Skip to main content

Advertisement

Log in

Genetic programming modelling for the electrical resistivity of Cu–Zn thin films

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Electrical resistivity measurement is an exact way to find defects in metals and alloys. Defects contribute to the residual resistivity, and determining their number is very important. Defining the inner electrical structure of an alloy is difficult, and especially it is unpredictable in alloys. This article offers a genetic programming formulation to learn how deposition conditions and alloy constituents affect the electrical resistivity of Cu–Zn alloy. Input parameters selected were: measurement temperature (K), Cu and Zn% content in the deposition bath and thin films, bath temperature, deposition potential, and the grain size of the samples. Electrical resistivity values were the output parameters. A total of 130 training and testing sets were selected. The comparative results prove the superior performance in predicting electrical resistivity of the films. The produced model proposes a close relationship for all the input parameters with the electrical resistivity property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H Pouraliakbar, G Khalaj, L Gomidželović, M J Khalaj and M Nazerfakhari, Ceram. Int. 41(8), 9350 (2015)

    Article  Google Scholar 

  2. H Pouraliakbar, A Nazari, P Fataei, A K Livary and M Jandaghi, Ceram. Int. 39(6), 6099 (2013)

    Article  Google Scholar 

  3. E E Zadeh, S A H Feghhi and G H Roshani, Pramana – J. Phys. 88:24 (2017)

    Article  ADS  Google Scholar 

  4. H Pouraliakbar, A Hosseini Monazzah, R Bagheri, S M Seyed Reihani, G Khalaj, A Nazari and M R Jandaghi, Ceram. Int. 40(6), 8809 (2014)

    Article  Google Scholar 

  5. İ H Karahan and R Özdemir, Acta Phys. Pol. A 128(2B), 427 (2015)

    Article  Google Scholar 

  6. F Salmasi, R Khatibi and M A Ghorbani, Turk. J. Eng. Env. Sci. 36, 121 (2012)

    Google Scholar 

  7. I Boussaïd, J Lepagnot and P Siarry, Inf. Sci. 237, 82 (2013)

    Article  Google Scholar 

  8. J Y Park, Y M Kim and Y H Kim, J. Mater. Sci. Mater. Electron. 27, 5916 (2016)

    Article  Google Scholar 

  9. C Ramírez and J A Calderón, J. Electroanal. Chem. 765, 132 (2016)

    Article  Google Scholar 

  10. S P Bhaskar and B R Jagirdar, J. Alloys Compd. 694, 581 (2017)

    Article  Google Scholar 

  11. R Özdemir, İ H Karahan and O Karabulut, Metall. Mater. Trans. A 47, 5609 (2016)

    Article  Google Scholar 

  12. M R H de Almeida, E P Barbano, M G Zacarin, M M de Brito, P C Tulio and I A Carlos, Surf. Coat. Technol. 287, 103 (2016)

    Article  Google Scholar 

  13. G Khalaj, A Nazari, S M M Khoie, M J Khalaj and H Pouraliakbar, Surf. Coat. Technol. 225, 1 (2013)

    Article  Google Scholar 

  14. İ H Karahan, Chin. J. Phys. 46(1), 105 (2008)

    Google Scholar 

  15. W Dang, X Ren, W Zi, L Jia and S F Liu, J. Alloys Compd. 650, 1 (2015)

    Article  Google Scholar 

  16. A Doner, R Solmaz and G Kardas, Energy 90, 1144 (2015)

    Article  Google Scholar 

  17. N Narayanan and N K Deepak, Pramana – J. Phys. 87: 87 (2016)

    Article  ADS  Google Scholar 

  18. R Özdemir, Acta Phys. Pol. A 132(3), 770 (2017)

    Article  Google Scholar 

  19. R Özdemir, C A Korkmaz and İ H Karahan, Acta Phys. Pol. A 132(3), 1045 (2017)

    Article  Google Scholar 

  20. Y Xuetao, W Yu, S Dongbai and Y Hongying, Surf. Coat. Technol. 202, 1895 (2008)

    Article  Google Scholar 

  21. M Dogan, E Tirasoglu, İ H Karahan, N Kup Aylikci, V Aylikci, A Khoul, H A Cetinkara and O Serifoglu, Radiat. Phys. Chem. 87, 6 (2013)

    Article  ADS  Google Scholar 

  22. İ H Karahan, Scient. World J. 2013, Article ID 273953 (2013)

  23. R Özdemir and İ H Karahan, Appl. Surf. Sci. 318, 314 (2014)

    Article  ADS  Google Scholar 

  24. İ H Karahan and R Özdemir, Appl. Surf. Sci. 318, 100 (2014)

    Article  ADS  Google Scholar 

  25. I H Karahan, J. Mater. Sci. 42(24), 10160 (2007)

    Article  ADS  Google Scholar 

  26. I Ilimbey, K Yurdal, O F Bakkaloglu, I H Karahan and M Bedir, Appl. Surf. Sci. 318, 305 (2014)

    Article  ADS  Google Scholar 

  27. H Pouraliakbar, S Firooz, M R Jandaghi, G Khalaj and A Nazari, Int. J. Adv. Manuf. Tech. 86(5–8), 1639 (2016)

    Article  Google Scholar 

  28. I H Karahan, O F Bakkaloglu and H S Guder, J. Optoelectron. Adv. Mater. 11(3), 313 (2009)

    Google Scholar 

  29. İ H Karahan and R Ozdemir, Optoelectron Adv. Mater. 4(6), 812 (2010)

    Google Scholar 

  30. M J Faizabadi, G Khalaj, H Pouraliakbar and M R Jandaghi, Neural Comput. Appl. 25(7–8), 1993 (2014)

    Article  Google Scholar 

  31. M Eskil and E Kanca, Comput. Mater. Sci. 43(4), 774 (2008)

    Article  Google Scholar 

  32. A Nazari, V Abdinejad, Ceram. Int. 39(2), 1991 (2013)

    Article  Google Scholar 

  33. N Narimani, B Zarei, H Pouraliakbar and G Khalaj, Measurement 62, 97 (2015)

    Article  Google Scholar 

  34. İ H Karahan, R Ozdemir and B Erkayman, Appl. Phys. A 113, 459 (2013)

    Article  ADS  Google Scholar 

  35. P A Jadhav, R S Devan, Y D Kolekar and B K Chougule, J. Phys. Chem. Solids 70(2), 396 (2009)

    Article  ADS  Google Scholar 

  36. K Barmak et al, J. Vac. Sci. Technol. A 32, 061503 (2014)

    Article  Google Scholar 

  37. M I Mohammed, A A Elbadawi and H H Abuellhassan, J. Appl. Indust. Sci. 1(3), 12 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Hakki Karahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karahan, İ.H., Ozdemir, R. Genetic programming modelling for the electrical resistivity of Cu–Zn thin films. Pramana - J Phys 91, 42 (2018). https://doi.org/10.1007/s12043-018-1613-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1613-2

Keywords

PACS Nos

Navigation