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Abstract

We propose a co-evolutionary approach to parallel
distributed GP with the ADF method. This paper
presents results of experiments to prove the effective-
ness of this method. We also introduce a way to analyze
how this method works in run time using the entropy.
Furthermore, we show this will help to obtain the best
performance of the proposed method.

1. Introduction

Genetic Algorithms (GAs) and Genetic Program-
ming (GP) have been proven to be efficient tools
for a wide range of applications. However, for com-
plex problems, they require massive computational
power. In order to speed up the computation, par-
allel distributed GA and parallel distributed GP are
studied by many researchers (Tanese, 1989; Gordon
and Whitley, 1993; Martin, et al., 1997; Andre and
Koza, 1998; Iba and Niwa, 1996; Punch, 1998). How-
ever, there are few previous works which focus on the
ADF method in GP.

In this paper, we propose a co-evolutionary approach
to parallel distributed GP. Thereafter, we show results
of experiments to confirm the effectiveness of our ap-
proach.

2. A Co-evolutionary Method

When GP is applied to a complex task, Automati-
cally Defined Functions (ADF) method (Koza, 1994)
is often used. In ADF method, an individual pro-
gram generated by GP consists of one main program
and ADF subroutines. A main program is the one in-
cluding subroutine calls to ADF subroutines. An ADF
subroutine is also a program which is called from a
main program with arguments. Our method comes
from the analogy of co-evolution in nature. The co-
evolution among main programs and ADF subroutines
means that they cooperate each other to acquire a good
fitness value. In other words, main programs and ADF

subroutines evolved separately are expected to become
efficient programs. We have adopted this idea into the
parallel distributed GP.

The island model is a popular method in the paral-
lel distributed GP. In this model, the whole population
are split into many sub-populations (which are called
demes). Demes communicate with each other to ex-
change the individuals. This communication is called
migration.

Our method is based on the island model. In our
method, demes have a little different responsibility from
the traditional ones (Andre and Koza, 1998; Iba and
Niwa, 1996). Each deme evolves one program among a
main program and ADF subroutines. In addition, each
individual on the demes has one program among a main
program and ADF subroutines. A deme for main pro-
grams consists only of a population of main programs,
whereas a deme for ADF subroutines consists only of a
population of ADF subroutines.

Communication is used for the evaluation. We can-
not evaluate ADF subroutines only by themselves. This
is because both a main program and its ADF subrou-
tines are required for the evaluation. The communi-
cation between demes is used for transferring a few
main programs or ADF subroutines. We call them as
“sub-programs for the evaluation”. This means a few
main programs in demes for ADF subroutines and a few
ADF subroutines in demes for main programs. How-
ever, too much communication makes the computation
slow down. In our method, this communication is exe-
cuted only once every several generations to reduce the
amount of communication.

The migration is also used in our method as in the
island model. Elite individuals are transferred by mi-
grating between demes. In our method, the migration
occurs only between the same kind of demes, i.e., we
can migrate from a deme of main programs to another
deme of main programs. In other words, we cannot mi-
grate from a deme of main program to a deme of the
ADF subroutines, and vice versa.

Our method has three phases described below:
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Fig. 1 A diagram of the division phase.

(1) The initial phase
Individuals on a deme are evolved with the usual
ADF method. Each individual has one main pro-
gram and ADF subroutines. In this phase, each
deme is independent from each other. Individuals
in this phase become an initial population for the
next phases.

(2) The division phase
The whole GP individual in the previous phase is
divided into an individual in a deme of one main
program and individuals in several demes of one
ADF subroutine (Fig. 1). Each deme becomes spe-
cialized to one of them. Individuals are transferred
to a specified deme for the evolution. This phase
does not include any calculation.

(3) The island phase
Individuals in a deme are evolved with the usual
GP. The communication for the evaluation and mi-
gration between demes is executed every several
generations.

2.1 Tags for ADF subroutines

We have defined a number tag for coupling a main
program and ADF subroutines to evaluate. At the di-
vision phase, each individual in the initial phase is split
into an individual in a deme of a main program and
individuals in demes of one ADF subroutine. At that
time, all ADF subroutines are tagged by a unique num-
ber. The same number tags are attached to the main
program’s points in which they call the ADF subrou-
tines (Fig. 1).

During the evaluation, an individual of main program
calls an ADF subroutine matching the number tag. In
the same way, an individual of the ADF subroutine
can find the caller program, or a main program, by the
tag. The number of a tag is not constant during the
evolution. When an individual fails to find a program
by a tag, the tag is changed to a certain value which
can be found by another. It means that the individual
changes the program to call or to be called by (Fig. 2).

We have defined the actions of the tags when apply-
ing the genetic operators to the individuals as follows:

e By the mutation, the values of tags are not
changed.
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Fig. 2 The evaluation process using the tags (on a
deme for main programs).

e By the crossover, the values of the tags of parents
are inherited by their children, i.e., two parents
whose tags are x and y generate two children whose
tags are x and y.

These actions do not change the total amount of
types of tags. However, some selection methods (e.g.,
the tournament selection) may cause to decrease the
amount with generations.

The elite strategy retains the elite individuals. When
using this strategy, the individuals with worse fitness
values will be reduced. Therefore, using the elite strat-
egy also decreases the amount of types of tags.

2.2 The fitness function for ADF subroutines

It is important for ADF subroutines to be called by a
main program. To implement this, we design the fitness
function of an ADF subroutine as follows:

fmain (1)

fapF = ——
count Apr

where fiain means the fitness value of a main program
calling the ADF subroutine. And countapr means the
number of times the ADF subroutine is called during
the evaluation. In this case, smaller fitness values are
better.

This equation implies that the more frequently ADF
subroutines are called, the better. As a result, ADF
subroutines can evolve to be called as many times as
they can and to contribute to the fitness values of a
main program.

3. Experiments

We have applied our method to solve three bench-
mark problems; i.e., the Mackey-Glass problem, the 8-
input multiplexer problem and the Ant problem (The
Santa Fe trail). Used parameters for our method are
described in Table 1. These problems require one main
program and one ADF subroutine. We have experi-
mented in two cases; i.e., four demes (two for main
programs and two for ADF subroutines) and six demes



Table 1 Parameters used in our method.

Population size on each deme 1000

#. demes 4orb6

Division phase

At the 10th generation

Comm. for the evaluation Every five generations

Migration Every five generations
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Fig. 3 The result of the Mackey-Glass problem.

(four for main programs and two for ADF subroutines).
All experiments were repeated 30 times.

To compare with our method, panmictic GP with
usual ADF method was also executed. Their pop-
ulation size was set to 4000 (= 4 x 1000) and 6000
(= 6 x 1000). The other parameters were the same for
the fair comparison.

4. Results

The results are plotted in Figs. 3, 4 and 5. These
graphs show the averages of the best fitness values with
generations.

In our method for the Mackey-Glass problem and the
Ant problem, a large slump appeared at the 10th gener-
ation and a large peak appeared at the 15th generation.
Note that the fitness value in our method was decreas-
ing almost monotonously, otherwise. Our method for
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Fig. 4 The result of the 8-input multiplexer prob-
lem.
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Fig. 5 The result of the Ant problem.
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Fig. 6 The result of the Ant problem with 2000 in-
dividuals on each deme.

six demes gave lower values than for four demes at the
end of the run.

For the multiplexer problem and the Mackey-Glass
problem, our method for four demes performed better
than the usual ADF method with 4000 individuals. Six
demes performed better than both 4000 individuals and
6000 individuals. For the Ant problem, our method
for four demes performed worse than the usual ADF
method. Six demes performed almost as well as 6000
individuals at later generations.

The Ant problem is a problem that the population
size is the major factor of the performance. Hence,
the larger population we use on the usual method, the
better the performance of the result is. Moreover, if
we use larger population than a certain size, GP can
find the complete answer soon. In this experiment,
the population size on each deme was small. As a
result, our method performed worse than the usual
ADF method with a larger population. We should
use larger population for the Ant problem. When ex-
perimented with 2000 individuals on each deme, our
method for four demes performed better than the usual
ADF method with 8000 (= 4 x 2000) individuals and six
demes performed better than 12000(= 6 x 2000) individ-
uals (Fig. 6).



5. Discussion
5.1 Summary of results

The results obtained using this method were better
than those obtained using the usual ADF method. In
addition, the results were improved further by increas-
ing the number of demes. It can be said that these
results demonstrate the effectiveness of this method.

Regarding the Ant problem and the Mackey-Glass
problem attendant to this method, a large slump (im-
provement in results) occurred at the 10th generation,
and a large peak (worsening of results) occurred at the
15th generation. These phenomena are due to com-
munication. As a result of mutual communication be-
tween good individuals obtained from each deme in the
10th generation of the division phase, individuals that
showed better results than even the best individuals in
their own demes were transferred, hence the fitness val-
ues abruptly decreased. Subsequently, usual GP con-
tinued from 10th generation to 15th generation on each
deme, resulting in a somewhat gentle reduction.

The 15th generation is the one in which transfer of
sub-programs for the evaluation occurs. If the sub-
programs for the evaluation change significantly from
the previous ones due to this communication, there is a
possibility that the results of the individuals that were
called will change significantly. In addition, there is a
possibility that individuals that could have been called
up to that point in time can no longer be called. In
such a case, the values of the tags change over. The
new values are randomly chosen from the tags of sub-
programs for the evaluation in the deme, so the results
sometimes improve or sometimes become worse. The
above phenomenon occurs, and is manifest as this peak
in the results.

It can be clearly seen that, even after the 15th gen-
eration, small slumps and peaks appear at intervals of
5 generations in which communication is performed.
This phenomenon substantiates the fact that slumps
and peaks appear as a result of communication.

Also, the slump in the case of six demes at 15th gen-
eration is greater than that for the case of four demes.

The foregoing can be explained neatly as follows: If
the diversity of individuals can be adequately main-
tained, the system can cope with changes in the sub-
programs for the evaluation, enabling the most appli-
cable individuals to be selected, which in turn improves
the results.

In the multiplexer problem, neither the abovemen-
tioned large slump nor peak appeared. If there is a
difference, it lies in the fact that the multiplexer prob-
lem is a problem in which the effect of the ADF is large
because the answers of the multiplexer problem are li-
able to become a repetitive structure.

The absence of a slump in the 10th generation in-
dicates that there is a possibility that favorable indi-
viduals that slumped abruptly remained undiscovered
even among all of the demes. Also, the reason why a
peak was not seen at the 15th generation is thought
to be due to the fact that useful sub-programs for the
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Fig. 7 The computation times.

evaluation were accumulated. The above can also be
substantiated by looking at the execution log, which
confirms that the sub-programs for the evaluation have
changed over.

5.2 Comparison of Computation Time

The target question in the parallel distributed
method is how short the computation time becomes. In
this method, the communication mechanism is added,
so compared to the usual ADF method an overhead
might be generated. We performed a comparison test
using actual computation times in order to determine
the order of magnitude of this overhead.

A comparison concerning the Mackey-Glass problem
is indicated in Fig. 7. The vertical axis indicates the
average computation time for one trial in 1000-second
units.

As can be seen from the figure, our method requires
about three times longer computation time than that
for 1000 individuals using the ADF method, but does
not require as much time as that required for 4000 indi-
viduals. Also, this method enables the communication
traffic to be reduced by adjusting the parameters, so
we believe that it permits additional reduction of com-
putation time.

The computation time for 4000 individuals using the
ADF method is more than four times of that for 1000
individuals. This is because the bloating ! is more likely
to occur with 4000 individuals.

Communication overhead of our method depends on
the division and migration mainly. We can address
why the communication for the evaluation does not
have impact so much on the overhead. The amount
of the communication for the evaluation is proportion
to the number of types of the tags. Because these num-
bers are decreasing with generations, the amount of the
communication is decreasing on each communication.
There are only few types of tags by the 25th generation
(Fig. 8). Therefore, the amount of the communication
for the evaluation is little in the total amount of com-
munication.

IThis is a phenomenon in which the redundant part accu-
mulates in a program within an individual. If bloating occurs,
useless computation time is expended in proportion to the length
of the redundant part (Banzhaf, et al., 1998).
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Fig. 8 A typical time series of the number of types
of tags (for four demes on the Mackey-Glass
problem).

In the light of these results, it can be said that
our method enables the computation time to be re-

duced while providing better results than the usual
ADF method.

5.3 Analysis based on Entropy

We carried out an analysis based on the entropy of
tags. The feature of our method was the utilization
of tags. This is because the main program and the
ADF subroutines call each other via these tags so as to
determine the results. In our method, it is considered
that the diversity of the tags is more important than
number of types. For this reason, we decided to use
entropy, which is used in information theory (Cover and
Thomas, 1991), to measure the diversity.

The definition of entropy H(X) on a deme is as fol-
lows:

H(X)=-> X;logX; . (2)

X is the appearance ratio of a certain value of tags on
the deme. This entropy is the maximum value if X; of
all types of tags is the same, and is 0 if all tags are the
same type. We observed the transition of this entropy
in order to figure out how our method works.

For each of the problems concerning which we per-
formed the experiments above, we measured the en-
tropy using this method for four demes and six demes,
respectively. The results are plotted in Fig. 9. These
graphs show the average values for all trials. The hor-
izontal axis is the generation. The data were plotted
from a point after an evaluation was made after the di-
vision phase (i.e., after the end of the 10th generation).

For all of the problems, peaks were observed in
the generations at which the communication was per-
formed. In generations other than peaks, we found an
overall tendency for the entropy of tags to fall off. Judg-
ing from the peaks, it appears that the fluctuation due
to communication is greater for the demes for the ADF
subroutines than ones for main programs.

From the figures, one can understand the way in
which our method works. First, when an evaluation

is performed right after the division phase (at the end
of the 10th generation), the number of types of tags
falls to the number of sub-programs for the evaluation.
Next, the number of types of tags continues to fall as
evolution is progressively repeated by GP.

When the sub-programs for the evaluation are re-
newed by communication, the tags of the individuals
which could not find the caller program or the ADF
subroutine in the sub-programs for the evaluation are
changed over at the time of evaluation, and the diver-
sity of the tags increases temporarily. This is indicated
by the temporary increase of the entropy in the gener-
ation at which communication takes place, as shown in
the figures. Also, as evolution is progressively repeated,
a cycle in which the number of types of tags decreases,
and then temporarily increases due to communication
takes place repeatedly.

It can be seen that by the time that the 60th gen-
eration is reached, the entropy has fallen to the small
value. At that time, the tags have only several types
(see also Fig. 8). Good individuals seem to be gener-
ated by causing individuals that exhibit good results in
each deme to evolve from these several types of tags,
transferring them as sub-programs for the evaluation,
and then combining them.

Note that the entropy value for six demes has fallen
to almost zero by the 30th generation and it retains
near to zero after that, while for four demes it is in a
cycle of increases and decreases. As a simple applica-
tion of our method to the Ant problem does not yield
good result, this does not apply to that problem. Con-
sidering the fact that the results of six demes better
than four demes, we can induce the hypothesis that
the entropy must become smaller value to acquire bet-
ter result.

We might know the performance of the final result
from the entropy as we saw the above. However, from
this test alone, it cannot be said unreservedly that an
entropy value that is small from the outset produces
good results. We think that if the number of types
of tags is reduced from a very early generations, it is
not possible to maintain diversity, and hence the results
cannot be improved. In order to improve the results us-
ing this method, it is desirable to execute this method
through generations while maintaining a certain degree
of the diversity, and then reduce it once a certain gen-
eration has been reached.

6. Conclusion and Future Works

We have proposed a new version of parallel dis-
tributed GP. The experiments showed that our pro-
posed method performed better than the usual ADF
method. We observed that the more demes we used,
the better the results were. Moreover, we proposed the
entropy in order to know how our method works.

As a future research, we are trying other partitions
of demes and more demes to produce more interesting
results. Also, we are researching the relation between
the entropy and the performance of our method. Fur-
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(b) Multiplexer problem.
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Fig. 9 The time series of the entropy on three prob-
lems.

thermore, we will try to obtain the best performance
from this method by using entropy as an index.
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