 0.36 0.56 0.67
70 0.49† 0.26 0.29 0.53 0.67
90 0.49‡ 0.30 0.28 0.45 0.67

Block

20 0.59 0.24 0.42 0.67 0.68
50 0.51‡ 0.23 0.34 0.55 0.67
70 0.50‡ 0.23 0.35 0.53 0.68
90 0.52‡ 0.35 0.28 0.55 0.68

Keijzer-6

Subgraph

0 4.06‡ 1.84 2.67 3.94 5.38
20 3.55† 1.87 2.64 3.02 3.94
50 3.13† 1.30 2.57 2.89 3.81
70 3.02‡ 1.17 2.52 2.79 3.24
90 2.80‡ 0.91 2.36 2.81 3.14

Block

20 3.27 3.64 1.80 2.30 3.36
50 2.87‡ 1.29 2.06 2.75 3.26
70 2.97‡ 1.44 2.21 2.93 3.35
90 3.04‡ 1.62 2.20 2.94 3.28

Pagie-1

Subgraph

0 138.77 51.86 91.32 153.05 171.94
20 123.85† 52.05 77.46 118.51 160.51
50 121.90† 47.13 80.13 124.67 158.51
70 115.44‡ 46.36 72.93 109.86 157.86
90 105.88‡ 48.32 68.01 89.52 146.23

Block

20 115.99† 48.90 71.23 111.22 158.28
50 110.25‡ 47.65 66.17 102.30 152.58
70 97.52‡ 44.68 62.10 77.46 128.10
90 98.03‡ 42.46 62.52 77.46 140.21
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7.5 Evaluation of the proposed Methods

Table 7.5: Configuration for the second experiment
Property Parity-5/6/7 Adder 1/2 Bit Subtr. 2 Bit Multipl. 2 Bit
Maximum node count 100/200/200 30 30 30
Number of inputs 5/6/7 3/5 4 4
Number of outputs 1 2/3 3 4
Population size 50 50 50 50
Function set AND, OR, NAND AND, OR, XOR AND, OR, XOR AND, OR, XOR

NOT, NOR NOR, AND⋆ NOR, AND⋆ NOR, AND⋆

Mutation rate 0.01 0.04 0.02 0.04
Tournament selection 4/7/7 4 4 4
size
⋆AND with one inverted input

To evaluate the fitness of the individuals on the multiple output problems, we defined
the fitness value of an individual as the number of different bits to the corresponding
truth table. When this number became zero, the algorithm successfully terminated.
The configuration for the experiment is shown in Table 7.5.

Tables 7.6 and 7.7 show the results of our second experiment, which demonstrates
a reduced demand of generations until the algorithm terminates successfully on
all tested problems, except the digital multiplier 2-Bit problem, by the use of the
subgraph crossover. For the block crossover, it is visible that the use of this technique
reduces the number of generations clearly for the parity problems. For the multiple-
output problems, the use of the block crossover, reduced the number of generations
significantly only on the 1-Bit Adder problem. Figures 7.5 and 7.6 provide boxplots
of the results of the parity problems. Figures 7.7 and 7.8 provide boxplots for the
results of the multiple output problems.

7.5.4 Image Operator Design
For our third experiment, we chose two image operator design problems from the
field of evolvable hardware [137]. For these problems, we wanted to minimize the
difference between a filtered image If and a reference image Ir, which were based
on an input image Ii. The images Ii and Ir were of size N ×M pixels. We used
the pixel values of a 3 × 3 kernel matrix as the inputs of the cartesian program.
Figure 3.13 in Chapter 3, Section 3.5 provides an example of an image operator
evaluation procedure in CGP.
For the filtered image we took a size of (N −2)× (M −2) pixels. The reason for this
is the convolution problem on the edges of the input image which is often treated
by ignoring the edges. Let

MDPP :=
∑N−2

i=1
∑M−2

j=1 |If (i, j)− Ir(i, j)|
(N − 2)(M − 2)

be the mean difference per pixel between the reference image Ir and the filtered
image If . If MDPP is zero, the images If and Ir are identical, except the pixels on
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7 Advanced Crossover Operators

Table 7.6: Results for the single output Boolean function problems of the second
experiment

Problem Crossover Crossover rate [%] Mean SD 1Q Median 3Q
Generations

Parity-5

Subgraph

0 140046 232897 18812 63434 153966
20 144100 269526 19241 52155 151565
50 76651‡ 163377 8549 22494 68392
70 53552‡ 73833 12624 27438 58253
90 59238‡ 115555 10910 29951 59834

Block

20 50461‡ 66847 15320 24783 46199
50 36909‡ 38641 10215 21477 47070
70 31284‡ 30653 10892 23175 40381
90 47927‡ 62411 17296 28306 53631

Parity-6

Subgraph

0 231000 456531 28085 70396 205451
20 172585 364813 22760 70833 224780
50 136644 254251 24754 52091 115374
70 176057 281030 23250 70369 204457
90 82437‡ 120038 16192 37451 95735

Block

20 97750 96379 38929 67502 111229
50 48000‡ 41788 24187 34011 62665
70 40595‡ 32630 16347 30984 53007
90 53465‡ 47503 25219 40304 72420

Parity-7

Subgraph

0 546206 738980 95363 283023 602712
20 362886‡ 1183156 47202 118699 323969
50 396758† 574841 58663 132519 435769
70 226581‡ 326875 57824 111351 284247
90 199142‡ 242284 43430 101077 249247

Block

20 196584‡ 197527 64510 120965 234348
50 120744‡ 107974 55620 88423 141738
70 115988‡ 102361 53547 86416 142296
90 135588‡ 117007 62643 104993 166933
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7.5 Evaluation of the proposed Methods

Table 7.7: Results for the multiple-output Boolean function problems of the second
experiment

Problem Crossover Crossover rate [%] Mean SD 1Q Median 3Q
Generations

Add.-1Bit

Subgraph

0 431 1042 62 194 435
20 259† 386 49 115 249
50 236 291 87 132 286
70 272 300 89 165 346
90 321 335 119 230 392

Block

20 277 323 77 156 333
50 195† 215 76 141 250
70 478 656 103 231 529
90 441 617 101 233 568

Add.-2Bit

Subgraph

0 24020 36796 3814 9540 26967
20 19452 32228 3475 8658 20038
50 12980 15538 4177 7678 13233
70 16035 28576 3615 7316 16561
90 15102‡ 28690 2303 5093 14763

Block

20 32653 33245 10135 21875 49101
50 50691 50857 11846 26798 77675
70 87045 119871 26242 51351 102212
90 101499 101633 28668 66968 130013

Sub.-2Bit

Subgraph

0 35493 57016 5380 15025 40364
20 24722 36585 6540. 13077 30838
50 20014 27364 4661 8861 25205
70 17930 20571 4917 11057 21731
90 15137† 20550 4185 9077 19768

Block

20 25839 38432 3336 12201 29760
50 23332 27110 5563 14425 31679
70 24945 28042 5122 17016 33450
90 31954 25911 10591 26025 45643

Mul.-2Bit

Subgraph

0 9365 12104 1586 4830 11125
20 6551 7629 2497 3965 8282
50 7675 10117 2147 4251 9652
70 8289 9723 2258 5191 11211
90 9240 9255 2281 5097 14667

Block

20 7232 6094 2937 5722 8858
50 11251 10008 4374 7603 15581
70 11793 9986 3942 9175 17181
90 21632 21886 6949 14285 28999
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Figure 7.5: Boxplots for the parity prob-
lems evaluated with subgraph
crossover
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7.5 Evaluation of the proposed Methods
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Figure 7.7: ¸Boxplots for the multiple out-
put problems evaluated with
subgraph crossover

101.5

102

102.5

103

103.5

104

0 20 50 70 90

G
en

er
at

io
ns

Adder-1 Bit

103

104

105

106

0 20 50 70 90

G
en

er
at

io
ns

Adder-2 Bit

102

103

104

105

0 20 50 70 90

G
en

er
at

io
ns

Subtractor-2 Bit

102.5

103

103.5

104

104.5

105

0 20 50 70 90
Crossover rate in %

G
en

er
at

io
ns

Multiplier-2 Bit

Figure 7.8: Boxplots for the multiple out-
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7 Advanced Crossover Operators

Figure 7.9: Salt & Pepper
noise

Figure 7.10: Gaussian
noise

Figure 7.11: Original im-
age

Table 7.8: Configuration of the third experiment
Property Configuration
Maximum node count 20
Number of inputs 9
Number of outputs 1
Population size 100
Function set OR, AND, XOR, ADD, ADD⋆, MAX, MIN, AVG
Mutation rate 0.05
Tournament selection size 4
Image size 64x64 pixels
⋆ADD with saturation

the edges. As a test image, we chose the famous Lena image. We added Gaussian
Noise (Figure 7.10) and Salt & Pepper noise (Figure 7.9) to the Lena image and
chose them as input images.
The goal of the resulting problem was to evolve a filter, which reduces the noise in
reference to the Lena image without noise as shown in Figure 7.11. We defined the
termination criterion with a MDPP of less than or equal 3. The configuration and
function set for the experiment are shown in Table 7.8. The function set consisted
of eight low-level image processing functions.

Table 7.9 shows the results of our third experiment, and it is visible that the use
of the subgraph and block crossover leads to a reduced number of generations until
the algorithm successfully terminated.
Figures 7.12 and 7.13 provide boxplots for the results of the image operator design
problems.

7.5.5 Crossover Comparison

We compared the arithmetic crossover [13] to the subgraph crossover. We measured
the generations until the termination criteria triggered (generation-to-termination)
and the best fitness of run, similar to our previous experiments. The parameters for
CGP were also similar. The crossover rate was set to 90%.
Table 7.10, 7.11, 7.12, 7.13 and 7.14 show the results of the crossover technique com-
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7.5 Evaluation of the proposed Methods

Table 7.9: Results for the problems of the third experiment
Problem Crossover Crossover rate [%] Mean SD 1Q Median 3Q

Generations

Salt & Pepper noise

Subgraph

0 2187 2799 394 1335 2533
20 1395‡ 1829 258 627 1588
50 1269‡ 1660 249 781 1727
70 1726 2192 405 1023 1896
90 1200‡ 1418 245 786 1624

Block

20 1348 1443 338 827 1774
50 1079‡ 1423 243 568 1406
70 1032‡ 1044 273 630 1549
90 1240† 1560 308 779 1510

Gaussian noise

Subgraph

0 3937 4373 1145 2459 4891
20 2414† 2101 834 1846 3120
50 3401 3366 808 2828 4869
70 3203 2485 1518 2585 4174
90 2673† 2754 754 1884 3438

Block

20 3053 2884 731 2158 4291
50 2954 2567 705 2297 4361
70 2501‡ 2788 594 1766 3638
90 3241 3346 1091 2344 4108
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Figure 7.12: Boxplots for the image oper-
ator design problems evalu-
ated with subgraph crossover
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7 Advanced Crossover Operators

Table 7.10: Results of the crossover comparison for the symbolic regression problems
Koza 2,3 & Nguyen 4,5,6

Problem Method Mean SD 1Q Median 3Q
Generations

Koza-2 Arithmetic 14688 23422 2746 8403 17551
Subgraph 8642‡ 10021 2419 5538 12194
Block 1636‡ 2166 288 677 2033

Koza-3 Arithmetic 2691 4305 376 964 3153
Subgraph 2493‡ 2456 546 1543 3996
Block 861‡ 2120 185 363 657

Nguyen-4 Arithmetic 8298115 10699730 739946 2856322 8715789
Subgraph 161754‡ 190997 24570 95716 233140
Block 182651‡ 220627 31223 93438 272722

Nguyen-5 Arithmetic 22829 55422 1976 7782 20733
Subgraph 3262‡ 4106 576 2007 4176
Block 6254‡ 13885 1145 2571 7221

Nguyen-6 Arithmetic 228610 547165 3171 44337 248089
Subgraph 4552‡ 12332 292 750 2040
Block 7673‡ 26876 650 1942 4367

Table 7.11: Results of the crossover comparison for the symbolic regression problems
Nguyen-7, Keijzer-6, Pagie-1

Problem Method Mean Best SD 1Q Median 3Q
Fitness

Nguyen-7 Arithmetic 0.64 0.26 0.55 0.67 0.68
Subgraph 0.49† 0.30 0.28 0.45 0.67
Block 0.52 0.35 0.28 0.55 0.68

Keijzer-6 Arithmetic 9.36 8.61 3.94 6.01 11.25
Subgraph 2.80† 0.91 2.36 2.81 3.14
Block 3.04† 1.62 2.20 2.94 3.28

Pagie-1 Arithmetic 128.95 48.77 80.12 137.34 160.38
Subgraph 105.88‡ 48.32 68.01 89.52 146.23
Block 98.03‡ 42.46 62.52 77.46 140.21
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7.5 Evaluation of the proposed Methods

Table 7.12: Results of the crossover comparison for the single output Boolean func-
tion problems

Problem Method Mean Best SD 1Q Median 3Q
Generations

Parity-5 Arithm. 898477 259872 1000000 1000000 1000000
Subgraph 59238‡ 115555 10910 29951 59834
Block 47927‡ 62411 17296 28306 53631

Parity-6 Arithm. 942262 206752 1000000 1000000 1000000
Subgraph 92888‡ 155648 16192 37451 95735
Block 53465‡ 47503 25219 40304 72420

Parity-7 Arithm. 1825487 504094 2000000 2000000 2000000
Subgraph 199142‡ 241070 43430 101077 249247
Block 135588‡ 117007 62643 104993 166933

Table 7.13: Results of the crossover comparison for the multiple output Boolean
function problems

Problem Method Mean Best SD 1Q Median 3Q
Generations

Add.-1Bit Arithmetic 5036 15509 565 1026 3559
Subgraph 321‡ 335 119 230 392
Block 441‡ 617 101 233 568

Add.-2Bit Arithmetic 99389 125828 28394 59583 111513
Subgraph 15102‡ 28546 2303 5093 14763
Block 101499 101633 28668 66968 130013

Sub.-2Bit Arithmetic 637929 4301481 135410 1000000 1000000
Subgraph 15137† 20550 4185 9077 19768
Block 31954‡ 25911 10591 26025 45643

Mul.-2Bit Arithmetic 43980 139033 10272 19017 29511
Subgraph 9240‡ 9255 2281 5097 14667
Block 21632† 21886 6949 14285 28999

Table 7.14: Results of the crossover comparison for the image operator problems
Problem Method Mean Best SD 1Q Median 3Q

Generations

Salt & Pepper noise Arithmetic 5410 3463 2193 4797 9704
Subgraph 1175‡ 1419 246 654 1571
Block 1240‡ 1560 308 779 1510

Gaussian noise Arithmetic 9762 987 10000 10000 10000
Subgraph 2383‡ 2086 856 2045 3734
Block 3241‡ 3346 1091 2344 4108
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7 Advanced Crossover Operators

Table 7.15: Upper generation limits and success rates for the arithmetic crossover
Problem Upper generation count limit Success rate
Nguyen-4 3 ∗ 107 0.83
Parity-5 106 0.16
Parity-6 106 0.08
Parity-7 2 ∗ 106 0.10
Sub.-2Bit 106 0.45
Salt & Pepper noise 104 0.75
Gaussian noise 104 0.06

parison. Compared to the arithmetic crossover, the subgraph and block crossover
perform significantly better on our tested problems. On some of the tested prob-
lems, the arithmetic crossover caused occasional runs, which took a huge number of
generations. Consequently, we defined upper limits, which are shown in Table 7.15
with the corresponding success rates.

7.6 Fitness Improvement Analysis
To investigate possible conducive effects caused by the use of the crossover meth-
ods, we measured the number of fitness improvements on all benchmark problems
of the evaluation part of this chapter. The total number of fitness improvements
was increased in a measurement run if the offspring had a better fitness value than
its parents. We performed 100 measurement runs for each problem and for each
crossover method, which has been proposed in this chapter. Afterward, we calcu-
lated the median and the first and third quartiles. On the basis of these values,
we illustrated the results of the measurements for various crossover rates with the
help of boxplots. The boxplots for the symbolic regression problems are shown in
Figures 7.14 and 7.15. Figures 7.16, 7.17, 7.18 and 7.19 illustrate the results for the
Boolean function problems. Moreover, Figures 7.20 and 7.21 illustrate the result of
the measurement for the image operator design problems. Even when it is visible
that the use of both crossover methods leads to a higher median number of fitness
improvements when compared to the measurements of the mutation-only CGP, it
must be said that the outcome of the analysis cannot be used to make statements
about conducive effects. In the first place, our findings are not coherent with the re-
sults of our search performance experiments, especially when it comes to the results
of the respective crossover rates. The analysis also didn’t include the magnitude of
the improvements which should be utilized to allow more accurate findings.

7.7 A Comparative Study on Crossover
7.7.1 Experimental Setup
We have performed experiments on problems from the symbolic regression and
Boolean function domains. To evaluate the search performance, we measured the
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Figure 7.14: Boxplots for fitness improvements analysis on the symbolic regression
problems when subgraph crossover is used.
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Figure 7.15: Boxplots for fitness improvements analysis on the symbolic regression
problems when block crossover is used.
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Figure 7.16: Boxplots for the fitness im-
provements analysis on the
parity problems when sub-
graph crossover is used.
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Figure 7.17: Boxplots for the fitness im-
provements analysis on the
parity problems when block
crossover is used.
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Figure 7.18: Boxplots for the fitness
improvements analysis on
the boolen multiple output
problems when subgraph
crossover is used.
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provements analysis on the
boolen multiple output prob-
lems when block crossover is
used.
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Figure 7.20: Boxplots for the fitness improvements analysis on the image operator
design problems when subgraph crossover is used.
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Figure 7.21: Boxplots for the fitness improvements analysis on the image operator
design problems when block crossover is used.
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best fitness value found after a predefined number of fitness function evaluations
(best-fitness-of-run). For all problems, the fitness was to be minimized. Our compar-
ison has focused on four crossover operators. standard one-point crossover, subgraph
crossover, arithmetic crossover and block crossover.
The evolution used a generational model. The initial population was randomly gen-
erated. Parent genomes for the next generation are picked using two separate tourna-
ments, which allow for the same individual to be picked multiple times. The parents
and a crossover operator are used to create two offspring, which are then mutated.
This process is repeated until a sufficient number of offspring has been created. The
next generation consists of offspring and a certain percentage of the best individuals
(elites) from the previous generation.
In addition, two more evolutionary setups were added for comparison. The none
crossover setup uses the same evolutionary scheme, but the offspring it creates are
identical clones of their parents, leaving mutation as the only active genetic operator.
The (1+λ) setup foregoes the above described setup and implements the traditional
CGP algorithm.
We first performed two rounds of meta-evolutionary experiments in order to deter-
mine which evolutionary parameters were critical, so that the crossover operators
can all use their optimal setting, and be compared in a fair way.
The two most important parameters were then subject to a parameter sweep, and for
every crossover operator the best performing combination of parameters has been
selected for comparison. To classify the significance of our results, we have used
the Mann-Whitney U Test, to compare the standard (1 + λ)-CGP with all other
crossover operators.
The implementation was done in Java, using the Java Evolutionary Computation
Toolkit (ECJ) [84, 136]. All experiments were performed on a computing cluster
with the following hardware configuration: 2 x Intel Xeon E5-2680v3 processor, 2.5
GHz, 12 cores; 128GB RAM, 5.3 GB cache per core, DDR4@2133 MHz; InfiniBand
FDR56 network connection. The levels back parameter l was set to ∞.

7.7.2 Meta-optimization

For our experiments we used Meta-optimization, which can be described as an tech-
nique, which uses a certain optimization algorithm to tune the parameters of an-
other optimization algorithm. Basically, meta-optimization is a simple way of finding
performant parameters settings for a certain optimizing algorithm by using an over-
laying optimizing algorithm which is called the meta-optimizer. Meta-optimization
is considered to be first used in the late 1970s by Mercer and Sampson. For their
work, Mercer and Sampson [94] used meta-optimization for finding the optimal pa-
rameter configuration of a genetic algorithm. Meta-optimization is also known as
meta-evolution when evolutionary algorithms are used as the meta-optimizer. A so
called meta-evolutionary algorithm (Meta-EA) is then an evolutionary algorithm
which is used to optimize the parameters of a second underlying evolutionary algo-
rithm. A meta-EA consists of two levels, a meta-level and an underlying base-level.
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Meta-Optimizer

Optimizer

Problem(s)

Figure 7.22: Meta-optimization

Table 7.16: Configuration of the first round of the meta-evolutionary GA.
Property Setting Evolved parameter Possible values
Maximum generations 50 Mutation rate 0.01 – 0.20
Population size 10 Elitism rate 0, 0.05 – 0.50
Mutation probability 0.5 Population size 2 – 1024⋆

Mutation type Random walk Genotype length 2 – 1024⋆

Tournament size 2 Tournament size 2 – 1024⋆

Number of trials 5
⋆{2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024}.

At the base-level, the EA, which parameters are intended to optimize, is executed.
The parameters which are optimized at the base-level are represented as individuals
on the meta-level. The individuals of the meta-level are mainly represented as vec-
tors. These vectors consist of values that fit a predefined parameter type and range.
The values of the vectors are passed to the base-level EA. The quality or fitness
of the Meta-EA’s individuals can be measured by the fitness of the best base-level
individual, which has been found after a predefined budget of fitness evaluations.
A parameter tuning usually consists of two phases. The first phase is the evalu-
ation of effective parameter settings. A meta-evolution system typically evolves a
set of effective parameter settings. Afterward, these settings must be validated for
the particular problem, and the best collection of parameters is selected afterward.
Figure 7.22 illstrates the optimization structure with the respective meta and base
levels.
For the meta-level, we used a basic canonical GA to tune five parameters we con-
sidered most important to the evolutionary process. Meta-evolution is very costly
in terms of the computational effort necessary to find an optimal parameter setting.
Furthermore, since GP benchmark problems can be very noisy in terms of finding the
ideal solution, the evaluation of the evolved individuals is repeated multiple times,
with fitness defined as the mean result. During the first round of meta-evolution,
all problems used the same setting, and the evolved parameters have been limited
to discrete values, as seen in Table 7.16. During the second round, the granularity
and range were modified to better fit each individual problem. Because the (1 + λ)
scheme does not use tournament selection nor elitism, the two parameters have been
ignored during its meta-evolution.
Results of the first round of meta-evolution have revealed that the tournament size
parameter behaves wildly and does not converge to any specific value for any problem
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nor type of crossover. In some cases, it even significantly outgrew the population
size. This caused the tournaments to include the entire population, resulting in a
crossover of the best individual with itself, and wholly defeated the purpose of the
crossover operator. To prevent this from happening, the tournament size has not
been included in the second round of meta-evolution, and its value has been fixed
to four.
Table 7.17 shows the results of the second round of meta-evolution which were used
to set up the ensuing parameter sweep. Because the computational effort required
to perform a parameter sweep grows exponentially with the number of parameters,
only the two most important parameters, mutation rate and population size, were
included in the sweep.
The ideal elitism rate was similar across all problems and types of crossover. For
the sweep, it has been set to the overall average of 15%. Combined with the fixed
tournament size of four, this means that during the sweep, there would be 52.2%
chance that none of the individuals in a tourney would be elites from the previous
generation. The ideal genotype length was highly variable and largely depended on
the problem, rather than the type of crossover used. For the sweep, the genotype
length was set up individually for each problem.

7.7.3 Boolean Functions

We have chosen to evolve both single and multiple output Boolean functions. 2-bit
digital adder and multiplier were used as our multiple output problems. Former work
by White et al. [160] proposed these, as suitable alternatives to the overused parity
problems. Their fitness was defined as a hamming distance between the resulting
truth table and the ideal solution. To increase the speed of the evaluation, we have
used compressed truth tables.
For single output problems, we used 8-bit bent and 1-resilient Boolean functions.
These functions find their use in cryptography, where they can provide an LFSR
based key-stream generator of a stream cipher with resistance to linear and correla-
tion attacks [11].
Bent Boolean functions possess the maximum possible degree of nonlinearity, defined
as the Hamming distance between the truth table of a given function, and truth
tables of all linear functions and their negations. For an 8-bit function, maximum
degree of nonlinearity is 120 [116]. We defined their fitness, as the difference between
its actual degree of nonlinearity and the optimal value.
1-resilient functions are highly nonlinear functions that are balanced and have cor-
relation immunity of the first degree. Balancedness means that the function’s truth
table contains the same number of ones and zeros. Correlation immunity, means that
if the truth table was split in half based on the value of a specific input, the two
halves of the truth table would each remain balanced. To the best of our knowledge,
the maximum possible nonlinearity of an 8-bit 1-resilient function is unknown, but
it cannot be higher than 116 [133]. We defined the fitness, as the difference between
the actual degree of nonlinearity and the optimal value, and if the evolved function
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Table 7.17: Results of the second round of the meta-evolutionary GA. The table
shows the best-performing combination of the four tuned parameters.

Problem Algorithm Mutation Elitism Population Genotype
rate rate size length

Adder

(1 + λ) 0.010 – 4 512
None 0.01 0.080 4 384
Block 0.010 0.100 4 1536
Subgraph 0.010 0.060 6 768
One-point 0.020 0.240 6 96
Arithmetic 0.025 0.260 6 96

Multiplier

(1 + λ) 0.050 – 3 24
None 0.020 0.200 4 96
Block 0.035 0.220 4 128
Subgraph 0.040 0.040 4 64
One-point 0.035 0.020 4 64
Arithmetic 0.010 0.060 6 384

Bent

(1 + λ) 0.140 – 24 128
None 0.090 0.200 24 512
Block 0.045 0.220 3 128
Subgraph 0.040 0.200 12 256
One-point 0.100 0.240 12 256
Arithmetic 0.050 0.200 6 256

Resilient

(1 + λ) 0.070 – 2 64
None 0.070 0.200 32 2048
Block 0.120 0.260 3 96
Subgraph 0.090 0.260 3 96
One-point 0.035 0.200 192 512
Arithmetic 0.025 0.280 6 256

Koza-3

(1 + λ) 0.080 – 24 64
None 0.150 0.100 64 64
Block 0.190 0.220 96 32
Subgraph 0.070 0.200 14 16
One-point 0.090 0.080 16 24
Arithmetic 0.120 0.280 12 32

Nguyen-4

(1 + λ) 0.070 – 24 192
None 0.050 0.140 192 1024
Block 0.110 0.080 6 96
Subgraph 0.170 0.160 32 96
One-point 0.180 0.160 6 128
Arithmetic 0.050 0.100 16 128

Nguyen-7

(1 + λ) 0.130 – 64 32
None 0.110 0.180 12 96
Block 0.100 0.100 6 48
Subgraph 0.220 0.100 6 192
One-point 0.090 0.280 64 256
Arithmetic 0.160 0.120 4 48

Pagie-1

(1 + λ) 0.050 – 2 384
None 0.100 0.100 64 768
Block 0.100 0.200 4 1536
Subgraph 0.090 0.060 4 256
One-point 0.050 0.080 8 1024
Arithmetic 0.090 0.220 32 512
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Table 7.18: Configuration of the Boolean function parameter sweep.
Property Adder Multiplier Bent Resileint
Input bits 5 4 8 8
Output bits 3 4 1 1
Genotype length 512 96 256 192
Mutation rate 0.002 – 0.02 0.005 – 0.05 0.01 – 0.1 0.01 – 0.1
Population size 2 – 48⋆ 2 – 48⋆ 2 – 48⋆ 2 – 48⋆

Fitness evaluations 10000 5000 2000 5000
Tournament size 2 2 2 2
Percentage of elites 0.15 0.15 0.15 0.15
⋆{2, 3, 4, 6, 8, 12, 16, 24, 32, 48}.

was not resilient, its fitness was further penalized by 58, half the known limit.
Table 7.18 shows the setting used for the parameter sweep of Boolean functions.
Each setting was run one hundred times, for every problem and type of crossover.
All problems used the following function set AND, OR, XOR, AND with one in-
put inverted. Because the best performing population size was usually very small,
we have reduced the tournament size to two, to avoid repeating the issue from the
first round of meta-evolution. For problems where the optimized setting could rou-
tinely find the ideal solution, we have also reduced the number of fitness function
evaluations to get more telling results.
Table 7.19 shows the results of the parameter sweep. For each problem and crossover
operator, we have selected combination of mutation rate and population size, which
provided the best mean fitness over the hundred runs. Those that performed signif-
icantly different from (1 + λ), have their mean values marked. The table also shows
the standard deviation (SD) and three quantiles.
Figure 7.23 provides visual comparison using box plots. The Arithmetic crossover,
originally intended for use in symbolic regression, performs the worst when used for
Boolean function design. For adder and multiplier problems, the (1 + λ) strategy
has significantly surpassed all other approaches. However, for the bent function,
there was no statistically significant difference, and for the 1-resilient function, the
(1 + λ) has performed significantly worse than the other options. Here, even with
an optimal setting, some runs failed to produce a resilient function, resulting in
significant deterioration of the average fitness.

7.7.4 Symbolic Regression

For symbolic regression, we have chosen four problems from the work of Clegg et
al. [13] and McDermott et al. [90] for better GP benchmarks, and the Pagie-1 one
problem proposed by White et al. [160] as an alternative to the heavily overused
Koza-1 (“quartic") problem. The analytic functions of the problems are shown in
Table 7.20. The training data set U[a, b, c] refers to c uniform random samples drawn
from a to b inclusive and E[a, b, c] refers to a grid of points evenly spaced with an
interval of c, from a to b inclusive.
The fitness of the individuals was represented by a cost function value, defined as the
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Table 7.19: Results of the parameter sweep for Boolean functions.
Problem Crossover Mutation Pop. Mean SD Q1 Median Q3

type rate size fitness

Adder

(1 + λ) 0.010 2 4.26 3.39 1 4 6
None 0.008 3 6.61‡ 3.46 4 6 9
Block 0.010 3 6.88‡ 3.24 5 7 8
Subgraph 0.010 3 6.60‡ 3.91 4 6 9
One-point 0.014 2 6.99‡ 3.56 4.75 6.5 8.25
Arithmetic 0.010 3 6.96‡ 3.10 5 7 9

Multiplier

(1 + λ) 0.035 2 1.13 1.00 0 1 2
None 0.020 4 2.09‡ 1.48 1 2 3
Block 0.035 3 2.14‡ 1.54 1 2 3
Subgraph 0.015 3 1.85‡ 1.42 1 2 3
One-point 0.020 4 2.03‡ 1.50 1 2 3
Arithmetic 0.025 2 2.23‡ 1.52 1 2 3

Bent

(1 + λ) 0.050 2 2.92 3.86 0 0 8
None 0.060 24 4.10 4.37 0 4 8
Block 0.040 8 3.89 4.00 0 4 8
Subgraph 0.050 32 4.28 4.19 0 4 8
One-point 0.050 16 4.04 3.92 0 4 8
Arithmetic 0.050 3 4.88 4.09 0 8 8

Resilient

(1 + λ) 0.070 2 16.89 19.66 4 4 20
None 0.070 4 5.84‡ 5.06 4 4 4
Block 0.080 6 6.64‡ 5.69 4 4 4
Subgraph 0.040 6 6.24‡ 5.46 4 4 4
One-point 0.090 4 6.12‡ 5.28 4 4 4
Arithmetic 0.040 3 8.48† 6.94 4 4 14

† p-value is less than 0.05. ‡ p-value is less than 0.01.

Table 7.20: Symbolic regression problems used in the experiment.
Problem Objective function Vars Training set
Koza-3 x6 − 2x4 + x2 1 U[-1, 1, 20]
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U[-1, 1, 20]
Nguyen-7 ln(x + 1) + ln(x2 + 1) 1 U[0, 2, 20]
Pagie-1 1/(1 + x−4) + 1/(1 + y−4) 2 E[-5, 5, 0.4]

Table 7.21: Configuration of the symbolic regression parameter sweep.
Property Koza-3 Nguyen-4 Nguyen-7 Pagie-1
Genotype length 48 128 128 512
Mutation rate 0.02 – 0.2 0.02 – 0.2 0.02 – 0.2 0.02 – 0.2
Population size 4 – 96⋆ 4 – 96⋆ 4 – 96⋆ 4 – 96⋆

Fitness evaluations 10000 10000 10000 10000
Tournament size 4 4 4 4
Percentage of elites 0.15 0.15 0.15 0.15
⋆ {4, 6, 8, 12, 16, 24, 32, 48, 64, 96}.

139



7 Advanced Crossover Operators

Figure 7.23: Comparison of crossover operators for Boolean functions.

sum of the absolute differences between the correct function values and the values of
an evaluated individual. The configuration of the experiment is shown in Table 7.21.
All problems used the following set of mathematical functions {+, −, ∗, /, sin, cos,
ln(|n|), en}.
Table 7.22 shows the parameter sweep results. Same as before, the primary selected
criterion was the best average fitness over one hundred runs. Crossover operators
that performed significantly different from (1 + λ), have their mean values marked.
As can be seen in Figure 7.24, the arithmetic crossover performs very well, when
used for symbolic regression, as originally designed.

7.8 Discussion

The primary concern of our experiments was to find significant contributions of
the proposed subgraph and block crossover techniques to the search performance
of CGP in different problem domains. One point which should be discussed is the
observation of the crossover rate in Section 7.5. On the nearly all of the tested
problems, a medium and a high crossover rate led to the best results. However, on
some problems, a low crossover rate led to the best results or no improvement of the
search performance was achieved.
For this behavior, we have no general and provable explanation yet. A preliminary
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Table 7.22: Results of the parameter sweep for symbolic regression.
Problem Crossover Mutation Pop. Mean SD Q1 Median Q3

type rate size fitness

Koza-3

(1 + λ) 0.16 24 0.07 0.08 0.01 0.05 0.08
None 0.12 16 0.06 0.08 0.01 0.04 0.08
Block 0.06 12 0.06 0.08 0.02 0.05 0.08
Subgraph 0.16 64 0.07 0.08 0.02 0.05 0.08
One-point 0.14 96 0.06 0.06 0.02 0.03 0.09
Arithmetic 0.12 12 0.04 0.04 0.01 0.03 0.08

Nguyen-4

(1 + λ) 0.12 6 0.31 0.27 0.16 0.25 0.38
None 0.10 8 0.33 0.23 0.17 0.29 0.41
Block 0.08 16 0.35 0.28 0.18 0.29 0.41
Subgraph 0.10 6 0.37† 0.29 0.19 0.34 0.49
One-point 0.10 12 0.33 0.24 0.16 0.29 0.42
Arithmetic 0.08 8 0.32 0.23 0.16 0.26 0.43

Nguyen-7

(1 + λ) 0.18 64 0.67 0.43 0.43 0.59 0.77
None 0.10 6 0.69 0.37 0.45 0.61 0.81
Block 0.12 24 0.76† 0.34 0.55 0.72 0.92
Subgraph 0.12 32 0.77† 0.45 0.51 0.72 0.96
One-point 0.16 16 0.71 0.3741 0.44 0.70 0.84
Arithmetic 0.14 6 0.81† 0.50 0.55 0.70 0.83

Pagie-1

(1 + λ) 0.08 8 130.88 48.22 93.74 122.79 160.89
None 0.06 96 134.51 46.70 96.31 140.63 170.56
Block 0.04 96 126.11 45.79 87.47 122.37 161.16
Subgraph 0.08 64 150.48‡ 46.92 115.01 161.96 181.65
One-point 0.06 8 130.61 48.96 96.44 122.49 169.57
Arithmetic 0.04 8 120.15 45.71 84.60 114.43 152.56

† p-value is less than 0.05. ‡ p-value is less than 0.01.

Figure 7.24: Comparison of crossover operators for symbolic regression.
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and hypothetical assumption could be that certain combinatorial structures of the
respective problems are susceptible to genetic variation. For instance, on the multi-
output problems, multiple outputs lead to various semantics. On some of these
problems variation steps which are caused by the subgraph and block crossover
could be even more disruptive compared to single output structures. This assump-
tion is backed by the observation that the block crossover did not contribute to
the search performance on the majority of the tested multi-output problems. How-
ever, for more significant statements, a more detailed investigation of the subgraph
crossover is needed. It should be based on the automated tuning of the crossover
rate on a diverse set of problems.

Another point which should be discussed is the population size. For our experiments,
we used sizes that are oriented with former work on CGP [13] and sizes which are
empirically determined. However, it should be investigated which population sizes
perform most efficiently in different problem domains when the crossover is used.
Former work by Miller [97] outlined that very small population sizes can be very
efficient for Boolean function problems. Based on Miller’s experiments, we plan to
investigate the use of the subgraph crossover with a (µ + λ) evolutionary algorithm
and small population sizes. Concerning the selection pressure, we would like to point
out that the size of the tournament in our experiment was based on empirical ob-
servations and should be taken with caution.

Our results raise the question in which way the subgraph crossover improves the
search performance of CGP under certain conditions. At this time, we can only
provide a preliminary and hypothetical suggestion. We assume that the use of the
subgraph crossover leads to more exploration of high fitness regions in the search
space. When parent graphs of high fitness are recombined, the number of diverse
children with high fitness may be increased.Related to our comparison to the arith-
metic crossover, we would like to point out that the parameters for the comparison
were determined empirically. For a more significant comparison, an automated tun-
ing of the CGP parameters for both techniques is necessary and should be included
in future work.

In our meta-optimization experiments of the presented comparative study in Sec-
tion 7.7, we dealt with significant problems to make a fair comparison. We were able
to determine optimal parameter settings for the (1 + λ)-CGP as the tuning con-
sists of only three parameters: population size, mutation rate, and genotypic length.
However, determining optimal parameter settings for the canonical crossover-based
algorithms is more complex. There are three additional parameters to contend with:
crossover rate, elitism rate, and tournament size, which makes obtaining an optimal
parameter setting for the respective problems significantly more difficult.

Furthermore, former studies on the traditional (1 + λ)-CGP algorithm have shown
that large genotypes are very effective for the performance of CGP for certain prob-
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lems. Consequently, we have to deal with a big parameter space in CGP to determine
the optimal parameters and to make a fair comparison.

Another point which should be discussed is the observation that each type of crossover
works best with different settings. Our findings indicate that there exists no general
parameterization pattern for CGP when the crossover is in use. We think it should
be investigated if there are similar behaviors like exploration abilities which could
be obtained by fitness and search space analyses.

The results of our study show that the parameter settings vary for different problems
in the respective problem domain and indicate that there is no general pattern to
parametrize the (1 + λ)-CGP in a well-performing way. These findings also open up
a new question, which conditions or types of problems have the need for bigger or
smaller population sizes. A preliminary assumption could be that the fitness land-
scape of certain problems requires more exploration abilities in order to overcome
local optima.

Our results indicate that bigger populations perform well in the symbolic regression
domain. This finding is consistent with the results of Chapter 5 which also indicates
that bigger populations perform best in the symbolic regression domain.

Since our experiments validate the results of Chapter 5, this behavior should be
investigated through more detailed experiments. Furthermore, we think that these
findings offer a good opportunity to get more understanding of how CGP works in
detail and can significantly contribute to the overall knowledge of the fitness land-
scape analysis in CGP.

Specifically, the results in Chapter 5 show that a mutation-only (µ+λ) evolutionary
algorithm with a bigger population size can be very effective. Therefore, we think it
should be investigated whether the subgraph and the block crossover can be used
with a (µ+λ) evolutionary algorithm, like a part of our attempts to proceed toward
more precise comparative studies in CGP.

7.9 Conclusion

In this chapter, we proposed two new methods of crossover for CGP. In our evalua-
tion part of our experiments, the use of the subgraphand block crossover resulted in
a significantly smaller number of generations until the CGP algorithm terminated
successfully, in a better fitness value, and better convergence behavior. The exper-
iments on our test problems indicate that the subgraph and the block crossover
technique may be beneficial for the search performance of CGP. Moreover, we have
demonstrated the potential of both methods for a diverse set of problems, including
different functions and types of fitness. Our preliminary comparison to the arithmetic
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7 Advanced Crossover Operators

crossover technique indicates a significantly better performance for the subgraph and
the block crossover on our tested problems.
In addition to the proposal of two new crossover techniques, a comparative study on
crossover in CGP has been proposed. We have performed a comparative study with
two evolutionary methods that use only mutation, and four other crossover oper-
ators. Beside the block crossover, simple one-point crossover, arithmetic crossover,
used in the field of real-valued Genetic Algorithms, and Subgraph Crossover that
recombines parts of the parent chromosome phenotypes were included.
We performed a comparison on eight selected tasks from the areas of Boolean func-
tion design and symbolic regression. We have used meta-evolution to determine the
most important evolutionary parameters and find common values for the parameters
of lower importance.
Next, we have performed a series of parameter sweeps, to determine the settings most
suitable for every type of crossover and every task, and performed a comparison.
Finally, we have performed a non-parametric statistical test to prove our hypothesis
false and shown that the (1 + λ)-CGP is significantly outperformed by all other
approaches, when designing 1-resilient Boolean functions.
The results show, that it is possible for crossover operators to outperform the stan-
dard (1 + λ) strategy. However, if both methods have their parameters fine-tuned,
the (1+λ) strategy often remains as the overall best strategy. The question of finding
a universal crossover operator is CGP, therefore, remains open.
This chapter opens a new perspective on comparative studies on the use of crossover
in CGP and its challenges. The experiments with meta-evolution in CGP have shown
that it is difficult to obtain well-performing parameter settings for crossover algo-
rithms in CGP.

The following concluding remarks can be formulated on the basis of the results of
our experiments:

• It is possible for crossover operators to outperform the standard (1+λ)-strategy
in CGP

• It is a difficult task to determine the optimal parameter setting for crossover
based algorithms since the dimensionalty of the parametrization evaluation
task is generally higher (e.g. more parameters have to be tuned)

• A larger comparative study is needed which is oriented with the parameter
tuning approach in Chapter 5

144



8 Advanced Mutation Operators

8.1 Introduction
In contrast to tree-based GP for which a broad range of advanced crossover and
mutation techniques have been introduced and investigated; the state of knowledge
of advanced mutation techniques in CGP appears to be relatively weak. In standard
tree-based GP, the simultaneous use of multiple types of mutation has been found
beneficial by Kraft et al. [69] and Angeline [1]. In this chapter, we propose two phe-
notypic mutations for CGP and take a step toward advanced phenotypic mutations
in CGP. Furthermore, we present comprehensive experiments with Boolean function
and symbolic regression problems to demonstrate that our proposed mutation can
be beneficial for the use of CGP.

8.2 Related Work

8.2.1 Advanced Mutation Techniques in standard CGP

For an investigation of the length bias and search limitation of CGP, a modified
version of the point mutation has been introduced by Goldman and Punch [32].
The modified point mutation exactly mutates one active gene. This so-called single
active-gene mutation strategy (SAGMS) has been found beneficial for the search
performance of CGP. The SAGMS can be seen as a form of phenotypic genetic op-
erator since it respects only active function genes in the genotype which are an active
part of the corresponding phenotype. Later work by Manfrini et al. [89] extended
SAGMS to the so-called Biased Single-Active Mutation, which is generally based on
the idea of analyzing the genotypic behavior of the during the evolutionary run for a
given set of problems. With this analysis, a bias is created in order to help the direct
gene mutation when applied to other problems. For every time, when the fitness of
the offspring has better fitness as its parent, the mutation is considered beneficial.
Every time when a beneficial mutation occurs, it is examined if this mutation oc-
curred on a executing function of the parent. In this case, the beneficial function
transition from the function in the parent genome to the function in the offspring
genome is stored. With the storage of beneficial function transitions, a frequency
table of all transitions is created, which is used to create a probability distribution
of function transitions. The mutation operator was proposed for digital combina-
tional logic circuit design. The experiments of Manfrini et al. demonstrated that the
proposed mutation performed better or equivalent as the traditional point mutation.
To reduce the stalling effect in CGP and to improve the efficiency of the CGP al-
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Figure 8.1: Deletions and insertions of nucleotides.

gorithm, Ni et al. [108] introduced an Orthogonal Neighbourhood Mutation (ONM)
operator.The results of the experiments demonstrated that the ONM operator can
reduce the stalling effect in CGP and the algorithm improves more quickly.
The proposed mutations for CGP are inspired by biological evolution in which ex-
tra base pairs are inserted into a new place in the DNA or in which a section of
DNA is deleted. Figure 8.1 exemplifies the insertion and deletion mutation on the
DNA sequence. Related to CGP, we adopt these so-called frameshift mutations by
activating and deactivating randomly chosen function nodes. The activation and de-
activation of the nodes are done by adjusting the connection genes of neighborhood
nodes. Both mutation techniques work similarly as the single active-gene mutation
strategy. The state of exactly one function node in the genome is changed. Since
these forms of mutation can elicit strong changes in the behavior of the individuals,
we apply an insertion rate and a deletion rate for every offspring. Based on these
mutation rates, the decision is made whether the mutations are performed on the
genome of an individual. The insertion and deletion mutation techniques work in-
dependently from each other, which means that both mutations can be performed
on the genome of the individual in the breeding procedure of one generation. If the
consideration of a minimum or a maximum number of function nodes is necessary
for all individuals in the population, the algorithms can be parameterized with max-
imum and minimum numbers. We will explain both mutation techniques in detail
in the following two subsections. For both mutation techniques, we determine the
active and passive function nodes of the respective individual before the mutation
procedure.

8.3 The Insertion Mutation Technique
When a genome is selected for the insertion mutation, one inactive function node
becomes active. If all function nodes are already active or the number of active
function nodes excels a defined maximum, the mutation is rejected. If an individual
is suitable for the insertion mutation, we randomly select one inactive function node.
After selection, we have to distinguish three cases:

1. The selected inactive node has a following active function node
In this context, the term following function node means that the node number
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8.3 The Insertion Mutation Technique

of an active function node is higher than the function number of the randomly
selected node. If the selected node has a following active function node, we
copy the connection genes of the next active node to the selected inactive node.
Afterward, we adjust one randomly selected connection gene of the following
active node to the selected inactive node. In this way, the selected inactive node
will be respected by the backward search and consequently becomes active. No
further steps are required for the previously active function node since all other
active function nodes remain active due to the copying of the connection genes.

2. The selected inactive node has a previous active function node and
no following active function node
In this context, the term previous active function node means that the node
number of an active function node is smaller than the function number of the
randomly selected node. If the selected node has a previous active function
node and no following active node, at least one output node is connected with
the previous active function node. In this case, we adjust all output nodes
which are connected with the previously active function node to the selected
inactive node. Afterward, we adjust one connection gene of the selected node to
the previously active function node. The other connection genes are randomly
connected to previous active function or input nodes. In this way, the selected
inactive node becomes active, and the other inactive function nodes remain
inactive.

3. The selected inactive node has no previous or following active func-
tion node
If the selected inactive node has no previous or following active function node,
the individual has no active function nodes. Consequently, the output nodes
are directly connected with an input node. If this is the case, we adjust at
least one output node to the selected inactive node. Afterward, we randomly
connect the connection genes of the selected inactive node to input nodes. In
this way, the selected node becomes active, and other function nodes remain
inactive.

Definition 8.1 (Insertion Mutation). The insertion mutation is a variation operator
for CGP which selects and activates one inactive function node of a cartesian genetic
program, where the inactive node is selected by chance.

The three cases are illustrated in Figure 8.2. A defintion of the insertion mutation is
given in Definition 8.1. Figure 8.3 exemplifies the insertion technique. In the figure,
the genotype is grouped into a number of genes that represent the function and
output nodes. Moreover, active function nodes are highlighted in solid boxes, and
inactive nodes are shown in dashed boxes. The selected active or inactive nodes
are highlighted in red. As visible, one inactive node is selected for activation. The
connection genes in the genotype are adjusted to activate the selected function node

147



8 Advanced Mutation Operators

0   2  1 

*

*

+
2 4

4

x

1

63    2    2
5

3
/

0

1 5

OP1

2   0   1   2   0   0 
OP132

0   4   5
6

Case 1 
 

The selected inactive node has 
following active function

node(s)
+

6

Selected inactive node

0   2  1 

*

*

+
2 4

4

x

1

23    2    2
5

3
/

0

1 5

OP1

2   0   1   2   0   0 
OP132

0   4   5
6

Case 2 
 

The selected inactive node has a
previous active function node

and no following active function
node(s)

+
6

Case 3 
 

The selected inactive node has
no previous or following active

function node

0   2  1 

*

*

+
2 4

4

x

1

13    2    2
5

/

0 OP1

2   0   1   2   0   0 
OP132

0   4   5
6

+
5 63

Figure 8.2: The three cases which have to be distinguished for the insertion mutation
procedure.

in the phenotype. The procedure is described in more detail in Algorithm 8.5. The
corresponding subfunctions of the procedure are described in Algorithms 7.1, 8.1,
8.2, 8.3 and 8.4.
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Figure 8.3: The proposed insertion mutation technique.

Algorithm 8.1 Insertion mutation: Function for the determination of the following
active function node (FAFN)

Arguments
NA: Sorted list containing the active node numbers
np: A previously selected number of an inactive/passive node
Return
nc: Determined following active function node number
ic: Corresponding index in NA

1: function DetermineFAFN(NA, np)
2: j ← 0 ▷ Initialize the loop counter
3: nc ← NA[0] ▷ Store the first active node in nc

4: ▷ While the given passive node number is smaller than the current active node number
5: while nc < np do
6: j ← j + 1 ▷ Increase the loop counter
7: ic ← j ▷ Store the index in ic

8: nc ← NA[j] ▷ Determine the current active function node
9: end while

10: ▷ Return the the following active function node and the corresponding index in NA

11: return nc, ic
12: end function
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8 Advanced Mutation Operators

Algorithm 8.2 Insertion mutation: Function for the determination of the starting
position in the genome of a given node number

Arguments
n: Function node number
i: Number of inputs
a: Maximum arity size
Return
p: Starting position of n

1: function PositionFromNodeNumber(n, i, a)
2: ▷ The genome position is calculated with the node number, number of inputs and the maximum

arity
3: p← (n− i) + (a + 1)
4: return p ▷ Return the position
5: end function

Algorithm 8.3 Insertion mutation: Function for the adjustment of the output nodes
Arguments
G: Genome of an individual
O: List with output nodes
NA: List with active function node numbers
nr: Randomly selected inactive function node
sa: Number of active function nodes
Return
G: Genome with adjusted outputs

1: function AdjustOutputs(G,O, NA, nr, sa )
2: nl ← NA[sa − 1] ▷ Save the last active function node in nl

3: sg ← |G| ▷ Determine the size of G

4: j ← 1 ▷ Initialize loop counter
5: while j ≤ |O| do ▷ Iterate over the number of outputs
6: if G[sg − j] = nl then ▷ If an output is connected to the last active function node
7: G[sg − j]← nr ▷ Rewire the output to the randomly selected inactive node nr

8: break ▷ The node is now active, consequently abort the iteration
9: end if

10: j ← j + 1 ▷ Increase the loop counter
11: end while
12: return G ▷ Return the Genome
13: end function
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8.3 The Insertion Mutation Technique

Algorithm 8.4 Insertion mutation: Function for the adjustments of the connection
genes of a particular function node

Arguments
G: Genome of an individual
NA: List with active function node numbers
I: List with input nodes
nr: Randomly selected inactive function node
pr: Position of nr
a: Maximum arity size
Return
G: Genome with adjusted connection genes

1: function AdjustConnectionGenes(G, NA, I, nr, pr, a )
2: j ← 1 ▷ Initialize loop counter
3: np ← NA.last() ▷ Store the previous active function node of nr (last active function node)
4: while j ≤ a do ▷ Iterate over the maximum arity
5: pc ← pr + j ▷ Calculate the position depending on the iteration
6: if j = 1 then ▷ Check for the first connection gene
7: G[pc]← np ▷ Rewire this connection to the previous active function node
8: else
9: ▷ The other connectios are rewired to randomly selected input or previous active function

nodes
10: G[pc]← RandomNodeNumber(I,NA, np) ▷ Algorithm 7.1
11: end if
12: end while
13: return G ▷ Return the genome
14: end function
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Algorithm 8.5 Insertion mutation: The function for the main mutation procedure
Arguments
NA: Sorted list of active node numbers, NI: Sorted list of inactive node numbers
G: Genome of an individual, a: Maximum arity size
O: List with output nodes, I: List with input nodes
a: The maximum arity
Return
G: The mutated genome

1: function Insertion(NA,NI, G, a, O, I)
2: nr ← RandomNodeNumber(NI) ▷ Get an inactive random node number (Alg. 7.1)
3: ▷ Get the genome position of node nr (Alg. 8.2)
4: pr ← PositionFromNodeNumber(nr, i, a)

5: sa ← |NA| ▷ Determine the size of NA

6: si ← |NI| ▷ Determine the size of NI

7: if si = 0 then ▷ If all nodes are active, abort the mutation procedure
8: return
9: end if

10: if sa > 0 then ▷ First two cases, at least one node is active
11: if nr < NA[sa − 1] then ▷ Case 1: Node nr has following active function node(s)
12: ▷ Determine the first following active function node (FAFN) (Alg. 8.1)
13: nf ← DetermineFAFN(NA, nr)
14: ▷ Get the genome position of node nf (Alg. 8.2)
15: pf ← PositionFromNodeNumber(nf , i, a)
16: j ← 1 ▷ Initialize the loop counter
17: while j ≤ a do ▷ Loop over the maximum arity
18: pc ← pr + j ▷ Store the current gene position of the interation in pc

19: G[pc]← G[pf + j] ▷ Transfer the current gene from the node nf to nr

20: j ← j + 1 ▷ Increase the loop counter
21: end while
22: ▷ Choose a connection gene for node nf by random
23: ri ← RandomInteger(0, a− 1)
24: G[pf + ri + 1]← nr ▷ Rewire the connection to node nr, nr will become active

25: ▷ Case 2: Node nr has a previous active function node and no following ones
26: else if nr > NA[sa − 1] then
27: G← AdjustOutputs(G, O, NA, nr, sa) ▷ Adjustment of the outputs

(Alg. 8.3)
28: ▷ Adjust the connection genes (Alg. 8.4)
29: pr ← PositionFromNodeNumber(nr, i, a)
30: G← AdjustConnectionGenes(G, NA, I, nr, pr, a)
31: end if
32: else ▷ Case 3: Node nr has no previous or following active function node
33: sg ← |G| ▷ Determine the size of G

34: G[sg − 1]← nr ▷ Connect one output to the selected inactive node
35: j ← 1 ▷ Initialize loop counter
36: while j ≤ a do ▷ Iterate over the maximum arity
37: pc ← pr + j ▷ Calculate and save the position of the j-th connection gene of node nr

38: ▷ Connect the connection gene with a randomly selected input
39: G[pc]← RandomNodeNumber(I)
40: end while
41: end if
42: return G ▷ Return the mutated genome
43: end function



8.4 The Deletion Mutation Technique
In contrast to the insertion mutation technique, when a genome is selected for dele-
tion mutation, one active node becomes inactive. If all function nodes are inactive
or the number of active function nodes is smaller than a defined minimum, the mu-
tation is rejected. If an individual is suitable for the deletion mutation, we select the
first active function node of the individual.
The deletion mutation procedure is then done by performing the following steps:

a Adjust the connection genes of all following active function nodes

The connection genes of all following active function nodes which are connected
with the selected active function node are randomly adjusted to other active
function or input nodes.

b Adjust the outputs nodes

All output nodes which are connected with the selected active function nodes
are randomly adjusted to other active function or input nodes.

After performing the adjustment of connection genes and output nodes, the selected
active function node becomes inactive. A defintion of the delection mutation is given
in Definition 8.2.

Definition 8.2 (Deletion Mutation). The deletion mutation is a variation opera-
tor for CGP which deactivates the first active function node of a cartesian genetic
program.

Figure 8.4 illustrates the deletion mutation where one active node becomes inactive
by adjusting the respective connection genes. The algorithmic procedure is described
in more detail in Algorithm 8.7. The corresponding subfunctions are described in
Algorithms 7.1 and 8.6.

8.5 Experiments
8.5.1 Experimental Setup
We performed experiments with Boolean function and symbolic regression prob-
lems. To evaluate the search performance of the insertion and deletion of mutation
techniques, we measured the number of fitness evaluations until the CGP algorithm
terminated and the best fitness which has been found. In addition to the mean val-
ues of the measurements, we also calculated the standard deviation (SD) and the
standard error of the mean (SEM), the median and the first and third quartile. We
performed 100 independent runs with different random seeds and applied the well
known (1 + 4)-CGP algorithm for all experiments. Moreover, we used the standard
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Figure 8.4: The proposed deletion mutation technique
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Algorithm 8.6 Deletion Mutation Technique: Subfunction for the decoding of the
gene type

Arguments
p: Position of the gene
g: Value of the gene
n: Number of function nodes
a: Maximum arity size
Return
gc, gf or go: Type of the gene at position p

1: gc ← 0 ▷ Integer to represent a connection gene
2: gf ← 1 ▷ Integer to represent a function gene
3: go ← 2 ▷ Integer to represent a output gene
4: function DecodeGenotype(p, n, a)
5: if p ≥ n · (a + 1) then ▷ If p exceeds the maximum index of function/connection genes
6: return go ▷ It must be an output gene
7: ▷ Each node is represented with a+1 genes, so we can use the modulo operator to check if it

is a function gene
8: else if p % (a + 1) = 0 then
9: return gf

10: else ▷ Last possible case: Its a connection gene
11: return gc

12: end if
13: end function
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Algorithm 8.7 Deletion Mutation Technique: The main mutation procedure
Arguments
NA: Sorted list of active function nodes , G: Genome of an individual
a: Maximum arity size, O: List of outputs, I: List of inputs
Return
G: The mutated genome

1: gc ← 0 ▷ Integer to represent a connection gene
2: gf ← 1 ▷ Integer to represent a function gene
3: go ← 2 ▷ Integer to represent a output gene
4: function Deletion(NA,NI, G, a, O, I)
5: sa ← |NA| ▷ Determine the size of NA

6: si ← |NI| ▷ Determine the size of NI

7: sn ← sa + si ▷ Calculate the total number of function nodes
8: if sa = 0 then ▷ If no function node is active, abort the mutation procedure
9: return

10: end if
11: n0 ← NA[0] ▷ Store the first active function node in n0

12: NA.remove(n0) ▷ Remove the first active function node from the list
13: j ← 0
14: while j < |G| do ▷ Iterate over the genome
15: ▷ Determine and store the type of the gene (Alg. 8.6)
16: g ←DecodeGenotype(G[j],sn,a)
17: if g = gc then ▷ If it is a connection gene
18: nc ←NodeNumber(j,G) ▷ Determine the current node number
19: ▷ If the node is active and linked with the first active function node
20: if NA.contains(nc) and G[j] = n0 then
21: ▷ Rewire the connection gene with a randomly selected input or active function node
22: G[j]← RandomNodeNumber(I, NA, nc − 1) ▷ Alg. 7.1
23: end if
24: ▷ If a output is connected to the deleted first active function node
25: else if g = go and G[j] = n0 then
26: ▷ Rewire the output gene with a randomly selected active function or input node (Alg. 7.1)
27: G[j]← RandomNodeNumber(I, NA)
28: end if
29: j ← j + 1 ▷ Increase loop counter
30: end while
31: return G ▷ Return the mutated genome
32: end function
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Problem Number Number
of Inputs of Outputs

Parity-3 3 1
Parity-4 4 1
Parity-5 5 1
Parity-6 6 1
Parity-7 7 1
Adder 1-Bit 3 2
Adder 2-Bit 5 3
Adder 3-Bit 7 4
Multiplier 2-Bit 4 4
Multiplier 3-Bit 6 6
Demultiplexer 3:8-Bit 3 8
Comparator 4x1-Bit 4 18

Table 8.1: Boolean function problems for the search performance evaluation.

Property Value
µ 1
λ 4
Number of nodes 100
Maximum generations 20000000
Function set AND, OR, NAND, NOR
Point mutation rate 4%

Table 8.2: Configuration of the 1 + 4-CGP algorithm.

CGP point mutation operator in combination with the insertion and deletion muta-
tions. We considered minimization problems in all experiments which are explained
in the respective subsection. To assess the significance of our results, we used the
Mann-Whitney-U-Test. The mean values are denoted a† if the p-value is less than
the significance level 0.05 and a‡ if the p-value is less than the significance level 0.01
compared to the use of the point mutation as the sole genetic operator. The levels
back parameter l was set to ∞.

8.5.2 Search Performance Evaluation

Boolean Function Problems
To evaluate the search performance of the insertion and deletion mutation tech-
niques, we chose the five Even-Parity problems with n = 3, 4, 5, 6, and 7 Boolean
inputs. The goal was to find a program that produces the value of the Boolean even
parity depending on the n independent inputs. The fitness was represented by the
number of fitness cases for which the candidate solution failed to generate the cor-
rect value of the even parity function.
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Problem Point mutation Insertion Deletion
rate [%] rate [%] rate [%]

Parity-3 2.5 40 25
Parity-4 1.5 7.5 5
Parity-5 1 8 2
Parity-6 1 6 4
Parity-7 1 6 3
Adder 1-Bit 2 5 5
Adder 2-Bit 1 10 10
Adder 3-Bit 1 5 5
Multiplier 2-Bit 2 5 5
Multiplier 3-Bit 1 6 3
Demultiplexer 3:8-Bit 2 10 10
Comparator 4x1-Bit 1 5 5

Table 8.3: Insertion and deletion rates for the (1 + 4)-CGP-ID algorithm.

Since former work by White et al. [160] outlined that this problem type was exces-
sively used and investigated in the past, we also evaluated multiple output problems
as the digital adder, multiplier, and demultiplexer. These types of problems differ
markedly from the parity problems, and the 3-Bit digital multiplier has been pro-
posed as a suitable alternative. As a result, we receive a diverse set of problems
in this problem domain. The set of benchmark problems with the corresponding
number of inputs and outputs is shown in Table 8.1. To evaluate the fitness of the
individuals on the multiple output problems, we defined the fitness value of an in-
dividual as the number of different bits to the corresponding truth table. To find
performant configurations for the insertion and deletion mutation rates, we used
automated parameter tuning. The evolved configurations are shown in Table 8.3.
We compared the (1 + 4)-CGP algorithm to our modified (1 + 4)-CGP algorithm
equipped with the insertion and deletion mutation techniques. Our modified (1+4)-
CGP is denoted as (1 + 4)-CGP-ID. The number of function nodes was set to 100
for all tested problems. Following conventional wisdom for CGP, we use a point
mutation rate of 4% for the traditional (1 + 4)-CGP algorithm. The algorithm con-
figuration of the (1 + 4)-CGP algorithm is shown in Table 8.2. We performed the
runtime measurement on a computer with a Intel(R) Core(TM) i7 CPU 930 with
2.80 GHz and 24 GB of RAM.
Table 8.4 presents the results of our search performance evaluation, which show a
reduced number of generations until the termination criterion triggers for the (1+4)-
CGP-ID algorithm. The results also show that when the (1 + 4)-CGP-ID is used on
more complex Boolean function problems, the mean runtime of the algorithm is also
clearly reduced. Figure 8.5 provides boxplots for all tested problems of the search
performance evaluation.

Symbolic Regression

To evaluate the search performance in the symbolic regression domain, we chose
eleven symbolic regression problems from the work of McDermott et al. [90] for
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Figure 8.5: Boxplots for the results of the search performance evaluationv.

160



better GP benchmarks. The functions of the problems are shown in Table 8.6. A
training data set U[a, b, c] refers to c uniform random samples drawn from a to b
inclusive and E[a, b, c] refers to a grid of points evenly spaced with an interval of
c, from a to b inclusive. The respective constants and function sets are shown in
Table 8.7. We included the problems Keijzer-6, Nguyen-7, Pagie-1, Vladislavleva-
4 and Korns-12, which have been recommended by White et al. [160] as a set of
significant problems with different reputations. According to White et al. [160] the
Keijzer-6 and Vladislavleva-4 problems require extrapolation, not just interpolation.
The Korns-12 problem is the only problem which could not be solved in [64] even
when several specialized techniques were applied. According to [160] the dataset is
specified, consisting of 5 variables, but only 2 affect the output. In this way, the
problems challenges the ability of systems to discard unimportant variables. The
authors of [154] state that by attempting to solve the Vladislavleva-4 problem their
system appears to have most difficulties in discovering the simple and harmonious
input–output relationship. The Pagie-1 problem has a reputation for difficulty [37,
112] despite being smooth and scalable. White et al. [160] also stated that the same
is true for the Vladislavleva-4 problem. The Nguyen-7 problem features different
basic functions from the others.

The fitness of the individuals was represented by a cost function value. The cost
function was defined by the sum of the absolute difference between the true function
values and the values of an evaluated individual.

When the sum of absolute differences becomes less than 0.01, the algorithm is classi-
fied as converged. All problems were evaluated with the best-fitness-of-run method.
We measured the best fitness value after a budget of 10000 generations. Addition-
ally, we evaluated the simpler symbolic regression problems Koza 1,2 & 3 with the
fitness-evaluation-to-termination method. For this purpose we used a smaller func-
tion set consisting of the four basic arithmetic functions +, − , ∗ and /. We defined a
maximum number of 106 fitness evaluations for these three experiments. The reason
for our choice of these three problems is the fact that we can find an ideal solution
more likely on average than the other more complex benchmark problems, which
require a higher amount of fitness evaluations to find an ideal solution. To find per-
formant configurations for the insertion and deletion mutation rates, we tuned the
respective parameters manually. For all tested problems, we observed that a point
mutation rate of 4% seems to be a good choice for the use of the insertion and
deletion mutations. The determined configurations are shown in Table 8.5.

Table 8.8 and 8.9 present the results of our search performance evaluation in the
symbolic regression domain, which show a better (smaller) mean fitness value of run
and a reduced number of fitness evaluations until the termination criterion triggers
for the (1 + 4)-CGP-ID algorithm. Figure 8.6 and 8.7 provide boxplots for all tested
problems of the search performance evaluation.
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Problem Point mutation Insertion Deletion
rate [%] rate [%] rate [%]

Koza-1 4 5 5
Koza-2 4 5 5
Koza-3 4 5 7.5
Nguyen-4 4 5 5
Nguyen-5 4 5 5
Nguyen-7 4 7.5 5
Keijzer-6 4 10 5
Pagie-1 4 5 5
Vladislavleva-4 1 5 5
Korns-12 1 10 5

Table 8.5: Insertion and deletion rates for the (1 + 4)-CGP-ID algorithm for the
tested symbolic function problems.

Table 8.6: List of symbolic regression problems for the search performance evalua-
tions.

Problem Objective Function Vars Training Set Function Set
Koza-1 x4 + x3 + x2 + x 1 U[-1,1,20] Koza
Koza-2 x5 − 2x3 + x 1 U[-1,1,20] Koza
Koza-3 x6 − 2x4 + x2 1 U[-1,1,20] Koza
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U[-1,1,20] Koza
Nguyen-5 sin(x2) cos(x)− 1 1 U[-1,1,20] Koza
Nguyen-6 sin(x) + sin(x + x2) 1 U[-1,1,20] Koza
Nguyen-7 ln(x + 1) + ln(x2 + 1) 1 U[0,2,20] Koza
Keijzer-6 ∑x

i 1/i 1 E[1,50,1] Keijzer
Pagie-1 1/(1 + x−4) + 1/(1 + y−4) 2 E[-5,5,0.4] Koza
Vladislavleva-4 10

5+(x−3)2+(y−3)2+(z−3)2+(v−3)2+(w−3)2 5 U[0.05,6.05,1024] Vladislavleva-A
Korns-12 2− 2.1 cos(9.8x) sin(1.3w) 5 U[-50, 50, 10000] Korns

Table 8.7: Function sets for the set of symbolic regression problems.
Name Functions Constants (ERC)
Koza + − ∗ / sin cos en ln(|n|) Constant input with a value of 1
Keijzer + ∗ 1

n − n
√

n Random value from N(µ = 0, σ = 5)
Vladislavleva-A + − ∗ / n2 nϵ n + ϵ nϵ

Korns + − ∗ / sin cos en ln(|n|) Random finite 64-bit IEEE 754
n2 n3 tan tanh

√
n double-precision number
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Problem Algorithm Mean SD SEM 1Q Median 3Q
Fitness Evaluations

Koza-1 (1 + 4)-CGP 113757 276255 ±27625 1544 5084 28641
(1 + 4)-CGP-ID 86313† 63980 ±25923 864 2408 15527

Koza-2 (1 + 4)-CGP 359337 410241 ±41024 13951 133352 822057
(1 + 4)-CGP-ID 211194† 313048 ±31304 8127 46594 256673

Koza-3 (1 + 4)-CGP 348474 405892 ±40589 6743 109994 790608
(1 + 4)-CGP-ID 217992† 355736 ±35573 3877 31258 190603

Table 8.9: Results of the search performance evaluation for the tested symbolic re-
gression problems Koza 1,2 and 3 evaluated by the fitness-evaluations-to-
termination method.

Problem Algorithm Crossover Point mut. Insertion Deletion
rate [%] rate [%] rate [%] rate [%]

Parity-3 (2 + 2)-CGP 50 4 - -
(2 + 2)-CGP-ID 75 1 10 10

Parity-4 (2 + 2)-CGP 75 4 - -
(2 + 2)-CGP-ID 75 2 20 20

Parity-5 (2 + 2)-CGP 75 4 - -
(2 + 2)-CGP-ID 75 1 8 2

Parity-6 (2 + 2)-CGP 75 4 - -
(2 + 2)-CGP-ID 50 1 6 3

Parity-7 (2 + 2)-CGP 50 4 - -
(2 + 2)-CGP-ID 50 1 6 3

Adder 1-Bit (2 + 2)-CGP 25 4 - -
(2 + 2)-CGP-ID 50 2 7.5 7.5

Adder 2-Bit (2 + 2)-CGP 25 4 - -
(2 + 2)-CGP-ID 50 1 10 10

Adder 3-Bit (2 + 2)-CGP 25 4 - -
(2 + 2)-CGP-ID 50 1 10 5

Multiplier 2-Bit (2 + 2)-CGP 25 4 - -
(2 + 2)-CGP-ID 50 2 5 5

Multiplier 3-Bit (2 + 2)-CGP 50 4 - -
(2 + 2)-CGP-ID 50 1 6 3

Demultipl. 3:8-Bit (2 + 2)-CGP 25 4 - -
(2 + 2)-CGP-ID 75 2 10 10

Comparator 4x1-Bit (2 + 2)-CGP 25 4 - -
(2 + 2)-CGP-ID 75 1 5 5

Table 8.10: Parametrization of the (2+2)-CGP and (2+2)-CGP-ID algorithms using
subgraph crossover.
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Figure 8.6: Boxplots for the results of the search performance evaluation for the
tested symbolic regression problems evaluated by the best-fitness-of-run
method.
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Figure 8.7: Boxplots for the results of the search performance evaluation for
the problems Koza 1,2 and 3 evaluated by the fitness-evaluations-to-
termination method.

8.5.3 Comparison to EGGP

Next, we compare three advanced CGP algorithms to a recently introduced method
for evolving graphs called Evolving Graphs by Graph Programming (EGGP). EGGP
has been introduced by Atkinson et al. [3]. In their experiments, Atkinson et al.
compared EGGP to standard CGP and showed that EGGP performs significantly
better on the majority of the tested Boolean function problems. Consequently, we
chose EGGP as the baseline for our algorithm comparison. Furthermore, since we
evaluated the same set of Boolean function problems as Atkinson et al. we directly
compared the results of our experiments with the results in Atkinson et al. For our
algorithm comparison, we chose the (1 + 4)-CGP-ID algorithm and also compared
EGGP to a (2 + 2)-CGP algorithm with µ = 2 and λ = 2. The (2 + 2)-CGP
algorithm was equipped with the subgraph crossover technique which has described
and tested in Chapter 7. Moreover, we evaluated the (2 + 2)-CGP algorithm with
and without the use of the insertion and deletion technique. In the presented results,
the (2+2)-CGP equipped with insertion and deletion mutation is denoted as (2+2)-
CGP-ID. We evaluated important parameters like the crossover and mutation rates
empirically. Moreover, we empirically tuned the parameters µ and λ and found
that a configuration of µ = λ = 2 performs best on our benchmark problems. The
parameter settings for the crossover and mutation rates of the (2+2)-CGP and (2+
2)-CGP-ID algorithms are shown in Table 8.10. We measured the number of fitness
evaluations until a correct solution was found, similar to our search performance
evaluation. To compare our results directly, we used the same evaluation method
as Atkinson et al. by calculating the median value, the median absolute deviation
(MAD), and the interquartile range (IQR).
Table 8.11 shows the results of the algorithm comparison for all tested Boolean
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Problem Algorithm Median MAD IQR

Parity-3 (1 + 4)-CGP-ID 1928 1578 2052
(2 + 2)-CGP 2778 2986 4564
(2 + 2)-CGP-ID 2203 1318 2098
EGGP 2755 1558 4836

Parity-4 (1 + 4)-CGP-ID 11920 6876 11061
(2 + 2)-CGP 14723 12391 16432
(2 + 2)-CGP-ID 10701 5333 8711
EGGP 13920 5803 11629

Parity-5 (1 + 4)-CGP-ID 34622 21174 28572
(2 + 2)-CGP 128807 83201 105579
(2 + 2)-CGP-ID 27821 14715 25519
EGGP 34368 15190 30054

Parity-6 (1 + 4)-CGP-ID 92466 42247 74034
(2 + 2)-CGP 534039 505962 721456
(2 + 2)-CGP-ID 69742 31376 46839
EGGP 83053 33273 66611

Parity-7 (1 + 4)-CGP-ID 238426 123789 149330
(2 + 2)-CGP 1966944 1558881 2039929
(2 + 2)-CGP-ID 172182 72077 114928
EGGP 197575 61405 131215

Adder 1-Bit (1 + 4)-CGP-ID 5876 5157 6906
(2 + 2)-CGP 8950 8951 11131
(2 + 2)-CGP-ID 4838 3864 6377
EGGP 5723 3020 7123

Adder 2-Bit (1 + 4)-CGP-ID 84258 64105 85338
(2 + 2)-CGP 191683 146445 212833
(2 + 2)-CGP-ID 60568 40591 55450
EGGP 74633 32863 66018

Adder 3-Bit (1 + 4)-CGP-ID 584198 549282 640965
(2 + 2)-CGP 2991999 2379680 3438321
(2 + 2)-CGP-ID 378685 259886 381805
EGGP 275180 114838 298250

Multiplier 2-Bit (1 + 4)-CGP-ID 10196 17576 17543
(2 + 2)-CGP 17704 20544 19383
(2 + 2)-CGP-ID 7787 10345 10164
EGGP 14118 5553 12955

Multiplier 3-Bit (1 + 4)-CGP-ID 250396 236555 343552
(2 + 2)-CGP 1024142 777862 993072
(2 + 2)-CGP-ID 166686 118461 196298
EGGP 1241880 437210 829223

Demultiplexer 3:8-Bit (1 + 4)-CGP-ID 13704 6736 10797
(2 + 2)-CGP 21047 9443 15538
(2 + 2)-CGP-ID 9978 6394 9554
EGGP 16763 4710 9210

Comparator 4x1-Bit (1 + 4)-CGP-ID 272924 172932 290674
(2 + 2)-CGP 3207723 1788937 3045088
(2 + 2)-CGP-ID 217799 122378 182878
EGGP 262660 84248 174185

Table 8.11: Results of the algorithm comparison.
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Problem Algorithm Mean Active SD SEM 1Q Median 3Q
Function Node Range

Parity-3 (1 + 4)-CGP 33.33 4.54 ±0.45 31.00 33.00 35.00
(1 + 4)-CGP-ID 38.31 7.82 ±0.78 34.00 39.00 43.00

Parity-4 (1 + 4)-CGP 36.18 3.97 ±0.39 33.75 36.00 39.00
(1 + 4)-CGP-ID 50.80 6.04 ±0.60 47.00 51.00 55.00

Parity-5 (1 + 4)-CGP 35.02 4.13 ±0.41 32.75 34.75 37.00
(1 + 4)-CGP-ID 58.81 5.17 ±0.52 56.00 59.00 62.00

Parity-6 (1 + 4)-CGP 35.18 4.52 ±0.45 32.00 34.00 37.25
(1 + 4)-CGP-ID 52.21 6.73 ±0.63 47.00 53.50 57.00

Parity-7 (1 + 4)-CGP 35.21 4.27 ±0.43 33.00 35.00 38.00
(1 + 4)-CGP-ID 51.83 6.80 ±0.68 48.00 51.00 56.25

Adder 1-Bit (1 + 4)-CGP 38.73 5.67 ±0.56 35.00 38.00 42.00
(1 + 4)-CGP-ID 38.98 5.17 ±0.52 36.00 39.00 42.25

Adder 2-Bit (1 + 4)-CGP 36.00 4.04 ±0.40 33.00 36.00 38.25
(1 + 4)-CGP-ID 52.47 9.37 ±0.94 47.00 52.00 60.00

Adder 3-Bit (1 + 4)-CGP 36.82 4.13 ±0.41 34.00 36.00 39.00
(1 + 4)-CGP-ID 45.01 6.59 ±0.66 40.00 44.00 49.00

Multiplier 2-Bit (1 + 4)-CGP 36.31 3.81 ±0.38 34.00 36.00 39.00
(1 + 4)-CGP-ID 38.00 4.95 ±0.49 35.00 37.00 41.00

Multiplier 3-Bit (1 + 4)-CGP 36.46 4.74 ±0.47 33.00 36.00 39.00
(1 + 4)-CGP-ID 41.28 5.47 ±0.55 37.00 40.50 46.00

Demultiplexer 3:8-Bit (1 + 4)-CGP 35.53 4.16 ±0.42 32.75 35.00 38.00
(1 + 4)-CGP-ID 42.69 6.00 ±0.60 39.00 42.00 46.25

Comparator 4x1-Bit (1 + 4)-CGP 30.38 3.53 ±0.35 28.00 30.00 33.00
(1 + 4)-CGP-ID 32.60 5.40 ±0.54 29.00 32.00 36.00

Table 8.12: Results of the active function node range analysis.

function problems. It is visible that the median values of the (2 + 2)-CGP-ID and
EGGP are on the same level. Moreover, it is also evident that we achieved a lower
median value of fitness evaluations for the (2+2)-CGP-ID algorithm on all problems
except the Adder 3-Bit problem of the tested problems. Please note that the results
for EGGP have been directly taken from the work of Atkinson et al.

8.5.4 Active Function Node Range Analysis

To measure the exploration with and without our proposed mutation in phenotype
space, we analyzed the range of the active function nodes. We measured the number
of active function nodes of the best individual in each generation and calculated the
range at the end of each run.
We performed 100 runs for each algorithm and allowed a budget of 2500 generations.
Afterward, we completed the statistical evaluation on the range values for the (1+4)-
CGP and (1+4)-CGP-ID algorithm. To visualize the behavior of the active function
node range, we calculated the smoothed conditional mean over a predefined budget
of generations for each benchmark problem. As smoothing method we used the
generalized additive model approach (GAM) [38, 39].
Table 8.12 and Table 8.13 show the results of the function node range analysis for all
tested boolean function and symbolic regression problems. It is clearly visible that
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Figure 8.8: Visualization of the smoothed conditional mean for the active function
node range analysis over a certain number of generations on all tested
Boolean function problems.
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Figure 8.9: Visualization of the smoothed conditional mean for the active function
node range analysis over a certain number of generations on all tested
symbolic regression problems.
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Problem Algorithm Mean Active SD SEM 1Q Median 3Q
Function Node Range

Koza-1 (1 + 4)-CGP 8.63 3.36 ±0.33 6.75 8.00 11.00
(1 + 4)-CGP-ID 14.16 4.93 ±0.49 10.00 14.00 17.25

Koza-2 (1 + 4)-CGP 10.33 4.20 ±0.42 8.00 10.00 13.00
(1 + 4)-CGP-ID 15.10 4.83 ±0.48 11.75 15.00 17.50

Koza-3 (1 + 4)-CGP 11.04 3.72 ±0.37 8.75 11.00 13.00
(1 + 4)-CGP-ID 15.93 4.87 ±0.48 13.00 16.00 19.25

Nguyen-4 (1 + 4)-CGP 9.51 3.62 ±0.36 7.00 10.00 12.00
(1 + 4)-CGP-ID 14.79 4.53 ±0.45 12.00 15.00 18.00

Nguyen-5 (1 + 4)-CGP 10.31 4.49 ±0.45 6.75 9.00 13.00
(1 + 4)-CGP-ID 14.75 4.33 ±0.43 12.00 15.00 17.00

Nguyen-6 (1 + 4)-CGP 9.27 4.02 ±0.40 6.00 9.00 11.00
(1 + 4)-CGP-ID 13.88 4.82 ±0.48 10.00 14.00 17.25

Nguyen-7 (1 + 4)-CGP 8.52 3.97 ±0.39 5.75 8.00 11.00
(1 + 4)-CGP-ID 13.9 4.70 ±0.47 10.75 14.00 17.00

Keijzer-6 (1 + 4)-CGP 11.61 4.75 ±0.47 8.00 11.00 14.25
(1 + 4)-CGP-ID 13.38 4.73 ±0.47 10.00 13.00 16.00

Pagie-1 (1 + 4)-CGP 12.05 5.37 ±0.53 8.00 12.00 15.00
(1 + 4)-CGP-ID 16.83 7.35 ±0.73 11.00 15.00 22.00

Vladislavleva-4 (1 + 4)-CGP 16.02 5.55 ±0.55 13.00 16.00 20.00
(1 + 4)-CGP-ID 20.93 7.04 ±0.70 17.00 21.00 25.00

Korns-12 (1 + 4)-CGP 7.14 3.25 ±0.32 5.00 7.00 9.00
(1 + 4)-CGP-ID 9.54 4.39 ±0.44 6.00 9.00 12.25

Table 8.13: Results of the active function node range analysis.

the range of active function nodes of the (1 + 4)-CGP-ID is greater compared to
the (1 + 4)-CGP for the majority of our tested problems. Figure 8.8 and Figure 8.9
illustrate the smoothed conditional mean of the active function node range over a
certain number of generations.

8.6 Discussion

The primary concern of our experiments was to find significant contributions of
the insertion and deletion mutation technique to the search performance of CGP.
The results of our experiments showed beneficial effects on a diverse set of symbolic
regression and Boolean function problems. One point which should be discussed
is the runtime measurement of our experiments. On the one hand, we observed a
reduced amount of fitness evaluations when the insertion and deletion mutation
techniques were in use for all tested problems. Our runtime measurement revealed
that the beneficial effects were only significant when the complexity of the problem
is high or when an expensive fitness function is used. Moreover, the use of the
insertion and deletion mutation techniques needs a certain amount of computational
time. However, it is visible that the use of our proposed mutations showed good
runtime results on the more complex Boolean function problems such as the Parity-
7, Adder 3-Bit, and Multiplier 3-Bit problems. We must report that we performed
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our experiments with a naive Java implementation of both mutation techniques. A
more efficient implementation is certainly possible.
Our experiments also addressed the question in which way the insertion and deletion
mutation techniques improve the search performance of CGP. The analytic part of
our experiments was devoted to a range analysis of the active function node of the
best individual in the population. The results of this experiment indicate that our
proposed mutations can lead to more exploration of the phenotype space. Another
answer and explanation to the question of the effectiveness of our proposed mutations
may be found in the work of Goldman and Punch. In their work, Goldman and
Punch [34] analyzed the evolutionary mechanisms of traditional CGP and concluded
that

”We found large sections of the genome were never used by any ancestor
of the final solution. Furthermore, offspring almost never include active
nodes that were inactive in their direct parent but active in a previous
ancestor.”

Goldman and Punch [34, p. 359]

. Moreover, regarding the actual behavior of CGP, Goldman, and Punch also con-
cluded that

”CGP genomes include a surprising amount of redundant and unused
nodes.”

Goldman and Punch [34, p. 372]

Based on the very detailed and precise analysis of Goldman and Punch, we assume
that our proposed mutations cause more activity in these large and normally un-
used sections of the CGP genome by activating inactive function nodes. Another
hypothetical explanation is based on the outcome of another work by Goldman and
Punch [32]. For an investigation of the length bias and search limitations in CGP
the Goldman and Punch found that CGP has an innate parsimony pressure, which
makes it very difficult to evolve individuals with a high percentage of active nodes.
Based on this finding, we assume that the use of the insertion and deletion mutation
techniques counteract the observed innate parsimony pressure. One indicator for
this assumption is the outcome of our active function node analysis. For the (1 + 4)-
CGP-ID algorithm, we observed a wider range of active function nodes which have
been processed throughout the performed evolutionary runs.

Our comparison with EGGP showed that the use of our proposed mutations in com-
bination with the subgraph crossover indicates that these advanced techniques are
beneficial for the use of CGP. Furthermore, on some of our tested problems, we
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achieved a lower median value for the (2 + 2)-CGP-ID algorithm when compared to
EGGP. However, for more significant and meaningful statements about the current
state of EGGP and CGP, a more comprehensive study is needed and should include
different problem domains. For the field of graph-based Genetic Programming, this
point is of high importance because there is comparatively only a little knowledge
about the search performance of CGP and EGGP in other problem domains. More-
over, EGGP and CGP have been mostly evaluated with Boolean function problems
in the past, which resulted in a one-sided state of knowledge. Therefore, we think
that comprehensive comparative studies are needed to expand the current state of
knowledge.

Addressing the reasons of the effectiveness of the (2 + 2)-CGP-ID algorithm, we
have to acknowledge that we do not have any results and answers to the question
in which way the combination of subgraph crossover and our proposed mutations
contribute to the search performance of CGP. The results of our experiments open
two issues that have to be tackled with our future work: In the first place, we have to
find answers in which way the (2 + 2)-CGP-ID algorithm contributes to the search
performance of CGP. To achieve insight into the detailed functional mechanism of
the (2 + 2)-CGP and (2 + 2)-CGP-ID algorithm, we have to understand the pro-
posed methods in detail. As a first step forward, we think a separate investigation
of exploitation and exploration effects of the (2 + 2)-CGP and (2 + 2)-CGP-ID algo-
rithm would be helpful. We also have to tackle the question of why small population
sizes are generally successful in the Boolean domain. Since the effectiveness of the
(1 + 4)-CGP in the Boolean domain is well known in the field of CGP [97, 99], our
experiments with the (2 + 2)-CGP-ID algorithm underline the effectiveness of small
population sizes in the Boolean problem domain. Consequently, there is a need for
more insight into the observed conditions of our experiments.

8.7 Conclusion

Within this chapter, we proposed two new phenotypic mutation techniques and took
a step toward advanced phenotypic mutations in CGP. The results of our experi-
ments clearly show that our proposed methods can be beneficial for the use of CGP.
Our experiments also clearly show that the insertion and deletion mutation tech-
niques can significantly improve the search performance of CGP. We also compared
CGP to another state-of-the-art method for evolving graphs and showed that ad-
vanced crossover and mutation methods allow CGP to perform well.The analytic
part of our experiments indicate that our proposed mutations enable a wider search
in high fitness regions within the search space. We also compared the outcome of the
active node range analysis to former studies and provided hypothetical assumptions
in which way weaknesses and limitations of the standard (1 + λ)-CGP with point
mutation are counteracted by our proposed mutations. However, we would like to
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stress that these assumptions are of hypothetical nature and have to be analyzed by
appropriate experiments.

Summary of the results of the experiments:

• Phenotypic mutations can be used to improve the search performance of mutation-
only CGP

• The proposed mutations can be used in combination with phenotypic recom-
bination to improve the search performance

• Analytic experiments indicate that the use of the proposed mutations enables
a wider search in phenotype space
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9 Evaluation and Analysis

9.1 Introduction

The primary purpose of this chapter is to present the result of a final evaluation of the
methods proposed in this thesis. To classify the significance of the presented methods
and the respective algorithmic setup, the results are compared to the traditional
(1+4)-CGP algorithm. Therefore, this evaluation study intends to investigate if the
use of the presented techniques can be considered as more effective than the use of
the (1+4)-CGP algorithm. We will compare different evolutionary algorithms. Some
of them are consequently equipped with the methods, which have been proposed in
the previous chapters. A list of the algorithms which will be compared in this study
is given in Table 9.1. Algorithms which are equipped with techniques presented in
this thesis are marked with a ⋆. The evaluation part of this chapter is covered in
Section 9.2.
Another part of this chapter is devoted to an analysis of certain algorithms com-
pared in the evaluation sections. On one hand, this analysis includes an investigation
between different settings of the (1 + λ)-CGP and CGP when used with a canonical
evolutionary algorithm. This part of the analysis is presented in Section 9.3. An-
other part of the analysis in devoted to an investigation of the effects caused by the
use of the subgraph crossover. The analysis and the corresponding experiments are
presented in Section 9.3.
At the end of this chapter, we present the results of redundancy and fitness space
analysis in Section 9.5. This analysis sheds more light on the correlation of the level
of redundancy and the size of the space of fitness values. In this way, the analysis
intends to clarify resulting question on the parametrization of the length of the CGP
genotype.

9.1.1 The Need for a New Comparative Study

The results of the meta-evolution in Chapter 7 indicate that the tuning of crossover
algorithms is a complex task and makes fair comparison difficult. This is because
crossover-based CGP algorithms require the configuration of more parameters as the
(1 + λ)-CGP. The outcome of the parameter tuning in Chapter 7 also indicates that
merely relying on the results of the meta-evolution can lead to ineffective param-
eter settings and unfair comparisons. Since the meta-evolution is performed using
an evolutionary algorithm, it is possible that the meta-evolution evolves toward a
local optimum, which results in ineffective parameter settings. Therefore, a solid
and precise parameter tuning needs additional steps, which will be described in the
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Table 9.1: List of the CGP algorithms.

List CGP algorithms
(1 + 4)-CGP Standard (1 + 4)-CGP algorithm
(1 + λ)-CGP Standard (1 + λ)-CGP algorithm
(1 + λ)-CGP-ID ⋆ (1 + λ)-CGP algorithm with

insertion and deletion mutation
(µ + λ)-CGP (Subgraph) ⋆ (µ + λ)-CGP algorithm with

subgraph crossover
(µ + λ)-CGP (Block) ⋆ (µ + λ)-CGP algorithm with

block crossover
(µ + λ)-CGP-ID (Subgraph) ⋆ (µ + λ)-CGP algorithm with

insertion and deletion mutation and subgraph crossover
(µ + λ)-CGP-ID (Block) ⋆ (µ + λ)-CGP algorithm with

insertion and deletion mutation and block crossover
Canonical-CGP (Subgraph) ⋆ Standard canonical EA with

subgraph crossover
Canonical-CGP (Block) ⋆ Standard canonical EA with

block crossover
Real-valued CGP Real-valued CGP with decimal representation
Adaptive real-valued CGP ⋆ Real-valued CGP algorithm with self-

adaptive strategy

following subsection.

Another reason for a new comparative study is that a comparison with a bigger
set of benchmark problems is needed to shed more light on the role of crossover
and advanced mutations in CGP. For instance, in Chapter 7 only 8 problems were
included in a comparative study.

The last reason for this evaluation study is the fact that more detailed research
on the question of crossover itself is needed. The study in Chapter 7 answers the
question that a crossover-based algorithm can be more effective than the standard
(1 + λ) algorithm, but a comprehensive and detailed study on this topic is still
missing.

9.1.2 Parameter Tuning

To determine efficient parameter settings for fair comparisons, we use an approach
to parameter tuning for CGP, which has been described and used in Chapter 5 and
Chapter 7. The parameter tuning is done in three steps. In the first place, a set of
well-performing parameter settings is determined by a meta evolutionary algorithm.
This determined set of parameters is validated manually, and the best configuration
is chosen for further tuning. Finally, the best performing configuration is fine-tuned
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on an empirical level.

9.2 Evaluation of the proposed methods

9.2.1 Experimental Setup

The experimental setup of our comparative study is very similar to the setup in
Chapter 7. We performed experiments on the same problems as in Chapter 7 in
the problem domains of symbolic regression, Boolean functions, and image opera-
tor design. We also included more complex Boolean function problems. To evaluate
the search performance of the tested algorithms, we measured the number of fitness
evaluations until the CGP algorithm terminated successfully (fitness-evaluations-
to-success) and the best fitness value, which was found after a predefined number
of generations (best-fitness-of-run). In addition to the mean values of the measure-
ments, we calculated the standard deviation (SD) and the standard error of the
mean (SEM). To classify the significance of our results, we used the Mann-Whitney-
U-Test. The mean values are denoted a† if the p-value is less than the significance
level 0.05 and a‡ if the p-value is less than the significance level 0.01 compared to the
(1+4)-CGP. Note that the mean values are only denoted with the significance level
marker if the result of a certain algorithm is better than the result of the (1 + 4)-
CGP. We performed 100 independent runs with different random seeds except the
complex and computing-intensive Even-Parity 8 problem for which we performed
only 30 runs. The elitism size was set to 1. For the use of the insertion and dele-
tion mutation, we chose a minimum of 2 active function nodes and maximum of
100 active function nodes. The levels back parameter l was set to ∞. For the block
crossover we used a block size of 2 function nodes.

9.2.2 Benchmarks

Symbolic Regression
We chose nine symbolic regression problems from the work of Clegg et al. [13] and
McDermott et al. [90]. The functions of the problems are shown in Table 9.2. A
training data set U[a, b, c] refers to c uniform random samples drawn from a to b
inclusive and E[a, b, c] refers to a grid of points evenly spaced with an interval of c,
from a to b inclusive. The Koza function set consisted of eight mathematical functions
(+, −, ∗, /, sin, cos, ln(|n|), en) and the Keijzer function set of five mathematical
functions (+, ∗, 1

n , −n ,
√

n ). The fitness of the individuals was represented by a cost
function value. The cost function was defined by the sum of the absolute difference
between the real function values and the values of an evaluated individual.
We evaluated the simpler symbolic regression problems Koza 1,2 & 3 with the fitness-
evaluation-to-termination method. The other, more complex, symbolic regression
problems were evaluated with the best-fitness-of-run method. We defined a maxi-
mum number of 8 ·107 fitness evaluations for these three experiments. The reason for
our choice of these three problems is the fact that we can find an ideal solution more
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Table 9.2: List of symbolic regression benchmarks.
Problem Objective Function Vars Training Set Function Set
Koza-1 x4 + x3 + x2 + x 1 U[-1,1,20] Koza
Koza-2 x5 − 2x3 + x 1 U[-1,1,20] Koza
Koza-3 x6 − 2x4 + x2 1 U[-1,1,20] Koza
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U[-1,1,20] Koza
Nguyen-5 sin(x2) cos(x)− 1 1 U[-1,1,20] Koza
Nguyen-6 sin(x) + sin(x + x2) 1 U[-1,1,20] Koza
Nguyen-7 ln(x + 1) + ln(x2 + 1) 1 U[0,2,20] Koza
Keijzer-6 ∑x

i 1/i 1 E[1,50,1] Keijzer
Pagie-1 1/(1 + x−4) + 1/(1 + y−4) 2 E[-5,5,0.4] Koza

Table 9.3: Function sets for the Boolean function problems.
Problems Function Set
Parity-Even 3,4,5,6,7,8 AND, OR, NAND, NOT, NOR
Adder-1,2,3, Subtractor-2, Multiplier-2,3 Bit AND, OR, NAND, NOR

likely on average than the other more complex benchmark problems, which require
a huge number of fitness evaluations to find an ideal solution. For the more com-
plex problems, we measured the best fitness after a budget of 104 fitness evaluations.

Boolean functions
In the Boolean domain, we chose six Parity-Even problems with n = 3 to 8 Boolean
inputs. The goal was to find a program that produces the value of the Boolean even
parity depending on the n independent inputs. The fitness was represented by the
number of fitness cases for which the candidate solution failed to generate the correct
value of the Even-Parity function.
We also investigated multiple output problems as the 1,2 & 3 -̧Bit-Adder, 2-Bit-
Subtractor, 2-Bit- and 3-Bit-Multiplier. To evaluate the fitness of the individuals on
the multiple output problems, we defined the fitness value of an individual as the
number of different bits to the corresponding truth table. When this number became
zero, the algorithm successfully terminated. We evaluated the problems with the
fitness-evaluations-to-success method. The function sets for the experiments with
the Parity-Evon problems and the multiple output problems are shown in Table 9.3.

Image operator design
We chose the Gaussian noise and Salt & Pepper noise reduction problems, which
are described Section 7. The fitness function was defined as the Mean Difference
per Pixel. The image data consisted of the Lena test image set with an image size
of 128x128 pixel , which includes the input images and reference image is shown
in Figure 9.2,9.1 and 9.3. We evaluated all image operator design problems with
the fitness-evaluations-to-success method. The function set for the image operator
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Table 9.4: Function set for the image operator design problems.
Function Description
OR Bitwise OR
OR⋆ Bitwise OR with one inverted input
AND Bitwise AND
NAND Bitwise NAND
XOR Bitwise XOR
ADD Addition
ADD⋆ Addition with saturation
MAX Maximum
MIN Minimum
AVG Average
ID Indenity
INV Inversion
SWAP Swap upper and lower nibble
RIGHT SHIFT ONE Right bit-shift by one
RIGHT SHIFT TWO Right bit-shift by two
CONSTANT Return of value 255

Figure 9.1: Salt & Pepper
noise

Figure 9.2: Gaussian
noise

Figure 9.3: Original im-
age

design problems is shown in Table 9.4.

All benchmark problems which are used for this study are listed in Table 9.5.

9.2.3 Meta-optimization

Similar to Chapter 7, we performed meta-optimization experiments with the in-
tention to compare CGP algorithms in a fair way. Moreover, we tuned significant
parameters for all used CGP algorithms on the set of benchmark problems. We
used the meta-optimization extension package of the Java Evolutionary Computa-
tion Research System (ECJ). The parameters for the respective CGP algorithms are
given in Table 9.6. For the meta-level, we used a canonical GA. The setting of the
meta-level GA is shown in Table 9.7. The ranges for the number of nodes are ori-
ented with the parameter settings found in Chapter 5. Meta-evolution is very costly
in terms of computational effort, which is necessary to find an optimal parameter
setting. Furthermore, since GP benchmark problems can be very noisy in terms of
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Table 9.5: List of all benchmark problems for the comparison.
Problem Domain Problems
Symbolic Regression Koza-1,2,3; Nguyen-4,5,6,7; Keijzer-6; Pagie-1
Boolean Functions Parity-Even 3,4,5,6,7,8; Adder-1,2,3

Subtractor-2, Multiplier-2,3 Bit
Image Operator Design Gaussian noise reduction,

Salt & Pepper noise reduction

Table 9.6: Parameter space explored by meta evolution for the fundamental CGP
algorithms.

(1 + 4)-CGP
Parameter Description Range
N number of nodes [10,4000]
Mp point mutation rate[%] [1,20]

(1 + λ)-CGP
λ number of offspring [1,1000]
N number of nodes [10,4000]
Mp point mutation rate[%] [1,20]

(1 + λ)-CGP-ID
λ number of offspring [1,1000]
N number of nodes [10,4000]
Mp point mutation rate[%] [1,20]
Mi insertion rate[%] [1,20]
Md deletion rate[%] [1,20]

Canonical-CGP
N number of nodes [10,4000]
Mp point mutation rate[%] [1,20]
C crossover rate[%] [10,100]
P population size [5,1000]
T tournament size [2,20]

(µ + λ)-CGP
µ number of parents [2,150]
λ number of offspring [1,1000]
N number of nodes [10,4000]
Mp point mutation rate[%] [1,20]
C crossover rate[%] [10,100]

(µ + λ)-CGP-ID
µ number of parents [2,150]
λ number of offspring [1,1000]
N number of nodes [10,4000]
Mp point mutation rate[%] [1,20]
Mi insertion rate[%] [1,20]
Md deletion rate[%] [1,20]
C crossover rate[%] [10,100]
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Table 9.7: Configuration of the meta-level GA.
Property Setting
Maximum generations 200
Population size 50
Mutation rate 1/n
Mutation tape gaussian mutation
Tournament selection size 4
Crossover rate 0.7
Crossover type intermediate recombination
Evaluation method best-fitness-of-run
Number of trials 4

finding the ideal solution, we used a common approach of fine-tuning the parameters
which have also been used for the work presented in Chapter 5. The meta-evolution
is repeated several times, and the best settings are used to find the ideal algorithm
setting. This is done afterward with manual fine-tuning of the respective parameters.

Tables 9.8, 9.9, 9.10, and 9.11 show the results of the meta-optimization. The results
in the Boolean domain reveal an effective parametrization pattern, characterized by
the choice of a very small population size and an extremely high number of function
nodes. This finding also holds for the crossover-based algorithms. In the symbolic
regression domain, the number of function nodes is, in average smaller compared to
the Boolean function domain. The results indicate that bigger population sizes seem
to work more effectively in this problem domain. For the image operator design
problems, very small population sizes and an extremely high number of function
nodes seem to be a good choice which is similar to the findings in the Boolean
domain. It can also be observed that the crossover rate for the symbolic regression
problems is higher in average when compared to the rates determined in the Boolean
domain.

9.2.4 Experiments

For the algorithm comparison, which we performed on the basis of the results of
our experiments, we chose the traditional (1 + 4)-CGP as the baseline algorithm.
We evaluated all problems with the respective parameter setting, which had been
determined in meta-optimization part of this study.
The results of our experiments in the symbolic regression domain are shown in
Table 9.12 and Table 9.13. It is visible that the Canonical-CGP algorithm with
subgraph crossover performs better than the (1 + 4)-CGP on all tested problems.
Moreover, on some of the tested problems the use of the block crossover and the
proposed advanced mutations leads to better results when compared to the (1 + 4)-
CGP.
Table 9.14 and Table 9.15 show the results of the algorithm comparison in the
Boolean domain. It is clearly visible that the choice of a λ = 1 results in a reduced
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Table 9.8: Results of the meta optimization for the single output Boolean function
problems.

Problem Algorithm N Mp Mi Md C µ λ P T

Parity-3 (1 + 4)-CGP 2000 1 – – – – – – –
(1 + λ)-CGP 2000 1 – – – – 1 – –
(1 + λ)-CGP-ID 2000 1 5.0 5.0 – – 1 – –
Canonical-CGP (Subgraph) 2000 1 – – 70 – – 10 2
Canonical-CGP (Block) 2000 1 – – 50 – – 5 2
(µ + λ)-CGP (Subgraph) 2000 1 – – 90 4 1 – –
(µ + λ)-CGP (Block) 2000 1 – – 50 4 1 – –
(µ + λ)-CGP-ID (Block) 2000 1 5.0 5.0 50 4 1 – –
Real-valued-CGP 4000 1 – – 70 – – 5 2
Adaptive Real-valued-CGP 4000 [1,20] – – [10,90] – – 5 2

Parity-4 (1 + 4)-CGP 1500 1 – – – – – – –
(1 + λ)-CGP 1500 1 – – – – 1 – –
(1 + λ)-CGP-ID 1500 1 5.0 5.0 – – 1 – –
Canonical-CGP (Subgraph) 1500 1 – – 70 – – 5 2
Canonical-CGP (Block) 1500 1 – – 50 – – 5 2
(µ + λ)-CGP (Subgraph) 1500 1 – – 90 4 1 – –
(µ + λ)-CGP (Block) 1500 1 – – 70 4 1 – –
(µ + λ)-CGP - ID (Subgraph) 1500 1 5.0 5.0 90 4 1 – –
Real-valued-CGP 3000 1 – – 70 – – 5 2
Adaptive Real-valued-CGP 3000 [1,20] – – [10,90] – – 5 2

Parity-5 (1 + 4)-CGP 2000 1 – – – – – – –
(1 + λ)-CGP 2000 1 – – – – 1 – –
(1 + λ)-CGP-ID 2000 1 5.0 5.0 – – 1 – –
Canonical-CGP (Subgraph) 1000 1 – – 70 – – 5 2
Canonical-CGP (Block) 2000 1 – – 20 – – 5 2
(µ + λ)-CGP (Subgraph) 2000 1 – – 25 4 1 – –
(µ + λ)-CGP (Block) 2000 1 – – 25 4 1 – –
(µ + λ)-CGP-ID (Subgraph) 2000 1 5.0 5.0 25 4 1 – –
Real-valued-CGP 3000 1 – – 70 – – 5 2
Adaptive Real-valued-CGP 3000 [1,10] – – [10,90] – – 5 2

Parity-6 (1 + 4)-CGP 2000 1 – – – – – – –
(1 + λ)-CGP 2000 1 – – – – 1 – –
(1 + λ)-CGP-ID 2000 1 5.0 5.0 – – 1 – –
Canonical-CGP (Subgraph) 2000 1 – – 70 – – 5 2
Canonical-CGP (Block) 2000 1 – – 70 – – 5 2
(µ + λ)-CGP (Subgraph) 2000 1 – – 90 4 1 – –
(µ + λ)-CGP (Block) 2000 1 – – 20 4 1 – –
(µ + λ)-CGP-ID (Subgraph) 2000 1 5.0 5.0 50 4 1 – –
Real-valued-CGP 3000 1 – – 70 – – 5 2
Adaptive Real-valued-CGP 3000 [1,10] – – [10,90] – – 5 2

Parity-7 (1 + 4)-CGP 2500 1 – – – – – – –
(1 + λ)-CGP 2500 1 1.0 1.0 – – 1 – –
(1 + λ)-CGP-ID 2500 1 – – – – – – –
Canonical-CGP (Subgraph) 2500 1 – – 50 – – 5 2
Canonical-CGP (Block) 2500 1 – – 50 – – 5 2
(µ + λ)-CGP (Subgraph) 2500 1 – – 50 4 1 – –
(µ + λ)-CGP (Block) 2500 1 – – 50 4 1 – –
(µ + λ)-CGP-ID (Subgraph) 2500 1 2.5 2.5 50 4 1 – –
Real-valued-CGP 3000 1 – – 70 – – 5 2
Adaptive Real-valued-CGP 3000 [1,10] – – [10,90] – – 5 2

Parity-8 (1 + 4)-CGP 2000 1 – – – – – – –
(1 + λ)-CGP 2000 1 – – – – 1 – –
(1 + λ)-CGP-ID 2000 1 1.0 1.0 – – 1 – –
Canonical-CGP (Subgraph) 2000 1 – – 50 – – 5 2
Canonical-CGP (Block) 2000 1 – – 50 – – 5 2
(µ + λ)-CGP (Subgraph) 2000 1 – – 50 4 1 – –
(µ + λ)-CGP (Block) 2000 1 – – 50 4 1 – –
(µ + λ)-CGP-ID (Subgraph) 2000 1 2.5 2.5 50 4 1 – –
Real-valued-CGP 2000 1 – – 70 – – 5 2
Adaptive Real-valued-CGP 2000 [1,10] – – [10,90] – – 5 2
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Table 9.9: Results of the meta optimization for the multiple output Boolean function
problems.

Problem Algorithm N Mp Mi Md C µ λ P T

Adder-1Bit (1 + 4)-CGP 150 3 – – – – – – –
(1 + λ)-CGP 150 3 – – – – 1 – –
(1 + λ)-CGP-ID 150 3 5.0 5.0 – – 1 – –
Canonical-CGP (Subgraph) 150 3 – – 50 – – 5 2
Canonical-CGP (Block) 150 3 – – 20 – – 5 2
(µ + λ)-CGP (Subgraph) 150 3 – – 25 4 1 – –
(µ + λ)-CGP (Block) 150 3 – – 25 4 1 – –
(µ + λ)-CGP-ID (Subgraph) 150 2 10.0 10.0 50 4 1 – –
Real-valued-CGP 150 3 – – 20 – – 5 2
Adaptive Real-valued-CGP 150 [1,10] – – [10,50] – – 5 2

Adder-2Bit (1 + 4)-CGP 100 3 – – – – – – –
(1 + λ)-CGP 150 1 – – – – 1 – –
(1 + λ)-CGP-ID 150 1 10.0 5.0 – – 1 – –
Canonical-CGP (Subgraph) 150 1 – – 20 – – 5 2
Canonical-CGP (Block) 150 1 – – 20 – – 5 2
(µ + λ)-CGP (Subgraph) 150 1 – – 25 4 1 – –
(µ + λ)-CGP (Block) 150 1 – – 25 4 1 – –
(µ + λ)-CGP (Subgraph) 150 1 10.0 10.0 50 16 1 – –
Real-valued-CGP 150 1 – – 50 – – 5 2
Adaptive Real-valued-CGP 150 [1,10] – – [10,50] – – 5 2

Adder-3Bit (1 + 4)-CGP 2000 1 – – – – – – –
(1 + λ)-CGP 2000 1 – – – – 1 – –
(1 + λ)-CGP-ID 2000 1 2.5 2.5 – – 1 – –
Canonical-CGP (Subgraph) 2000 1 – – 50 – – 5 2
Canonical-CGP (Block) 2000 1 – – 50 – 5 2
(µ + λ)-CGP (Subgraph) 2000 1 – – 50 8 1 – –
(µ + λ)-CGP (Block) 2000 1 – – 25 8 1 – –
(µ + λ)-CGP (Subgraph) 2000 1 2.5 2.5 50 8 1 – –
Real-valued-CGP 2000 1 – – 50 – – 5 2
Adaptive Real-valued-CGP 2000 [1,10] – – [10,50] – – 5 2

Mult.-2Bit (1 + 4)-CGP 1500 1 – – – – – – –
(1 + λ)-CGP 1500 1 – – – – 1 – –
(1 + λ)-CGP-ID 1500 1 5.0 5.0 – – 1 – –
Canonical-CGP (Subgraph) 1500 1 – – 20 – – 5 2
Canonical-CGP (Block) 1500 1 – – 20 – – 5 2
(µ + λ)-CGP (Subgraph) 1500 1 – – 25 4 1 – –
(µ + λ)-CGP (Block) 1500 1 – – 25 4 1 – –
(µ + λ)-CGP-ID (Subgraph) 1500 1 5.0 5.0 50 4 1 – –
Real-valued-CGP 1500 1 – – 20 – – 5 2
Adaptive Real-valued-CGP 1500 [1,10] – – [10,50] – – 5 2

Mult.-3Bit (1 + 4)-CGP 2000 1 – – – – – – –
(1 + λ)-CGP 2000 1 – – – – 1 – –
(1 + λ)-CGP-ID 2000 1 0.5 0.5 – – 1 – –
Canonical-CGP (Subgraph) 2000 1 – – 20 – – 5 2
Canonical-CGP (Block) 2000 1 – – 20 – – 5 2
(µ + λ)-CGP (Subgraph) 2000 1 – – 25 16 1 – –
(µ + λ)-CGP (Block) 2000 1 – – 25 16 1 – –
(µ + λ)-CGP-ID (Subgraph) 2000 1 0.3 0.3 25 16 1 – –
Real-valued-CGP 2000 1 – – 50 – – 5 2
Adaptive Real-valued-CGP 2000 [1,10] – – [10,50] – – 5 2

Subtr.-2Bit (1 + 4)-CGP 2000 1 – – – – – – –
(1 + λ)-CGP 2000 1 – – – – 1 – –
(1 + λ)-CGP-ID 2000 1 10.0 10.0 – – 1 – –
Canonical-CGP (Subgraph) 2000 1 – – 20 – – 5 2
Canonical-CGP (Subgraph) 2000 1 – – 20 – – 5 2
(µ + λ)-CGP (Subgraph) 2000 1 – – 25 4 1 – –
(µ + λ)-CGP (Block) 2000 1 – – 25 4 1 – –
(µ + λ)-CGP (Subgraph) 2000 1 5.0 5.0 25 4 1 – –
Real-valued-CGP 2000 1 – – 20 – – 5 2
Adaptive Real-valued-CGP 2000 [1,10] – – [10,50] – – 5 2
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Table 9.10: Results of the meta optimization for the symbolic regression problems.
Problem Algorithm N Mp Mi Md C µ λ P T

Koza-1 (1 + 4)-CGP 10 20 – – – – – – –
(1 + λ)-CGP 10 20 – – – – 8 – –
(1 + λ)-CGP-ID 10 20 2.5 2.5 – – 8 – –
Canonical-CGP (Subgraph) 10 20 – – 70 – – 50 4
Canonical-CGP (Block) 10 10 – – 70 – – 50 4
(µ + λ)-CGP (Subgraph) 10 20 – – 70 4 16 – –
(µ + λ)-CGP (Block) 10 20 – – 70 4 16 – –
(µ + λ)-CGP-ID (Subgraph) 10 20 5.0 5.0 70 4 16 – –
Real-valued-CGP 10 20 – – 70 – – 50 7
Adaptive Real-valued-CGP 10 [1,20] – – [50,90] – – 50 7

Koza-2 (1 + 4)-CGP 10 20 – – – – – – –
(1 + λ)-CGP 10 20 – – – – 8 – –
(1 + λ)-CGP-ID 10 20 2.5 2.5 – – 8 – –
Canonical-CGP (Subgraph) 10 20 – – 70 – – 50 4
Canonical-CGP (Block) 10 10 – – 70 – – 50 4
(µ + λ)-CGP (Subgraph) 10 20 – – 90 4 16 – –
(µ + λ)-CGP (Block) 10 20 – – 70 4 16 – –
(µ + λ)-CGP-ID (Subgraph) 10 20 5.0 5.0 70 4 16 – –
Real-valued-CGP 10 20 – – 70 – – 50 7
Adaptive Real-valued-CGP 10 [1,20] – – [50,90] – – 50 7

Koza-3 (1 + 4)-CGP 10 20 – – – – – – –
(1 + λ)-CGP 10 20 – – – – 8 – –
(1 + λ)-CGP-ID 10 20 2.5 2.5 – – 8 – –
Canonical-CGP (Subgraph) 10 20 – – 70 50 4
Canonical-CGP (Block) 10 10 – – 70 – – 50 4
(µ + λ)-CGP (Subgraph) 10 20 – – 70 1 8 – –
(µ + λ)-CGP (Block) 10 20 – – 70 4 16 – –
(µ + λ)-CGP-ID (Subgraph) 10 20 5.0 5.0 70 4 16 – –
Real-valued-CGP 10 20 – – 90 – – 50 7
Adaptive Real-valued-CGP 10 [1,20] – – [50,90] – – 50 7

Nguyen-4 (1 + 4)-CGP 120 10 – – – – – – –
(1 + λ)-CGP 100 10 – – – – 16 – –
(1 + λ)-CGP-ID 100 10 10.0 10.0 – – 16 – –
Canonical-CGP (Subgraph) 220 9 – – 90 – – 50 5
Canonical-CGP (Block) 100 5 – – 90 – – 50 7
(µ + λ)-CGP (Subgraph) 200 1 – – 70 10 200 – –
(µ + λ)-CGP (Block) 100 10 – – 90 10 20 – –
(µ + λ)-CGP-ID (Subgraph) 100 10 10.0 10.0 90 10 20 – –
Real-valued-CGP 300 5 – – 70 – – 50 7
Adaptive Real-valued-CGP 300 [1,10] – – [20,90] – – 50 7

Nguyen-5 (1 + 4)-CGP 60 7 – – – – – – –
(1 + λ)-CGP 60 7 – – – – 16 – –
(1 + λ)-CGP-ID 60 7 10.0 10.0 – – 16 – –
Canonical-CGP (Subgraph) 100 6 – – 25 – – 10 2
Canonical-CGP (Block) 60 7 – – 90 – – 50 7
(µ + λ)-CGP (Subgraph) 300 5 – – 70 10 250 – –
(µ + λ)-CGP (Block) 60 5 – – 75 10 20 – –
(µ + λ)-CGP-ID (Subgraph) 60 7 5.0 5.0 90 4 16 – –
Real-valued-CGP 300 5 – – 70 – – 50 7
Adaptive Real-valued-CGP 300 [1,10] – – [10,90] – – 50 7

Nguyen-6 (1 + 4)-CGP 100 10 – – – – – – –
(1 + λ)-CGP 100 10 – – – – 16 – –
(1 + λ)-CGP-ID 100 7 10.0 10.0 – – 16 – –
Canonical-CGP (Subgraph) 20 20 – – 90 – – 50 7
Canonical-CGP (Block) 60 7 – – 90 – – 50 7
(µ + λ)-CGP (Subgraph) 300 1 – – 70 10 250 – –
(µ + λ)-CGP (Block) 60 7 – – 90 4 16 – –
(µ + λ)-CGP-ID (Subgraph) 60 7 5.0 5.0 90 4 16 – –
Real-valued-CGP 300 5 – – 70 – – 50 7
Adaptive Real-valued-CGP 300 [1,10] – – [10,90] – – 50 7

Nguyen-7 (1 + 4)-CGP 200 2 – – – – – – –
(1 + λ)-CGP 1000 2 – – – – 16 – –
(1 + λ)-CGP-ID 200 5 10.0 10.0 – – 16 – –
Canonical-CGP (Subgraph) 500 3 – – 70 – – 250 7
Canonical-CGP (Block) 200 5 – – 90 – – 50 7
(µ + λ)-CGP (Subgraph) 200 10 – – 90 10 200 – –
(µ + λ)-CGP (Block) 200 5 – – 75 4 16 – –
(µ + λ)-CGP-ID (Subgraph) 200 5 5.0 5.0 75 4 16 – –
Real-valued-CGP 200 5 – – 70 – – 50 7
Adaptive Real-valued-CGP 300 [1,10] – – [10,90] – – 50 7

Keijzer-6 (1 + 4)-CGP 2000 3 – – – – – – –
(1 + λ)-CGP 2000 5 – – – – 16 – –
(1 + λ)-CGP-ID 200 5 5.0 5.0 – – 16 – –
Canonical-CGP (Subgraph) 100 5 – – 70 – – 250 10
Canonical-CGP (Block) 200 5 – – 70 – – 50 7
(µ + λ)-CGP (Subgraph) 700 5 – – 70 10 250 – –
(µ + λ)-CGP (Block) 200 5 – – 75 4 16 – –
(µ + λ)-CGP-ID (Subgraph) 200 5 5.0 5.0 75 4 16 – –
Real-valued-CGP 2000 1 – – 70 – – 250 8
Adaptive Real-valued-CGP 300 [1,10] – – [10,90] – – 50 7

Pagie-1 (1 + 4)-CGP 1500 7 – – – – – – –
(1 + λ)-CGP 1500 7 – – – – 16 – –
(1 + λ)-CGP-ID 1500 1 20.0 20.0 – – 16 – –
Canonical-CGP (Subgraph) 500 5 – – 90 – – 200 7
Canonical-CGP (Block) 500 5 – – 70 – – 50 7
(µ + λ)-CGP (Subgraph) 500 8 – – 75 25 125 – –
(µ + λ)-CGP (Block) 500 5 – – 75 4 16 – –
(µ + λ)-CGP-ID (Subgraph) 500 5 20.0 20.0 75 4 16 – –
Real-valued-CGP 300 5 – – 70 – – 50 7
Adaptive Real-valued-CGP 300 [1,10] – – [20,70] – – 50 [4,10]

184



Table 9.11: Results of the meta evolution for the image operator design problems.
Problem Algorithm N Mp Mi Md C µ λ P T

Salt & (1 + 4)-CGP 3000 1 – – – – – – –
Pepper noise (1 + λ)-CGP 3000 1 – – – – 1 – –

(1 + λ)-CGP-ID 3000 1 5.0 5.0 – – – – –
Canonical-CGP (Subgraph) 1000 1 – – 50 – – 10 2
Canonical-CGP (Block) 3000 1 – – 50 – – 5 2
(µ + λ)-CGP (Subgraph) 3000 1 – – 50 4 1 – –
(µ + λ)-CGP (Block) 3000 1 – – 50 4 1 – –
(µ + λ)-CGP-ID (Subgraph) 3000 1 5.0 5.0 50 4 1 – –
Real-valued-CGP 3000 1 – – 50 – – 5 2
Adaptive Real-valued-CGP 3000 [1,5] – – [10,90] – – 5 2

Gaussian noise (1 + 4)-CGP 3000 1 – – – – – – –
(1 + λ)-CGP 3000 1 – – – – 1 – –
(1 + λ)-CGP-ID 3000 1 5.0 5.0 – – – – –
Canonical-CGP (Subgraph) 3000 1 – – 50 – – 5 2
Canonical-CGP (Block) 3000 1 – – 50 – – 5 2
(µ + λ)-CGP (Subgraph) 3000 1 – – 25 4 1 – –
(µ + λ)-CGP (Block) 3000 1 – – 50 4 1 – –
(µ + λ)-CGP-ID (Subgraph) 3000 1 5.0 5.0 50 4 1 – –
Real-valued-CGP 3000 1 – – 50 – – 5 2
Adaptive Real-valued-CGP 3000 [1,5] – – [10,90] – – 5 2

number of fitness evaluations for all tested Boolean functions. This setting is also
effective for the use of various setups of the (µ+λ)-CGP. Overall, it can also be seen
that the proposed advanced methods of crossover and mutation lead to a significant
decrease of the number fitness evaluations to find the ideal solution.
Table 9.16 shows the results for the image operator design problems, and it can be
seen that in this problem domain, the Canonical-CGP, the (µ + λ)-CGP and the
(1 + λ)-CGP-ID perform best.

9.2.5 Conclusion

Our experiments show that the (1 + 4)-CGP and (1 + λ)-CGP cannot be considered
and generalized as the most effective ways to use CGP. However, in the Boolean
domain, our results regarding the parametrization are predominantly coherent with
the findings of Miller et al. [99]. Our experiments indicate that for the majority of our
tested problems, the well-known CGP performance dogma of low population sizes
and extremely high levels of redundancy is coherent with previous findings. How-
ever, our experiments on the 1-Bit and 2-Bit Adder also indicate that this dogma
cannot be generalized in this problem domain. Since it has been found that geno-
typic crossover methods do not contribute to the performance of CGP [97] in this
problem domain, our experiments show that the proposed phenotypic crossover and
mutation operators can contribute significantly to the search performance by using a
canonical and (µ + λ)-EA. Consequently,the results indicate that the predominance
of the (1 + 4)-CGP and (1 + λ)-CGP algorithms cannot be generalized. Our exper-
iments also confirm findings of the former work in the Boolean domain which has
been presented in Chapter 5 and demonstrated that a setting of λ = 1 works more
effective for the (1 + λ)-CGP as a choice of λ = 4. Our results expand this finding
to the recombination based (µ + λ)-CGP for which a setting of λ = 1 led to good
results in the Boolean domain.

In the symbolic regression domain, the experiments indicate that the use of the use
of crossover can significantly contribute to the search performance. Especially, the
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Table 9.13: Results of the algorithm comparison algorithm for the symbolic regres-
sion problems evaluated with the best-fitness-of-run method.

Problem Algorithm Mean SD SEM 1Q Median 3Q
Best Fitness

Nguyen-4 (1 + 4)-CGP 0.68 0.55 ±0.05 0.34 0.58 0.77
(1 + λ)-CGP 0.61 0.46 ±0.04 0.35 0.54 0.74
(1 + λ)-CGP-ID 0.51‡ 0.39 ±0.03 0.22 0.42 0.67
Canonical-CGP (Subgraph) 0.50† 0.28 ±0.04 0.31 0.47 0.60
Canonical-CGP (Block) 0.62 0.55 ±0.05 0.30 0.54 0.63
(µ + λ)-CGP (Subgraph) 0.60† 0.40 ±0.04 0.36 0.54 0.76
(µ + λ)-CGP (Block) 0.88 0.66 ±0.07 0.53 0.67 1.01
(µ + λ)-CGP-ID (Subgraph) 0.55 0.34 ±0.03 0.31 0.54 0.74
Real-valued-CGP 0.71 0.75 ±0.07 0.29 0.55 0.87
Adaptive Real-valued-CGP 0.53† 0.37 ±0.04 0.27 0.47 0.65

Nguyen-5 (1 + 4)-CGP 0.45 0.42 ±0.04 0.06 0.32 0.81
(1 + λ)-CGP 0.39 0.33 ±0.03 0.08 0.27 0.63
(1 + λ)-CGP-ID 0.21‡ 0.20 ±0.02 0.04 0.12 0.36
Canonical-CGP (Subgraph) 0.29‡ 0.27 ±0.03 0.05 0.20 0.40
Canonical-CGP (Block) 0.34 0.33 ±0.03 0.05 0.26 0.59
(µ + λ)-CGP (Subgraph) 0.28‡ 0.25 ±0.02 0.06 0.19 0.45
(µ + λ)-CGP (Block) 0.48 0.40 ±0.04 0.15 0.41 0.82
(µ + λ)-CGP-ID (Subgraph) 0.29† 0.25 ±0.02 0.09 0.24 0.40
Real-valued-CGP 0.30‡ 0.24 ±0.02 0.10 0.25 0.47
Adaptive Real-valued-CGP 0.31† 0.26 ±0.02 0.12 0.24 0.43

Nguyen-6 (1 + 4)-CGP 0.54 0.66 ±0.06 0.16 0.29 0.61
(1 + λ)-CGP 0.50 0.67 ±0.06 0.15 0.22 0.50
(1 + λ)-CGP-ID 0.35 0.33 ±0.03 0.15 0.26 0.44
Canonical-CGP (Subgraph) 0.31‡ 0.31 ±0.03 0.15 0.24 0.40
Canonical-CGP (Block) 0.44 0.63 ±0.06 0.14 0.24 0.47
(µ + λ)-CGP (Subgraph) 0.61 0.67 ±0.06 0.16 0.35 0.67
(µ + λ)-CGP (Block) 0.83 0.85 ±0.08 0.23 0.38 1.28
(µ + λ)-CGP-ID (Subgraph) 0.34† 0.37 ±0.03 0.13 0.22 0.42
Real-valued-CGP 0.76 0.82 ±0.08 0.17 0.37 0.98
Adaptive Real-valued-CGP 0.58 0.72 ±0.07 0.17 0.31 0.56

Nguyen-7 (1 + 4)-CGP 0.79 0.48 ±0.05 0.45 0.67 1.06
(1 + λ)-CGP 0.71 0.45 ±0.04 0.44 0.67 0.76
(1 + λ)-CGP-ID 0.63† 0.36 ±0.03 0.39 0.59 0.68
Canonical-CGP (Subgraph) 0.60‡ 0.35 ±0.03 0.36 0.60 0.68
Canonical-CGP (Block) 0.72 0.52 ±0.05 0.47 0.65 0.70
(µ + λ)-CGP (Subgraph) 0.62‡ 0.40 ±0.04 0.42 0.63 0.68
(µ + λ)-CGP (Block) 1.39 1.13 ±0.11 0.67 0.97 1.73
(µ + λ)-CGP-ID (Subgraph) 0.64‡ 0.48 ±0.04 0.36 0.60 0.70
Real-valued-CGP 0.82 0.61 ±0.06 0.50 0.67 0.88
Adaptive Real-valued-CGP 0.71 0.51 ±0.05 0.43 0.67 0.69

Keijzer-6 (1 + 4)-CGP 3.78 2.61 ±0.26 2.16 3.24 4.59
(1 + λ)-CGP 3.38 2.52 ±0.25 2.41 3.03 3.158
(1 + λ)-CGP-ID 3.48‡ 2.61 ±0.26 1.91 2.96 3.96
Canonical-CGP (Subgraph) 2.81† 1.13 ±0.11 1.78 2.90 3.75
Canonical-CGP (Block) 3.71 2.28 ±0.22 2.37 3.15 4.01
(µ + λ)-CGP (Subgraph) 2.88† 1.09 ±0.10 2.25 3.14 3.15
(µ + λ)-CGP (Block) 5.07 3.69 ±0.36 3.16 3.94 5.46
(µ + λ)-CGP-ID (Subgraph) 3.70 2.98 ±0.29 1.87 2.85 4.03
Real-valued-CGP 3.97 2.56 ±0.25 3.08 3.22 4.15
Adaptive Real-valued-CGP 6.58 6.73 ±0.67 2.82 4.40 6.55

Pagie-1 (1 + 4)-CGP 128.18 48.19 ±4.81 87.81 119.09 161.08
(1 + λ)-CGP 120.75 44.95 ±4.49 86.14 120.91 155.06
(1 + λ)-CGP-ID 109.23‡ 35.15 ±3.51 83.35 104.35 136.12
Canonical-CGP (Subgraph) 98.52‡ 50.57 ±5.08 59.04 85.31 130.04
Canonical-CGP (Block) 119.97 45.44 ±4.54 82.71 115.41 151.11
(µ + λ)-CGP (Subgraph) 99.74‡ 41.25 ±4.12 65.32 95.79 131.76
(µ + λ)-CGP (Block) 160.15 45.71 ±4.57 133.84 157.33 187.67
(µ + λ)-CGP-ID (Subgraph) 119.96 44.64 ±4.46 91.21 112.94 146.48
Real-valued-CGP 112.75† 47.15 ±4.71 72.54 108.48 145.40
Adaptive Real-valued-CGP 109.24 47.85 ±4.78 72.48 95.87 143.32
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Table 9.14: Results of the algorithm comparison for the single output Booleans func-
tion problem evaluated by the number of fitness evaluations (FE) to ter-
mination.

Problem Algorithm Mean FE SD SEM 1Q Median 3Q

Parity-3 (1 + 4)-CGP 3194 3428 ±342 1324 2144 3756
(1 + λ)-CGP 2175‡ 1836 ±183 857 1649 2868
(1 + λ)-CGP-ID 1560‡ 1181 ±118 740 1093 1906
Canonical-CGP (Subgraph) 3567 3356 ±335 1539 2378 4455
Canonical-CGP (Block) 2977 2239 ±223 1183 2640 3873
(µ + λ)-CGP (Subgraph) 1808‡ 1670 ±167 649 1301 2119
(µ + λ)-CGP (Block) 1781‡ 1432 ±143 739 1265 2509
(µ + λ)-CGP-ID (Block) 1340‡ 965 ±96 708 1125 1874
Real-valued-CGP 2089‡ 1619 ±161 886 1600 2760
Adaptive Real-valued-CGP 2162‡ 1954 ±1954 867 1561 2741

Parity-4 (1 + 4)-CGP 15420 14152 ±1422 6292 10358 17726
(1 + λ)-CGP 9615‡ 6967 ±696 4798 7703 13391
(1 + λ)-CGP-ID 6206‡ 3601 ±360 3803 5493 7298
Canonical-CGP (Subgraph) 26456 37024 ±3702 10397 16526 29247
Canonical-CGP (Block) 24463 23404 ±2340 11158 17742 26914
(µ + λ)-CGP (Subgraph) 9211‡ 7349 ±735 4798 7392 11099
(µ + λ)-CGP (Block) 12202 8611 ±861 6030 9593 15992
(µ + λ)-CGP-ID (Subgraph) 6218‡ 3962 ±396 3505 5284 7768
Real-valued-CGP 11462 10727 ±1072 6572 12212 197825
Adaptive Real-valued-CGP 15491 12818 ±1282 6438 11271 21084

Parity-5 (1 + 4)-CGP 45542 33947 ±3411 21524 36834 61222
(1 + λ)-CGP 32248‡ 24228 ±2422 17129 26249 39767
(1 + λ)-CGP-ID 25920‡ 15363 ±1536 14954 23128 31118
Canonical-CGP (Subgraph) 92641‡ 61294 ±6129 55893 77522 103291
Canonical-CGP (Block) 102803 111238 ±11123 47691 76170 122404
(µ + λ)-CGP (Subgraph) 30781‡ 23159 ±2315 16315 24064 39778
(µ + λ)-CGP (Block) 32298‡ 18885 ±1888 19514 28927 43804
(µ + λ)-CGP-ID (Subgraph) 25142‡ 14411 ±1441 15141 22082 30505
Real-valued-CGP 66994 37566 ±6858 38518 57028 91524
Adaptive Real-valued-CGP 99885 82628 ±8262 48619 75104 118023

Parity-6 (1 + 4)-CGP 199989 142915 ±14291 107418 163234 242573
(1 + λ)-CGP 92506‡ 62113 ±6211 45346 77795 117251
(1 + λ)-CGP-ID 73722‡ 41065 ±4106 43564 63833 87546
Canonical-CGP (Subgraph) 242986 161762 ±16257 134518 200196 309346
Canonical-CGP (Block) 327097 218152 ±21815 167538 286582 421521
(µ + λ)-CGP (Subgraph) 82428‡ 50537 ±5053 48087 68923 97539
(µ + λ)-CGP (Block) 80330‡ 42173 ±4217 50084 71790 96113
(µ + λ)-CGP-ID (Subgraph) 74848‡ 53501 ±5350 38799 58689 93726
Real-valued-CGP 239409 161504 ±16150 140885 202612 275401
Adaptive Real-valued-CGP 237918 165152 ±16515 139388 197367 296735

Parity-7 (1 + 4)-CGP 480055 301612 ±30161 268210 393362 605382
(1 + λ)-CGP 246242‡ 152576 ±15257 124592 186627 280166
(1 + λ)-CGP-ID 225357‡ 152961 ±15296 123022 185180 280166
Canonical-CGP (Subgraph) 631568 548180 ±54818 293613 453204 750792
Canonical-CGP (Block) 850030 601124 ±60112 452679 696466 1075600
(µ + λ)-CGP (Subgraph) 201532‡ 131936 ±13193 102515 172038 247155
(µ + λ)-CGP (Block) 263613‡ 179168 ±17916 128220 215078 339860s

(µ + λ)-CGP-ID (Subgraph) 208606‡ 141268 ±14126 111079 170310 254892
Real-valued-CGP 717328 526545 ±52654 435585 590590 904177
Adaptive Real-valued-CGP 591460 372779 ±37277 282502 531208 800381

Parity-8 (1 + 4)-CGP 1450643 944550 ±172450 933673 1224538 1883852
(1 + λ)-CGP 522204‡ 346562 ±63273 301194 410303 604323
(1 + λ)-CGP-ID 621120‡ 767796 ±140179 224878 420112 696398
Canonical-CGP (Subgraph) 1594115 1246555 ±227588 935212 1152674 1675549
Canonical-CGP (Block) 2601042 1645616 ±300447 1486101 2024344 3526173
(µ + λ)-CGP (Subgraph) 465055‡ 280553 ±51221 268547 378473 565339
(µ + λ)-CGP (Block) 614304‡ 276234 ±50433 462495 565943 669591
(µ + λ)-CGP-ID (Subgraph) 560684‡ 460684 ±84109 315760 396262 628762
Real-valued-CGP 1624972 797217 ±145551 1014858 1542978 1929133
Adaptive Real-valued-CGP 1577949 809408 ±147777 1082068 1445260 1973013
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Table 9.15: Results of the algorithm comparison for the multiple output Boolean
function problems evaluated by the number of fitness evaluations (FE)
to termination.

Problem Algorithm Mean FE SD SEM 1Q Median 3Q

Adder-1Bit (1 + 4)-CGP 8373 9847 ±984 2892 4826 10270
(1 + λ)-CGP 4697‡ 4528 ±452 1996 3024 5440
(1 + λ)-CGP-ID 4048‡ 3645 ±364 1627 3121 5032
Canonical-CGP (Subgraph) 12296 129264 ±1292 4194 7980 16291
Canonical-CGP (Block) 12912 15265 ±1526 3838 7734 14993
(µ + λ)-CGP (Subgraph) 5193‡ 4877 ±487 2148 3699 6143
(µ + λ)-CGP (Block) 5564‡ 4867 ±486 1962 3900 7177
(µ + λ)-CGP-ID (Subgraph) 3896‡ 3112 ±312 1947 2702 5508
Real-valued-CGP 12833 13148 ±1314 3594 8960 16779
Adaptive Real-valued-CGP 12164 11740 ±1174 5867 8036 14862

Adder-2Bit (1 + 4)-CGP 146540 138275 ±13827 68661 105746 176126
(1 + λ)-CGP 86168‡ 84130 ±8413 35658 58135 104502
(1 + λ)-CGP-ID 83629‡ 81815 ±8181 33988 64709 92365
Canonical-CGP (Subgraph) 470193 380088 ±38008 193837 329472 649081
Canonical-CGP (Block) 232328 255735 ±25573 90993 191414 286934
(µ + λ)-CGP (Subgraph) 73312‡ 62167 ±6216 32654 50795 105657
(µ + λ)-CGP (Block) 96382‡ 94841 ±9484 38355 63795 116310
(µ + λ)-CGP-ID (Subgraph) 84546‡ 73079 ±7307 29579 59428 125185
Real-valued-CGP 224422 202668 ±20266 92722 146868 312855
Adaptive Real-valued-CGP 210683 179114 ±17911 84732 170680 249162

Adder-3Bit (1 + 4)-CGP 628775 508883 ±50888 315038 471514 832283
(1 + λ)-CGP 293863‡ 231491 ±23149 143663 223511 415815
(1 + λ)-CGP-ID 271797‡ 209510 ±20951 149857 218817 327394
Canonical-CGP 1023690 821377 ±82137 494814 771332 1289180
Canonical-CGP (Block) 823207 568404 ±56840 447645 687500 1031797
(µ + λ)-CGP (Subgraph) 269503‡ 156087 ±15608 141141 252469 352199
(µ + λ)-CGP (Block) 358237‡ 275076 ±27507 204995 281461 401565
(µ + λ)-CGP-ID (Subgraph) 291382‡ 191363 ±19136 172473 228554 361305
Real-valued-CGP 1026429 668030 ±66803 561160 893494 1228132
Adaptive Real-valued-CGP 2177706 1819147 ±183495 1079543 1666680 2611373

Multiplier-2Bit (1 + 4)-CGP 13535 21488 ±2148 4382 7590 13440
(1 + λ)-CGP 7381‡ 7135 ±713 3210 4988 8737
(1 + λ)-CGP-ID 6207‡ 4548 ±454 3137 4998 7515
Canonical-CGP (Subgraph) 14624 12711 ±1271 7457 10100 18421
Canonical-CGP (Block) 19215 32654 ±3265 7055 12276 18529
(µ + λ)-CGP (Subgraph) 7118‡ 9592 ±959 3032 4833 8524
(µ + λ)-CGP (Block) 6246‡ 4941 ±494 3293 4812 7674
(µ + λ)-CGP-ID (Subgraph) 7091‡ 8725 ±872 3208 5147 7045
Real-valued-CGP 20422 40342 ±4034 10363 14342 19127
Adaptive Real-valued-CGP 14604 10337 ±1033 8041 11356 17278

Multiplier-3Bit (1 + 4)-CGP 2115131 1728492 ±172849 1179835 1660106 2557923
(1 + λ)-CGP 1012076‡ 563186 ±56318 623751 893539 1254464
(1 + λ)-CGP-ID 1050349‡ 926718 ±92671 603639 802820 1274927
Canonical-CGP 3070470 1821561 ±182156 1794079 2577410 3954159
Canonical-CGP (Block) 3123525 1957714 ±195771 1905498 2631162 3988024
(µ + λ)-CGP (Subgraph) 949663‡ 699647 ±69964 520692 721905 1084116
(µ + λ)-CGP (Block) 1136368‡ 730285 ±73028 636331 978148 1464708
(µ + λ)-CGP-ID (Subgraph) 1158713‡ 989079 ±98907 590971 844934 1291924
Real-valued-CGP 3937804 2469714 ±246971 2158471 3419286 5116702
Adaptive Real-valued-CGP 3493443 2192502 ±219250 2030986 3004752 4442449

Subtractor-2Bit (1 + 4)-CGP 22743 25293 ±2529 8047 14404 27818
(1 + λ)-CGP 15942‡ 17449 ±1744 4609 10235 17203
(1 + λ)-CGP-ID 12906‡ 11372 ±1137 4950 9914 17154
Canonical-CGP (Subgraph) 36895 42253 ±4225 1241 19052 38932
Canonical-CGP (Block) 35578 33030 ±3303 16498 26910 40101
(µ + λ)-CGP (Subgraph) 13525‡ 15077 ±1507 5589 8474 15262
(µ + λ)-CGP (Block) 13198‡ 7331 ±733 7376 11916 18442
(µ + λ)-CGP-ID (Subgraph) 15714‡ 19471 ±1947 5770 9347 15875
Real-valued-CGP 27563 24590 ±2459 12421 20618 31347
Adaptive Real-valued-CGP 32408 37964 ±3796 14500 21470 36388
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performance of the Canonical-CGP equipped with subgraph crossover was superior
to the (1 + 4)-CGP on all tested problems in this problem domain. Furthermore,
our comparison of the whole evolutionary process for the more simple benchmark
problems Koza 1,2 & 3 shows a big gap of the search performance between the (1+4)-
CGP and the Canonical-CGP on these problems. Furthermore, the Canonical-CGP
finished all runs successfully within the budget of 106 fitness evaluations. Our ex-
periments in the symbolic regression domain revealed a contrary situation in which
comparatively smaller genotypes and bigger populations perform more effective. This
finding will be analyzed in more detail in the following sections.

Regarding the use of the insertion and deletion mutation, we observed an improved
search performance in all three problem domains on all tested problems. The use
of both techniques in combination with the subgraph crossover with a (µ + λ)-EA
was beneficial in several cases but turned out not to be the best choice in some
cases. Furthermore, in some cases the use of the (µ+λ)-EA with crossover and both
mutations reduced the improvement of the search performance when compared to
the results of the (µ + λ)-EA without insertion and deletion mutation.

The following concluding remarks can be drawn from the results of the experiments.

• Advanced crossover and mutation operators can improve the search perfor-
mance of CGP

• Bigger populations can be effectively used with CGP

• Well known parametrization patterns cannot be generalized

9.3 Analytic Algorithm Comparison

One question, which arises from the results of former chapters and former sections
of this chapter is "What are the reasons for the contrary situation in the Boolean
function and the symbolic regression domain?". On one hand, it is well known that
small population sizes perform effectively in the Boolean function domain. On the
other hand, it is little known that medium and big population sizes perform effec-
tively in the symbolic regression domain when CGP is used. In this section, we will
present results that shed more light on this antithetical situation in CGP. Further-
more, there is also only a little knowledge about small population sizes perform more
effective than middle or big population sizes in the Boolean domain. Consequently,
we will start our analysis in the following subsection with an investigation of the
population size in the Boolean domain. In this section, we will analyze the following
formulated research questions:

Research Question. (Wasted fitness evaluations) Does the use of middle-size and
big populations in CGP lead to wasted fitness evaluations?
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Research Question. (Random Initialization vs. Point Mutation) Cause random
initialization and point mutation similar effects?

Since bigger populations seem to be not very useful in the Boolean domain, we
assume that the increase of the population-size also increases the number of wasted
fitness evaluations. Furthermore, since CGP is usually used with comparatively high
rates of point mutation (e.g. 4% mutation rate for 100 function nodes or 20% for
10 function nodes have frequently been used in former work), we also compare the
effects of random initialization and point mutation and assess the significance for
the analysis of the first question.

9.3.1 (1+4)-CGP vs. (1+λ)-CGP vs. Pop50

Population size comparison in the Boolean domain

The findings of the effectiveness of small population sizes in CGP are based on
experiments with the popular parity even problems, and a set of Boolean multiple
output problems. Therefore, we compared the (1+λ)-CGP algorithm to the (1+4)-
CGP on a set of simple and well-known Boolean function problems such as the
parity-even problem with 2, 3 and 4 bits as input vectors. To make comparisons
with multiple output problems, we chose the 1-Bit digital adder and the 2-Bit digital
multiplier & subtractor problems. We compared different settings of the (1+λ)-CGP
algorithm. We parameterized the λ parameter with settings of 1, 2, 4, 8, 16, 32, 64,
and 128 offspring. The purpose of our comparison was to analyze the trending graph
of the search performance when the λ parameter is exponentially decreased. For
the very simple problems of our tested problems such as the Parity-2 and Parity-
3 problems, we chose a genome size of 10 function nodes and a point mutation
rate of 20%. For the remaining more complex problems of our tested problems, we
chose a genome size of 100 nodes and a point mutation rate of 4%. The complete
configuration for our experiments in the Boolean domain is shown in Table 9.17. For
the experiments in the symbolic regression domain, we used the problems Koza 1,2
& 3. For all three problems, we used 10 function nodes and a point mutation rate of
20%. To offer the statistical validity of our results, we performed 100 runs for each
setting of the λ parameter. We also evaluated a canonical CGP algorithm with a
population size of 50 individuals. We used the subgraph crossover and the standard
point mutation for the so-called Pop-50 CGP algorithm. We chose a tournament
selection size of 4 and an elitism size of 2. The canonical CGP algorithm is denoted
as Pop-50. To evaluate the search performance of the CGP algorithms, we measured
the number of fitness evaluations until the CGP algorithm successfully terminated.
In addition to the mean values of the measurements, we calculated the standard
deviation (SD) and the standard error of the mean (SEM). We also calculated the
median and the first and third quartiles.
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Table 9.17: Configuration of the CGP algorithm for the respective test problems.
Problem Number of Point mutation rate [%] Number of Number of

function nodes input nodes output nodes
Parity-2 10 20 2 1
Parity-3 10 20 3 1
Parity-4 100 4 4 1
Adder-1Bit 100 4 3 2
Multiplier-2Bit 100 4 4 4
Subtractor-2Bit 100 4 4 3

Table 9.18: Results of the algorithm comparison for the Boolean function problems
between the (1 + 1)-CGP and the Pop-50 CGP.

Problem Algorithm Mean FE SD SEM 1Q Median 3Q

Parity-2 (1 + 1) 483 487 ±48 128 334 653
Pop-50 1103 1668 ±166 144 384 1248

Parity-3 (1 + 1) 59401 63699 ±6340 17179 39464 76624
Pop-50 426091 475867 ±47587 116220 282000 471096

Parity-4 (1 + 1) 20650 19581 ±1958 8290 14564 27183
Pop-50 1054456 1613799 ±161380 174252 511080 1125588

Adder-1Bit (1 + 1) 5155 5470 ±547 1880 3632 6209
Pop-50 389827 391812 ±39181 140352 264336 445536

Multiplier-2Bit (1 + 1) 15678 16828 ±1683 6164 10475 16493
Pop-50 3045833 3146575 ±314657 1155696 2103312 3278208

Subtractor-2Bit (1 + 1) 15678 16828 ±1683 6164 10475 16493
Pop-50 50025 43723 ±4372 22079 36960 61226

Table 9.19: Results for various settings of the (1 + λ)-CGP and the Pop-50 CGP on
the symbolic regression problems.

Problem Algorithm Mean SD SEM 1Q Median 3Q
Fitness Evaluation

Koza-1 (1 + 1) 155026 492304 ±49230 1397 5197 22633
(1 + 2) 146919 446898 ±44689 1588 7717 28498
(1 + 4) 153653 497639 ±49763 1239 4844 20268
(1 + 8) 195063 540627 ±54062 1752 7396 46046
(1 + 16) 105361 405482 ±40548 1396 3800 11936
(1 + 32) 48099 210511 ±21051 1304 3472 13368
(1 + 64) 87439 297167 ±29716 2640 6944 41536
(1 + 128) 82219 329522 ±32952 2048 6016 22464
Pop-50 9299 28479 ±2847 900 1776 4884

Koza-2 (1 + 1) 520804 770988 ±77098 11769 86453 571046
(1 + 2) 484069 721568 ±72156 11207 80856 587281
(1 + 4) 509258 764939 ±76493 14739 63790 844896
(1 + 8) 460586 719263 ±71926 10966 81200 516898
(1 + 16) 424124 700427 ±70043 9652 55488 373488
(1 + 32) 426754 693033 ±69303 8680 53664 354224
(1 + 64) 474576 694991 ±69499 13744 80896 644704
(1 + 128) 454301 703801 ±70380 15904 69120 494784
Pop-50 171903 376590 ±37659 4272 25440 177108

Koza-3 (1 + 1) 468028 695299 ±69530 8421 120182 593541
(1 + 2) 488043 751159 ±75115 4471 69472 580894
(1 + 4) 429402 709740 ±70974 7432 51708 377573
(1 + 8) 435227 699703 ±69970 6354 52608 515092
(1 + 16) 343591 601858 ±60185 5676 34672 370888
(1 + 32) 413876 672136 ±67214 5664 56032 379960
(1 + 64) 551257 739185 ±73919 26384 153536 807376
(1 + 128) 451704 710599 ±71060 11776 85440 486976
Pop-50 146122 318450 ±31844 3396 13584 134916
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Table 9.18 shows the results of the algorithm comparison in the Boolean function
domain. The (1+λ)-CGP clearly outperforms the the Pop-50 CGP. Figure 9.4 shows
the results of the comparison of the search performance with different settings of the
λ parameter. The decrease of the λ parameter from 128 to 1 improves the search
performance on every tested problem in this domain. Table 9.19 shows the results
of the algorithm comparison in the symbolic regression domain. It is visible that
the Pop-50 algorithm is superior to all tested settings of the (1 + λ) algorithm on
our tested problems. It can also be seen that the (1 + λ)-CGP performs effectively
with a middle-size population. Figure 9.5 shows the convergence behavior of various
settings of the λ parameter and the Pop-50 CGP algorithm. It can be seen that the
use of the Pop-50-CGP leads to a much steeper convergence curve when compared
to the curves of the (1+λ) algorithm. It can also be seen that the curves of the
(1+16), (1+32), and (1+128) are steeper for the latter generations than the curves
of the (1 + 1)-CGP. We will analyze and discuss the results of these experiments in
the respective subsection for discussion.

Figure 9.6 shows the results of the diversity measurement on the three regression
problems Koza 1,2 & 3 for the (1+32) and (1+128)-CGP over a budget of over more
than 10000 fitness evaluations. It can be seen that the diversity of both, the (1+32)
and (1+128)-CGP, is below 100% over the budget of fitness evaluations. We will
analyze this finding in Subsection 9.3.3.

9.3.2 Point Mutation vs. Random Initialization

The results of the previous subsection indicate that the majority of the fitness eval-
uations of algorithms with medium size and big populations does not contribute to
the search performance of CGP in the Boolean function domain. To analyze this
hypothetical assumption in more detail, we determined the frequency of fitness val-
ues which have been achieved after a predefined number of point mutations on the
genotype and the fitness values of random initialization of the genotype. The fit-
ness functions of all tested problems are minimizing ones. We analyzed the fitness
space by measuring the distribution of the fitness values in the search space, which
has been achieved by point mutations and random initializations. We performed
107 random genotype initializations and point mutations. Afterward, we calculated
the frequency for each achieved fitness value. We determined the fitness values of
point mutations and random initializations for every tested problem from the previ-
ous subsection. We determined these so-called fitness histograms for all benchmark
problems in the Boolean function and the symbolic regression domain.
Figure 9.7 shows the results for the comparison between random initialization and
point mutation for the Boolean function problems in the Boolean domain. It can be
seen that the distributions of random initialization and point mutation are similar
and that the majority of the achieved fitness values are located in the same range
for every tested problem. However, it can also be seen that the histograms are not
exactly equal and that each histogram on the point mutation site has a peak in
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mutations for the tested Boolean function problems.
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Figure 9.9: Histograms of the comparison between random initialization and point
mutation for the tested symbolic regression problems in the area near
the global optimum.
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which the frequency of a certain fitness value is up to one tens potency higher
when compared to the maximum frequency on the random initialization side. An
explanation for these peaks could be the so-called silent mutations, which don’t cause
a change of the fitness value. Consequently, we may achieve another distribution of
the frequency of fitness values. However, since it is visible that the obtained fitness
values are located in the same range for random initialization and point mutation,
we use our findings for the following analysis of the respective research question.
Figure 9.8 shows the results for the symbolic regression problems. It is also clearly
visible that the distributions of the fitness values of the random initialization and
point mutation are also similar. However, it can be seen that the distributions of the
Boolean function problems and the symbolic regression problems differ markedly
from each other. The distributions of the tested Boolean function problems seem
to be centralized in the space of possible fitness values, which is contrary to the
distributions of the symbolic regression problems. On the three tested symbolic
regression problems, the distributions are directed toward the global optimum and
the most frequent fitness values are located close to the global optimum. On the basis
of this finding and related to the observations of our analytic comparison between
the (1 + λ)-CGP and the Pop-50-CGP in Section 9.3, we determined the frequency
of occurrence of fitness values which are located close to the global optimum. More
precisely, we measured the frequency in the area where the cost function value is
greater than 0.01 but less or equal 1.0 . Following the experiments in Section 9.3
with the a setting of λ ∈ {1, 16, 32,128}, we determined the fitness histograms for
these settings of the λ parameter and the Pop-50-CGP. The histograms are shown
in Figure 9.9. In comparison to the results when higher values for λ parameter are
used or if the Pop-50-CGP is used, the (1 + 1)-CGP shows a higher frequency of
fitness values very close to the global optimum. Moreover, the peaks which can be
spotted in the histogram are up to one power of ten higher for the (1 + 1)-CGP.
We will discuss the significance of these observations in the analysis of the research
questions.

9.3.3 Discussion and Analysis of Research Questions

The results of our experiments in this section shed more light on the behavior of
two algorithmic approaches to the use of CGP in two different problem domains.
Our results indicate that the exploration behavior of random initialization and point
mutation is similar. This finding, which we determined with the help of fitness his-
tograms, is an important one to explain the contrary situation in the Boolean and
symbolic regression domain. The determined distributions of Boolean function prob-
lems show that the majority of the fitness values, which were calculated after the
mutations of the genotype, are located in a nearly central area of the fitness space.
In the first place, this finding explains why the (1 + 1)-CGP algorithm performed
most active on all of our tested problems. When the parent is mutated, it is likely
that the fitness value of the offspring is located in the centralized area. In this way,
the distribution for all tested problems can be described as unimodal.
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Consequently, our experiments indicate that if a bigger population is used for our
tested problems, it is also very likely that a certain amount of genetic variation
and fitness evaluation steps are in a way wasted. This is because there is a high
probability that the resulting fitness values are located in the high frequent central
area of the space of fitness values. Consequently, our search performance evaluations
for the tested Boolean problems indicate that the majority of the genetic variation
and fitness evaluations steps do not contribute to the search performance of CGP
because the fitness value of the offspring is not better as the fitness value of the
parent.The (1+1)-CGP breeds and evaluates only one offspring per generation, and
if the fitness value of the offspring is better, the offspring replaces the parent. Our
analysis indicates that the number of wasted fitness evaluations of the (1 + 1)-CGP
is lower in comparison to the other tested population sizes.

In the symbolic regression domain, our fitness histograms show entirely different
distributions of the fitness values. The fitness values are more spread over the fitness
value space, and the density is much higher compared to the Boolean function prob-
lems. Furthermore, the analysis of the search space with fitness histograms revealed
high frequent fitness values near the global optimum. The existence of these high
frequent fitness values indicates the existence of local optima. We also determined
fitness histograms in the region close to the global optimum for (1 + λ)-CGP and
the Pop-50-CGP and observed higher frequencies in this region for the (1 + 1)-CGP.
Since the search performance of the (1 + 1)-CGP on the three symbolic regression
problems was inferior when compared to the results with other λ settings, a corre-
lation between the existence of local optima and search performance can be drawn.

The distribution of the fitness values of the three tested symbolic regression prob-
lems can be considered as multimodal. Our determined fitness histograms of the
symbolic regression problems make it clear with which situation the respective CGP
algorithm has to deal with. On the one hand, the fitness value space is much denser
and bigger, and our analysis indicates that this situation makes significant demands
on the exploration abilities of the respective algorithm. Moreover, since the fitness
histograms revealed many local optima, the respective CGP algorithm also has to
challenge with this circumstance. We observed the best search performance on all
three tested regression problems when the Pop-50 algorithm was in use. We also
found a lower median of fitness evaluations as the (1 + 1)-CGP for the (1 + λ)-CGP
with higher settings of the λ parameter. Notably, a setting of λ = 16 and 32 led to
good results on the tested problems. To find answers why these two configurations
of the λ parameter and the Pop-50 algorithm showed better results as the (1 + 1)-
CGP and the (1 + 128)-CGP, we investigated the convergence behavior for these
algorithms. On all three regression problems, we observed the steepest convergence
curves for the Pop-50 CGP. The (1 + 1)-CGP overall shows curves that are much
flatter than the curve of the Pop-50 CGP, especially for the later generations. In the
first place, this indicates that the Pop-50 CGP escapes local optima faster than the
(1 + 1-CGP. Another indicator of this assumption is the observation of our fitness
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histograms. In all histograms, it is visible that the most frequent fitness values are
close to the global optimum. Therefore, we reason that the CGP algorithms have to
tackle these top frequent local optima in the later stage of the evolutionary process
on the tested problems.

Another interesting observation are the curves of the (1 + λ) algorithm with λ =
16, 32 and 128. For the later generations, the curves are mainly located between the
curves of the Pop-50 CGP and the (1 + 1)-CGP. In the front and middle section of
the evolutionary process, the curves of the (1 + 1)-CGP are steeper than the curves
of the (1 + λ) algorithm with λ = 16, 32 and 128. One question which turns out is
why the (1+128)-CGP is inferior to the (1+16) or (1+32)-CGP. One indicator can
be found in the convergence plots. The convergence speed of the best individuals
with λ = 16, 32 and 128 can be classified in the same class when compared to the
convergence speed of the (1 + 1)-CGP and the Pop-50 CGP. However, we reason
that the (1 + 128)-CGP causes more runs, which took a huge number of fitness
evaluations to converge. A significant indicator for this reason is the third quartile
in Table 9.19. Our reason is also backed by another indicator which we determined by
the measurement of the diversity for the three tested regression problems, shown in
Figure 9.6. The results of our measurements for the (1+32)-CGP and (1+128)-CGP
demonstrate that there is a certain amount of individuals in the population which
are equal to the parent. Furthermore, we assume that these same-fit individuals
are caused by mutations that only flip inactive genes and have no effect on the
phenotype. Consequently, the fitness evaluation may be wasted because it seems
that these individuals do not contribute to the search performance.

Research Question. (Wasted fitness evaluations) Does the use of middle-size and
bigger populations in CGP lead to wasted fitness evaluations?

Our experiments with the (1 + λ)-CGP algorithm demonstrated the effectiveness of
very small population sizes for our tested problems in the Boolean domains. Our
first experiment indicates a correlation between the population size and the search
performance for our tested Boolean function problems. This experiment included
a measurement of the search performance with an exponential decrease of the λ
parameter. Our analysis with fitness histograms indicate that for all tested Boolean
function problems that the distribution of the fitness values makes the use of medium
and big population sizes ineffective. The reason for this is that it is very likely that the
fitness of the majority of the offspring which is bred from the parent per generation,
just lay in a frequent high area within the space of fitness values. This centralized
distribution has been observed on all tested problems.
In the symbolic regression domain, we observed a different situation. On all three
regression problems, we observed a distribution that seems to be suitable for the
use of a bigger population size as in the Boolean domain. The most frequent fitness
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values are located in the near of the global optimum. Furthermore, the distributions
are more spread and have a much higher density. The presented experiments indicate
that a population-based algorithm explores these spaces with a higher probability
of an improvement of the fitness values.

Research Question. (Random Initialization vs. Point Mutation) Cause random
initialization and point mutation similar effects?

For all of our tested problems in both problem domains, we observed similar effects
when random initialization and point mutation were used. The observed effects are
not equal because it appears that a large number of mutations do not lead to any
change of the fitness value. These so-called silent or neutral mutations are well-
known in the field of CGP. However, for the Boolean problems, it is evident that
the most frequent fitness values are located in the same range. In the symbolic
regression domain, it is also clearly visible that the shape is also very similar for
all three regression problems. Moreover, we determined a unimodal distribution on
the tested boolean function problem and a multimodal distribution on the symbolic
regression problems with the use of random initialization and point mutation.

9.4 A Case Study on a Toy Problem

In this section, we analyze a typical toy problem in the symbolic regression domain.
Since these types of problems have no practical relevance, some of these problems
can be very useful to investigate GP algorithms in detail. For our case study we chose
the very simple regression function f(x) = x2+x. The purpose of this case study is to
achieve more understanding and insight into the working mechanism of the subgraph
crossover and its corresponding beneficial effects to the search performance. This
section intends to shed more light into the question in which way the subgraph
crossover contributes to the search performance.

9.4.1 Exploration Analysis in Phenotype Space

For our case study, we analyzed the exploration behavior in phenotype space on
the chosen symbolic regression problem. This type of analysis is a simple way to
analyze the exploration abilities of a CGP algorithm and is done by determining the
number of different phenotypes that have been observed in a single run. To measure
the number of different phenotypes in the population, we first determine the textual
representation of each phenotype. For instance, in the symbolic regression domain,
we can build a textual representation of the functionality in reverse polish nota-
tion. The determination of the textual representation can be done by the backward
search, which is performed in the framework of the evaluation process. Each deter-
mined textual representation is stored in the hashmap. When the representation is
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Table 9.20: Configuration of the (1+4)-CGP and Canonical-CGP for the node eval-
uation analysis experiments

Property (1 + 4)-CGP Canonical-CGP
Maximum node count 5 5
Number of inputs 2 2
Number of outputs 1 1
Population size 5 50
Function set +, −, ∗, / +, −, ∗, /
Mutation rate 0.1 0.1
Crossover rate - 1.0
Tournament selection size - 4
Elitism size - 2

Table 9.21: Results for the comparison between (1+4)-CGP and Canonical-CGP on
the problem f(x) = x2 +x evaluated by the number of fitness evaluation
to termination

Problem Algorithm Mean FE SD SEM 1Q Median 3Q

f(x) = x2 + x
(1 + 4)-CGP 905 1085 ±108 241 588 1062
Canonical-CGP 401‡ 726 ±72 48 72 336

already stored in the hashmap, we increase the frequency counter of this textual
representation. In this way, we can easily measure how many different phenotypes
have been discovered after a certain number of fitness evaluations.
The CGP has been equipped with a small number of function nodes. We investigated
the search abilities for the (1+4)-CGP and the Pop-50 algorithm and compared the
results of the exploration analysis. The algorithm configuration for both algorithms
is shown in Table 9.20. For the exploration analysis in the phenotype space, we in-
vestigated different budgets of fitness evaluations (48, 96, 144, 192, 240). For each
budget, we performed 100 runs and measured the size of the hashmap at the end of
each run.

Table 9.21 shows the results of the comparison for the symbolic regression problem,
and it is seen that the Canonical-CGP with crossover performs significantly better
compared to the (1 + 4)-CGP. Figure 9.10 and show the results of the exploration
analysis in the phenotype space, and it is seen that the exploration level of the Pop-
50 algorithm is much higher for the budget of 48, 96 and 144 fitness evaluations
compared to the (1 + 4)-CGP. However, for the budget of 192 and 240 fitness eval-
uations, it is also visible that the exploration stagnates, but it can also be seen in
Table 9.21 that the Pop-50 algorithm finds the ideal solution with a much smaller
amount of fitness evaluations when compared to the (1 + 4)-CGP.
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Figure 9.10: Boxplots for the exploration analysis in phenotype space

9.4.2 Structural Phenotype Analysis

To investigate the working mechanism and effects of the subgraph crossover in detail,
we performed an analysis of the phenotypes itself. On the one hand, we measured the
distance between a particular phenotype that belongs to an individual and the ideal
solution. We also measured the number of ideal solutions which have been found just
after a crossover operation. The goal of this analysis was to investigate in which way
the use of the subgraph crossover influences the evolutionary run on the phenotypic
level. The experimental setup for this analysis is very similar to the exploration
analysis in the previous subsection. For our experiments, we used Canonical-CGP
with different crossover rates. We investigated the Canonical-CGP with 25%, 50%,
75% and 100% of crossover. The algorithm configuration is shown in Table 9.22. To
maintain the simplicity of the given task for the CGP, we only used the small Koza
function set, which includes four basic arithmetic functions.
We measured the search performance of different rates of crossover. The search
performance was determined with the fitness-evaluations-to-termination method.
The results of our comparison are shown in Table 9.23, and as visible, the increase
of the crossover rate decreased the average number of fitness evaluations which
were necessary to find the ideal solution. Based on this finding, we investigated
the effect of different rates of crossover in phenotypic space. More precisely, we
measured the distance of the textual representation of a parent and an offspring to
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Table 9.22: Configuration of the Canonical-CGP for the phenotypic analysis
Property Setting
Maximum node count 5
Number of inputs 2
Number of outputs 1
Population size 50
Function set +, −, ∗, /

Mutation rate 0.1
Crossover rates 0.25/0.5/0.75/1.0
Tournament selection size 4
Elitism size 2

Table 9.23: Results for the problem f(x) = x2 +x evaluated by the number of fitness
evaluation to termination

Problem Crossover rate Mean FE SD SEM 1Q Median 3Q

f(x) = x2 + x
0 % 925 1330 ±133 48 240 1212
25% 595 861 ±86 48 144 864
50% 531 929 ±92 48 144 864
75% 531‡ 914 ±91 48 72 540
100% 401‡ 726 ±72 48 72 336

the textual representation of one ideal solution TI . One of the most simple textual
representations of the ideal solution is + x0 (* x0 x0) in which x0 represents the
first input of the cartesian program. We measured the Levenshtein distance (LD) [76]
to this textual representation of the ideal solution before and after the crossover
procedure. To determine the LD of the first parent and the offspring, we generated
the textual representation of the parent and the offspring. More precisely, we first
dertermined the LD between the textual representation of the first parent TP 1 and
the ideal solution TI which is denoted as DP I . After the crossover procedure we
measured the LD between the textual representation of the offspring TO and the
ideal solution which is denoted as DOI . To determine the difference between these
two LD measurements we subtracted DP I from DOI . We performed 100 runs in total
and summarized the differences which were calculated after each crossover operation
over all runs. To determine the mean, we divided the sum of the differences by the
total number of differences, which were determined for the respective crossover rate.
Please note that a negative difference of the LD measurements means that the
textual representation of the offspring is more similar to the textual representation
of the ideal solution after the crossover procedure. Besides the mean difference, we
calculated the standard deviation, minimum, and the maximum difference.
Table 9.23 shows the results of the search performance evaluation and Table 9.24
shows the results for the Levenshtein distance analysis. It is visible that the increase
of the crossover rate leads to a gradual decrease in the total difference of the Lev-
enshtein distance. Moreover, we observed a negative difference in the Levenshtein
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Table 9.24: Results of the Levenshtein distance (LD) analysis for the problem f(x) =
x2 + x

Problem Crossover Number of Total LD Mean LD SD Min Max

rate measurements difference difference diff. diff.

f(x) = x2 + x
0 % − − − − − −
25% 1578 −560 −0.35 4.54 −36 34
50% 3352 −1129 −0.34 4.72 −69 55
75% 4242 −1302 −0.31 4.95 −53 55
100% 5284 −1633 −0.31 5.06 −40 42

Table 9.25: Results for the experiment to determine the hit - crossover relationship
Problem Crossover rate Number of Hits

f(x) = x2 + x
0 % −
25% 3
50% 8
75% 11
100% 20

distance for all crossover rates.

9.4.3 Analysis of the Hit - Crossover Relationship

Our experiments in the previous subsection unveiled one effect, which is caused
by the use of the subgraph crossover. However, our experiments do not answer the
question of why higher rates of crossover contribute significantly to the search perfor-
mance. To achieve a more detailed view on the influence of the respective crossover
rate, we measured the number of Hits, which occurred directly after a crossover
operation. We increased the number of Hits by one when the offspring matches the
ideal solution. The algorithm configuration is the same as in the previous subsection.
We performed 100 runs in total and evaluated each run until the ideal solution was
found. Intending to analyze the Hits in detail, we generated the textual represen-
tation in reverse polish notation of both parents and the offspring. We present the
textual representations of various Hits in special listings.
Table 9.25 shows the results for the hit-crossover relationship determination, and it
is visible that the increase of the crossover rate leads to a gradual increase of the
number hits after a crossover operation. Figure 9.11 shows various examples of Hits.
It can be seen that parts of one parent are integrated into the phenotype of the
other parent, which directly leads to the determination of the final solution. We will
discuss and analyze this finding in the next section.

9.4.4 Discussion

The results of the exploration analysis in phenotype space indicate that the use
of the Pop-50 CGP in combination with the subgraph crossover results in better
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Parent 1 : + x0 (− x0 x0 )
Parent 2 : ∗ x0 x0
O f f s p r i n g : + x0 ( ∗ x0 x0 )

Example 1

Parent 1 : + x0 (/ x0 x1 )
Parent 2 : ∗ x0 (/ ( ∗ x0 x0 ) x1 )
O f f s p r i n g : + x0 ( ∗ x0 x0 )

Example 2

Parent 1 : ∗ x0 x0
Parent 2 : + (− x0 x0 ) x0
O f f s p r i n g : + ( ∗ x0 x0 ) x0

Example 3

Parent 1 : ∗ x0 (∗ x1 x1 )
Parent 2 : / x0 (+ x1 x0 )
O f f s p r i n g : ∗ x0 (+ x1 x0 )

Example 4

Parent 1 : ∗ x0 x0
Parent 2 : + (/ (− x0 x0 )(− x0 x0 ) ) x0
O f f s p r i n g : + ( ∗ x0 x0 ) x0

Example 5

Parent 1 : ∗ x1 x0
Parent 2 : + (∗ x0 (+ x0 x1 ) ) x0
O f f s p r i n g : + (∗ x0 ( ∗ x1 x0 ) ) x0

Example 6

Parent 1 : ∗ (− x1 x1 ) (+ x1 x0 )
Parent 2 : ∗ (∗ x1 x0 ) x1
O f f s p r i n g : ∗ (∗ x1 x0 ) (+ x1 x0 )

Example 7

Parent 1 : ∗ x0 x1
Parent 2 : ∗ x0 (+ (∗ x0 x0 ) x1 )
O f f s p r i n g : ∗ x0 (+ ( ∗ x0 x1 ) x1 )

Example 8

Figure 9.11: Various examples of successful crossover operations

exploration of the phenotype space on our tested symbolic regression problem. Fur-
thermore, the results of our search performance showed that the Pop-50 algorithm
is superior to the traditional (1 + 4)-CGP on that problem. One purpose of this
section was to investigate the effects of phenotype space, which are caused by both
algorithms. Even if we observed an increased exploration of the phenotype space and
a reduced number of fitness evaluations until the ideal solution was found, it is too
early to make any general claims. We must emphasize that we found a trend, and
this finding is based on a case study which investigated only one symbolic regression
problem. To make general claims and more significant statements, a more rigorous
and more comprehensive study has to be performed.

The results of our structural analysis unveiled two exciting effects of the subgraph
crossover for the given problem in phenotype space. In the first place, our exper-
iments showed that the use of the subgraph crossover decreases the Levenshtein
distance when the textual representation of the first parent and the offspring are
compared to the ideal solution. Moreover, this type of analysis also indicates that
there exists a correlation between the crossover rate and the mean difference of the
Levenshtein distance to the ideal solution.
Our experiments also showed that the use of the subgraph crossover increases the
chance that the ideal solution is found after a crossover operation for the given toy
problem. However, these findings are also based on our case study with only one
regression problem, and for more significant statements, we have to perform exper-
iments with a large number of the issues. This also means that other benchmarks
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of other problem domains have to be analyzed. The reason for this is that we have
to investigate if the effects also occur on different types of problems. A more com-
prehensive study could also answer the question if the two effects which have been
observed in our experiments correlate with an improvement of the search perfor-
mance of the Pop-50 CGP. However, we investigated the occurrence of Hits after a
crossover operation for the given toy problem. The presented examples clearly show
that small phenotypes are integrated into bigger ones. Moreover, the fitness of both
phenotypes must be on a certain fitness level since the tournament selection sorts
out individuals with low fitness.
An answer to the question in which way the subgraph crossover contributes to the
evolutionary search of CGP, might be found on the basis of the so-called Building
Block Hypothesis (BBH), which has been formulated as an explanation of GAs by
Goldberg [31], According to Goldberg:

“Short, low order, and highly fit schemata are sampled, recombined,
and resampled to form strings of potentially higher fitness. ”

Goldberg [31, p. 41]

Especially in the first three examples of the listings in Figure 9.11, it can be seen that
the short schemata * x0 x0 is recombined into a longer schemata which finally leads
to the determination of the ideal solution. However, for more significant statements
about the BBH as an possible explanation for the improved search behavior when
subgraph crossover is used, more comprehensive studies have to follow. It should
be also mentioned that the BBH received skepticism concerning weak theoretical
foundations, incoherence and.

9.5 Redundancy and Fitness Space Analysis
Former experiments in the field CGP with boolean function problems showed that
the increase of the genotype length improves the search performance. However, this
finding in the boolean domain has been generalized throughout CGP history. In this
section, we analyze why this performance dogma does not hold for three symbolic re-
gression benchmark problems that we already evaluated in Section 9.2. Furthermore,
our experiments give answers to why the search performance does not improve by
increasing the genotype length on these problems. This section also demonstrates the
role of redundancy for the evolutionary search in discrete and bounded fitness spaces.

We analyzed the search performance on Koza 1, 2 & 3 problem. We first measured
the search performance of all symbolic regression problems with genotype lengths of
10, 20, 50, and 100 function nodes. The algorithm configuration for the experiments
is shown in Table 9.26. We performed 100 runs for each experiment and measured the
search performance by the number of generations until the ideal solution was found.
In addition to the mean values of the measurements, we calculated the standard
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Table 9.26: Configuration of the (1 + 4)-CGP
Property (1 + 4)-CGP
Maximum node count 10/20/50/100
Mutation rate [%] 20/10/8/6
Number of inputs 2
Number of outputs 1
Population size 5
Function set +, −, ∗, /

Table 9.27: Number of fitness values for various genotype length for the problems
Koza 1,2 & 3

Problem Number of Number of
function nodes fitness values

Koza-1 10 15655
20 53695
50 172244

100 306242

Koza-2 10 15646
20 54133
50 173122

100 307665

Koza-3 10 15859
20 54823
50 173523

100 307412

deviation (SD) and the standard error of the mean (SEM). We used the (1 + 4)-
CGP algorithm and investigated the search performance of the algorithm with the
standard continuously fitness function which has been used in Section 9.2. When
this fitness function is used, the fitness values can vary in a range R>=0. Since
the range of this fitness function is not fixed, we evaluated the size of the fitness
space for genotype lengths with 10, 20, 50 and 100 function nodes by sampling
106 random genotypes. We evaluated the fitness of each genotype and stored its
frequency in a hash map. Afterward, we used the size of the hash map to conclude
the magnitude of the space of fitness values. Intending to demonstrate the role
of redundancy for the search performance of CGP, we investigated all benchmark
functions with discrete fitness. In these types of experiments, the fitness function
was similar to the continuously fitness function, with the exception that the fitness
values were discretized within a range of whole numbers from 0 to 20. In this way,
the experiments covered the investigation of the search performance for different
lengths of the genotype on three regression problems evaluated with continuous as
well as discrete fitness. The algorithm configuration is shown in Table 9.26. The
mutation rates have been determined empirically and are oriented with results of
former experiments of this chapter.
Table 9.28 shows and Figure 9.12 illustrates the stylized search performance behav-
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Table 9.28: Results for the symbolic regression problems Koza 1,2,3 when continuous
fitness is used

Problem Number of Mean SD SEM 1Q Median 3Q
function nodes Fitness Evaluations

Koza-1 10 456547 749589 ±74958 10889 47852 363278
20 536685 814927 ±81493 11019 56704 584147
50 1373228 662682 ±66268 815347 1586900 2000000
100 1407718 709660 ±70966 698582 1934054 2000000

Koza-2 10 466726 667196 ±66719 27233 123156 533127
20 695164 768904 ±76890 51434 281468 1381271
50 808779 800203 ±80020 56950 525106 1830031
100 942653 877873 ±87787 96501 709382 2000000

Koza-3 10 638451 756151 ±75615 52473 259490 1097556
20 774234 812167 ±81216 43923 476620 1842339
50 867915 826392 ±82639 67928 540420 2000000
100 1154141 902271 ±90227 145972 1852700 2000000

Table 9.29: Results for the symbolic regression problems Koza 1,2,3 when discrete
fitness is used

Problem Number of Mean SD SEM 1Q Median 3Q
function nodes fitness evaluations

Koza-1 10 3694 3300 ±330 1116 2840 4931
20 3346 3870 ±387 1051 2268 3925
50 3300 4165 ±416 764 2114 4183
100 2798 3812 ±381 609 1470 3173

Koza-2 10 8589 8768 ±876 2062 5984 11468
20 5478 5518 ±552 1650 3880 7973
50 3076 5154 ±515 684 1414 3226
100 1998 2469 ±246 548 1184 2178

Koza-3 10 2500 2852 ±285 617 1808 3435
20 2011 2238 ±223 487 1156 2860
50 1212 1220 ±122 315 846 1719
100 1145 1107 ±110 283 832 1639
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Figure 9.12: Stylized search performance behavior for various genotype lenghts on
continuous fitness
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Figure 9.13: Stylized search performance behavior for various genotype lenghts on
discrete fitness
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ior for various genotype lengths when continuous fitness is used. It is visible that
when the increase of the length of the genotype, the search performance decreases.
Table 9.27 shows the results of the analysis of the fitness space for the three Koza
problems. It can be seen that the size of the fitness space increases when the length
of the genotype is increased. Table 9.29 shows and Figure 9.13 illustrates the search
performance behavior for various genotype lengths when discrete fitness is used.
Here, it is visible that increasing the length of the genotype increases the search
performance.

9.5.1 Analysis of the results
The results of our experiments clearly show that the correlation between the im-
provement of the search performance and the increase of the genotype length can
not be generalized. On all three regression functions, the rise in the genotype length
increased the size of the space of fitness values rapidly. This finding indicates that the
level of redundancy decreases by increasing the genotype lengths for all three tested
regression functions. Our experiments also showed that the increase of the genotype
length also deteriorated the search performance on all three tested problems. More-
over, our results also indicate a correlation between the size of the space of fitness
values and the search performance of the (1 + λ)-CGP algorithm. In this way, our
results confirm the findings of Miller et al., who investigated the role of redundancy
and its meaning for the computational efficiency of CGP when discrete fitness is in
use. However, since Miller experiments mostly focused on boolean function prob-
lems for which the respective candidate solutions are evaluated with discrete fitness.
Moreover, the fitness value space of the most popular boolean function benchmark
problems is fixed and cannot vary when the parametrization is changed. In this way,
we can conclude that our results contribute to the state of knowledge about the
correlation between the type of fitness and computational efficiency in CGP.
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10 Summary and Outlook

10.1 Analysis of Hypotheses
Hypothesis 1 (Population size). Small populations perform most effective in CGP.

One of the most significant key publications for this claim is the work of Miller [97].
The results of Miller’s experiments showed that Koza’s Computational Effort is
smaller if small population sizes are in use. However, the experiments focused only
on Boolean function problems. Another key publication for the use of small popula-
tion sizes in CGP is the work of Miller and Smith [99]. For a clearer analysis of this
claim, the impact of the population size on the performance of CGP was compre-
hensively investigated in Chapter 5 and Chapter 9. It has been demonstrated that
the claim of small population sizes cannot be generalized. However, in the Boolean
domain, the results and findings of former studies seem to be coherent but it has
been demonstrated that this claim does not hold for the symbolic regression. The
comparative studies in Chapter 5 and Chapter 9 clearly show that medium and high
population sizes perform significantly better than the traditional (1+4)-CGP in the
symbolic regression domain. In Section 9.3 of Chapter 9, we investigated the search
performance and convergence behavior of small, middle-sized, and big population
sizes on well-known benchmark problems. For the boolean function problems, we
observed that a very small population size performs best on these problems. How-
ever, for the tested symbolic regression problems, we observed that the middle-sized
population can lead to a better search performance. We also found reasons and
indicators in the analytic part of Chapter 9, which explain our observations.

Hypothesis 2 (1 + λ-CGP ). The 1 + λ-CGP algorithm is the most effective way
to use CGP.

The key publication of this claim is Miller’s [97] empirical study in CGP, in which he
stated that recombination doesn’t seem to add anything to the search performance.
Another work by Miller and Thompson [101], in which CGP itself was introduced,
questioned the benefits of crossover in CGP. The results of both works led to the
predominant use of the popular (1+λ)-CGP. For a reevaluation of this claim, we pre-
sented comprehensive experiments in Chapter 5 and Chapter 9. The results of both
studies show that the (1 + λ)-CGP is not the predominant evolutionary algorithm
for the use of CGP. In our experiments, the (µ + λ)-CGP and the Canonical-CGP
were used with crossover. The results clearly show that both algorithms perform
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significantly better on a wide range of different problems.
In Section 9.3 of Chapter 9, we investigated the search performance and conver-
gence behavior of the (1 + λ)-CGP and the Pop-50 CGP. On the boolean function
problems, the (1 + λ)-CGP showed the best results and was used with a very small
population size. On the three tested symbolic regression problems, the tested Pop-50
CGP with crossover clearly outperformed the (1 + λ)-CGP algorithm.

Hypothesis 3 (Redundancy). Extremely large genotypes perform most effectively
in CGP.

For the analysis of hypothesis 3, we investigated the search performance of CGP
after automatic parameter tuning in Chapter 5 and Chapter 9. The claim that ex-
tremely high levels of redundancy, caused by extremely large genotypes, perform
most efficient in CGP grew out of Miller and Smith’s work [99]. Their experiments
on Boolean function problems showed that CGP performed best with extremely high
levels of redundancy on the Even-Parity-3 problem and the 2-Bit digital multiplier
problem. The experiments were performed using the standard (1 + λ)-CGP algo-
rithm and a small population size of five individuals.

The results of the experiments in Chapter 5 and Chapter 9 indicate that the effi-
ciency of the combination of high levels of redundancy and small population sizes
is valid for the majority of the tested Boolean function problems. However, on most
tested symbolic regression problems, smaller genotypes and bigger population sizes
performed best. The outcomes of our comparative studies show that the dogma of
high levels of redundancy cannot be generalized. Furthermore, in Chapter 7 and
Chapter 8 it has been shown that also small genotypes can be efficiently used and
recombined in CGP. These findings were investigated in more detail on three pop-
ular regression functions in Chapter 9, Section 9.5. The results of the experiments
indicate that Miller and Smith’s findings hold for discrete fitness spaces with fixed
boundaries but can’t be generalized for other types of fitness such as continuous
fitness. Moreover, the experiments in this section also found an indicator that could
give an answer to why the stated redundancy dogma does not hold for continuous
fitness spaces. An analysis of the size of the search space for all three tested re-
gression functions showed that the increase of the genotype increases the size of the
fitness value space. The results of the search performance experiments with continu-
ous fitness indicate that the (1 + 4)-CGP algorithm is not an effective choice for the
evolutionary search in these large fitness spaces. In Chapter 9, Section 9.3, it has
been demonstrated that other algorithmic approaches with crossover can be more
effective when large fitness spaces must be explored.

Chapter 9, Section 9.5 investigated the role of redundancy in continuous and discrete
fitness spaces on three symbolic regression problems. The investigation started with
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the determination of the search performance within a continuous fitness space. The
experiments were repeated within a discretized search space afterward. The outcome
of this study was that we demonstrated that small genotypes can be effective within
continuous fitness spaces. After the discretization of the fitness space, we observed
that larger genotypes improve the search performance on the tested problems. The
discrete fitness spaces of popular boolean function problems are fixed and can’t vary
in size when the length of the genotype is changed. However, for the continuous
fitness spaces of the regression problems Koza 1,2, and 3, we observed another sit-
uation: When the length of the genotype is increased, the size of fitness space also
increases. Our observations on the search performance with continuous indicate that
the increase of the search space decreases the search performance.

Hypothesis 4 (Crossover). Crossover does not contribute to the search performance
of integer-based standard CGP.

The hypothesis that crossover does not contribute to the search performance is
rooted in the work of Miller [97] and Miller and Thompson [101]. The experiments
of both works led to a general question of the benefits of crossover in CGP. However,
further work, which has been contributed to standard CGP, rejected the use of
crossover and focused on the well-known (1 + λ)-CGP. The complete history of the
role of crossover in the field of CGP was analyzed in Chapter 7. To shed more light
on the question of crossover in CGP, two new crossover techniques were proposed in
Chapter 7. The crossover techniques were evaluated on various benchmark problems,
and its beneficial effects have been made clear in the experiment section of Chapter 7
and Chapter 9. Overall, our experiments demonstrate that crossover can contribute
to the search performance of CGP.
In Section 9.3 of Chapter 9, we investigated the search performance and convergence
behavior of the (1+λ)-CGP and canonical EA. The canonical EA was equipped with
the subgraph crossover technique and outperformed the (1 + λ)-CGP on the tested
regression problems Koza 1,2, and 3. A study of the distribution of the fitness values
and the convergence behavior indicates that the Pop-50 CGP can overcome local
optima faster than the (1 + λ)-CGP.

Hypothesis 5 (Mutation). The standard CGP point mutation operator is sufficient
for the mutative variation.

Our experiments in Chapter 8 and Chapter 9 outlined the limitations of the sole use
of the point mutation operator. Furthermore, we have investigated the limitations
with active function node analysis. The results of the experiments with the insertion
and deletion mutation techniques in Chapter 8 and Chapter 9 demonstrate that the
mutative variation can be improved using advanced phenotypic mutations. More
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precisely, the experiments demonstrate that the use of these advanced mutation
methods can result in an improved search performance on a diverse set of bench-
mark problems. Moreover, the presented active function node analysis in Chapter 8
indicates that the use of the insertion and deletion mutation enables a wider search
in the phenotypic space.

Hypothesis 6 (Boolean function domain). The (1 + λ)-CGP algorithm performs
most effective in the Boolean domain.

For the analysis of this hypothesis, we investigated the search performance of dif-
ferent CGP algorithms in Chapter 5. Our experiments show that the predominant
role of the (1 + λ)-CGP in the Boolean domain cannot be generalized. The design of
the study included state-of-the art benchmarks in the Boolean domains such as the
3-Bit digital multiplier and high order parity-even problems, which are commonly
used in the field of CGP. The results of our experiments show that the mutation-only
(µ + λ)-CGP algorithm is superior to the (1 + λ)-CGP on some Boolean problems.
Furthermore, our results in Chapter 9 show that the predominant role of mutation-
only CGP algorithms in the Boolean domain cannot be generalized. On most tested
Boolean benchmarks, the recombination based (µ + λ)-CGP performed best.

Hypothesis 7 (Symbolic regression domain). The (1 + λ)-CGP algorithm performs
most effective in the symbolic regression domain.

Similar to the analysis in the Boolean domain, we investigated the search perfor-
mance of different CGP algorithms in Chapter 5. Our experiments show that the
predominant role of the (1 + λ)-CGP in the symbolic regression domain cannot be
generalized as well. The design of the study included state-of-the art benchmarks
such as the Keijzer-6 and Pagie-1 problem, which have been proposed as benchmarks
for the GP community. Throughout Chapter 9 we have demonstrated the potential
of the subgraph and block crossover when it is used within a typical canonical GA
fashion. Moreover, we also found indicators in the symbolic regression domain, which
provide explanations for our assumptions that the Canonical-CGP with subgraph
crossover explores the search space more effectively and escapes local optima more
likely than the (1 + λ)-CGP.

10.2 Analysis of Research Questions

Research question 1 (Crossover). Can some kind of crossover be effectively used
in CGP?
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The experiments of our comparative studies in Chapter 7 and Chapter 9 demonstrate
that the use of crossover can improve the search performance in different problem
domains. The results in Chapter 7 and Chapter 9 demonstrate that the successful
use of a crossover-based algorithm in CGP depends on a solid parameter tuning in
which important parameters (e.g. crossover rate, population size, and tournament
selection size) are adjusted to the given problem. A good example is the result of
the arithmetic crossover in our comparative study. In the proposal of the arithmetic
crossover, Clegg et al. [13] observed algorithm stagnation problems on a simple
symbolic regression problem. In our comparative study, we tuned the parameters of
the arithmetic crossover based real-valued CGP and on some of the tested problems,
the algorithm outperformed the (1 + 4)-CGP. In Chapter 9 canonical EA equipped
with the subgraph crossover showed overall solid results in the symbolic regression
domain and outperformed the (1 + 4)-CGP on every tested problem. Moreover, the
(µ + λ)-EA equipped with the subgraph crossover outperformed the (1 + 4)-EA on
all Boolean function problems. The use of the subgraph crossover also led to good
results on both image operator design problems. Besides the subgraph crossover, we
also evaluated the block crossover in Chapter 9 that showed promising results on
several problems. However, compared to the subgraph crossover and in relation to
the results of the (1 + λ)-CGP, our results indicate that the subgraph crossover is a
more stable and solid choice to use recombination in CGP.

Research question 2 (Theory). How can CGP be analyzed on a theoretical level?

The runtime analysis in Chapter 4 showed that Multiplicative Drift Analysis and
Artificial Fitness Levels are suitable methods to analyze CGP on a theoretical level.
With the use of both methods, we determined the upper and lower runtime bounds
for two simple test problems.

Research question 3 (Real-valued CGP). Has the real-valued CGP algorithm stag-
nation problems?

We achieved some reasonable results for the real-valued CGP with arithmetic crossover
in the search performance evaluation with the best-fitness-of-run method. These
reasonable results were observed in the symbolic regression. and Boolean function
domain. We determined important parameters with the help of automatic parame-
ter tuning beforehand. However, the results were not better than the fitness values
of the algorithm equipped with subgraph crossover. Moreover, in some cases, the
real-valued CGP could not outperform the (1+4)-CGP. However, since former work
has questioned the effectiveness of the arithmetic crossover, the results of our exper-
iments underline the importance of parameter tuning in the field of CGP. Former
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work [13, 93] mainly focused on mere empirical evaluations, which led to early pre-
mature statements and recommendations. With the parameter settings, which we
determined and used in Chapter 9, we did not observe excessive long run evolu-
tionary runs as it has been observed by Clegg et al. [13] and Meier et al. [93]. Our
experiments in Chapter 6 demonstrate that stagnation can occur under certain con-
ditions (e.g. ineffective parametrization). Our experiments also indicate that the use
of the presented adaptive strategy can contradict stagnation und these conditions.
However, when the real-valued CGP is parameterized with effective settings, the
contribution to the search performance of the adaptive strategy appears to be only
marginally or in some cases destructive.

Research question 4 (Wasted fitness evaluations). Does the use of middle-size and
big populations in CGP lead to wasted fitness evaluations?

This research question has been analyzed in Chapter 9, Section 9.3.

Research question 5 (Random Initialization vs. Point Mutation). Cause random
initialization and point mutation similar effects?

This research question has been analyzed in Chapter 9, Section 9.3.

10.3 Recapitulation, Conclusion and Future Work

This thesis contributed to the fundamental knowledge of CGP and demonstrated
opportunities for advanced genetic variation techniques in the field of CGP. In the
first place, important and significant research questions were tackled, which have
not been answered before the underlying work of this thesis was published. More-
over, this thesis investigated important scientific claims about the effectiveness and
working mechanisms of CGP with the formulation and analysis of several hypotheses.

The most important contribution of this thesis to the field of CGP has been made
with the proposal, evaluation and investigation of two new methods for crossover.
Moreover, the results of comparative studies on crossover in Chapter 7 and Chap-
ter 9 showed that a crossover-based algorithm can outperform the traditional and
predominantly used (1 + λ)-CGP algorithm. This thesis also gave insight into the
beneficial effects caused by the subgraph crossover on an experimental level.

The findings of the experiments in the symbolic regression domain also paved the
way to disprove the generalization of the search performance dogma in CGP about
the effectiveness of a small population and extremely high levels of redundancy. With
the help of automated parameter tuning, the results of the performed comparative
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studies in Chapter 5, Chapter 7 and Chapter 9 unveiled a contrary situation be-
tween two problem major domains and disproved generalized statements about the
parametrization of algorithms in CGP.

Another important contribution of this thesis is the first runtime analysis of CGP.
The results of Chapter 4 showed how modern methods for the runtime analysis of
evolutionary algorithms can be used to proof lower and upper bounds of simple test
problems in CGP. This contribution also showed that for a theoretical analysis of
CGP, different probabilities for different types of genes must be taken into account.
This primarily relates to the function and connection genes for which different prob-
abilities for successful mutations must be calculated.

In Chapter 8, the stagnation issues of the (1 + λ)-CGP algorithm with the standard
point mutation operator as the sole genetic operator, were analyzed and tackled.
This has been accomplished by proposing two advanced phenotypic mutations for
CGP. The analytic part of this work was devoted to a range analysis of the fitness
values and an active function node analysis. On the one hand, these analyses un-
veiled disruptive effects of the point mutation operator. Alternatively, CGP showed
a better exploration of the phenotype space when advanced mutation techniques are
used. Another important part of this work is the comparison to Evolving Graphs by
Graph Programming, which significantly outperformed CGP in the past on a set of
popular boolean function problems. Moreover, on all tested benchmark problems,
except the digital 3-Bit-Adder problem, a lower median number of fitness evalua-
tions was achieved.

The evaluation in Chapter 9 demonstrated the effectiveness of crossover-based algo-
rithm. Moreover, the analysis of a subgraph crossover-based algorithm and the tra-
ditional (1 + λ)-CGP on three standard symbolic regression problems indicates that
the tested subgraph crossover-based algorithm explores the phenotypic space better
than the (1 + λ)-CGP. The analysis of the (1 + λ)-CGP also included a comparison
of various settings of the λ parameter on three standard symbolic regression bench-
marks. The comparison demonstrated that middle-size and big populations perform
more effective on these problems. To analyze the reasons for these observations, we
determined the distributions of the fitness values and determined a multimodal dis-
tribution. The histograms also indicate the existence of many local optima in the
near of the global optimum. These types of analyses demonstrated that the use of a
medium or a large setting of the λ parameter led to a lower frequency of these local
optima. Furthermore, we observed the lowest frequencies of local optima with the
Pop-50 algorithm equipped with subgraph crossover.

In the Boolean domain, a unimodal distribution of the tested problems was ob-
served, and some of them were fairly symmetric. The search performance evaluation
in the Boolean domain investigated three single-output and three multi-output prob-
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lems. A setting of λ = 1 performed best on all tested problems, and these findings
indicate a correlation between discrete unimodal fitness spaces and the effectiveness
of very small population sizes.

With the help of the fitness value histograms, it was also possible to demonstrate
the similarity of the effects caused by point mutation and random initialization.
This chapter also gave answers to why big population sizes are ineffective on boolean
and symbolic regression problems in CGP. A study on the distribution of the fit-
ness values and the convergence behavior indicates that the Pop-50 CGP algorithm
with crossover can overcome local optima faster than the traditional (1 + λ)-CGP.
Another important point of this chapter was the investigation of continuous and dis-
crete fitness spaces. The investigation on three symbolic regression problems with
continuous fitness showed that by enlarging the genotype, the size of the fitness space
enlarges too. This finding indicates why the corresponding search performance anal-
ysis showed the best results for the lowest setting of the genotype length.

However, for more general and significant statements, a large-scale study must follow
in the future. More precisely, the analytic experiments must be expanded to shed
more light on the search behavior of CGP in several problem domains. This can be
seen as the most important point for future work, which follows up the results of
this thesis. The reason for this is that the presented methods for analyzing CGP can
significantly contribute to a detailed and comprehensive explanation of the working
mechanisms and their corresponding effects. Since this thesis triggered a reconsider-
ation of the predominant use of the (1 + λ)-CGP algorithm, other problem domains
of CGP should be investigated in a similar way as it was done in Chapter 9. Con-
cerning the effective use of crossover in CGP, it is a natural next step to expand
the investigation to more problem domains. Another point which is left for future
work concerns the implementation of the proposed methods. For our experiments we
merely used naive Java implementations for the evolutionary computation research
system ECJ. As a next step, the naive implementations should be improved with
efficient implementations in the C/C++ programming language.

The following concluding remarks can be formulated on the basis of the outcome of
this thesis:

• Phenotypic crossover and mutations operators can be used to improve the
search performance of CGP

• The traditional use of CGP is outdated and has been comprehensively recon-
sidered

• Commonly used parametrization pattern can not be generalized in terms of
effectiveness
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• The conditions of the problem domain (e.g. size and structure of the fitness
space) influence the parametrization and the sucesss of a certain EA in CGP

• The nature of the fitness function (i.e. discrete or continuous) plays a significant
role for the search performance of a certain EA in CGP
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