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Abstract

Physical measurements are generally
accompanied by their units of measurement. This
contribution introduces an extension of genetic
programming that exploits the information
captured in the units of measurement and
compares it against standard methods of genetic
programming. The motivations for the
development of this dimensionally-aware GP are
twofold: to enhance the search efficiency by
utilising the knowledge contained in the
dimension information and to enhance the
interpretability of the produced formulae. The
performance of GP is examined on a number of
experiments and the results are reported for four
variants of GP.

1 INTRODUCTION

In scientific endeavours, data represents carefully
collected observations about the particular phenomena
that are under study. Physical observations are usually
accompanied by their units of measurement. However, the
traditional methods usually eliminate this information
through the introduction of dimensionless ratios (well
known examples are the Mach number and the Reynolds
number). Once the dimensionless numbers are used
instead of the original dimensional values, the problem of
dimensional correctness is conveniently avoided, as all
analysed quantities are dimension-free. It is also argued
that dimensionless ratios �collapse� the original
dimensional search space, making it more compact, thus
resulting in a more effective behaviour of algorithms that
fit models to data. At the same time, the information
contained in the units of measurement can be ignored
entirely.

The primary questions addressed in this contribution are:
�What must one know a priori about an unknown

functional dependency in order to estimate it on the basis
of observations? Is it possible to extend the present GP
paradigm, without making it too strong, and to enhance
both the interpretability of induced relationships and the
efficiency of the evolutionary search process? What can
the notion of dimensionality contribute to answering these
questions?�

1.1 INTRODUCING UNITS OF
MEASUREMENT: A SEARCH
PERSPECTIVE

Search has always been an integral part of machine
intelligence. In principle, all problem-solving strategies in
Artificial Intelligence (AI) can be divided into strong and
weak search strategies. Weak search methods do not make
any assumptions about the domain they are traversing.
Strong methods do. Consequently, since the strong
methods utilise the auxiliary information in a form of
explicit knowledge about the domain they are trying to
solve, they usually outperform the weaker methods.
However, strong methods can be successfully applied
only to those classes of problems where the assumptions
can be justified and conveniently introduced. Since weak
methods in principle assume nothing, they have, in
principle, an almost universal applicability.

In a context of scientific discovery, one usually takes
advantage of already available scientific knowledge about
the domain in question. The incorporation of such
knowledge into a process of search for new, more
accurate, insightful relationships, makes the search
algorithm stronger and consequently deflates its universal
applicability. Some scientific disciplines even have their
own �recipes� that rely on so much domain-dependent
knowledge that they invalidate the application of these
recipes in other areas.

Genetic Programming (GP) is a weak search algorithm
operating on parse trees of functions and terminals. In its
native form, GP lends itself quite naturally to the process
of induction of mathematical models based on



observations: GP is an efficient search algorithm that need
not assume the functional form of the underlying
relationship. Given an appropriate set of basic functions,
GP discovers a (sometimes very surprising) mathematical
model that approximates the data well. At the same time,
GP-induced models come in a symbolic form that can be
interpreted by scientists (see for example, Babovic, 1996).

Unfortunately the application of standard GP in a process
of scientific discovery does not guarantee satisfactory
results. In certain cases, despite their remarkable
accuracy, GP-induced relationships are too complicated
and provide little new insight into the process that
generated the data. One may argue that GP, in such
situations, blindly fits parse trees to the data, in almost the
same way as that in which Taylor or Fourier series are
expanded to approximate observations. It can be argued
that GP then results in a model with accurate syntax, but
with meaningless semantics. In these cases, the
dimensions of the induced formulae often do not fit,
pointing to the physical uselessness of the induced
relationships.

Standard GP is ignorant of the dimensionality of its
terminals and can safely be applied to problems composed
of dimensionless numbers only. Given the symbolic
nature of GP and its ability to manipulate the structure of
functional relationships, it seems strange that information
contained in units of measurement has so far not been
used as an aid in search process. After all, the dimensional
correctness as used in science acts as a syntactic
constraint on any formula it induces. It is therefore
expected that the introduction of dimensions in the GP
paradigm might result in improved search efficiency.

2 EXTENDING  GP

GP, as an instance of the evolutionary algorithm family,
iteratively applies variation and selection on a population
of evolving entities. Standard variation operators in
genetic programming are subtree mutation (replace a
randomly-chosen subtree with a randomly generated
subtree) and subtree crossover (replace a randomly
chosen subtree from a formula with a randomly chosen
subtree from another formula). In order to accommodate
the additional information available through units of
measurement, the following extensions of standard GP are
proposed.

2.1 INTRODUCTION OF UNITS IN GP

In the dimension-augmented setup, every node in the tree
maintains a description of the units of the measurement it
uses. These units are stored as arrays of real-valued
exponents of the corresponding dimensions. In the present
set of experiments only the dimensions of length, time
and mass (LTM) are used, but the setup may be trivially
extended to include all other SI-dimensions (amount of

substance, electric current, thermodynamic temperature
and luminous intensity). Square brackets are used to
designate units, for example [1, -2, 0] corresponds to a
dimension of acceleration (L1T-2M0). Similarly, [0,0,0]
defines a dimensionless quantity.

2.2 DEFINITION OF THE TERMINAL SET

The definition of the terminal set is straightforward, in
that variables and constants are accompanied with the
exponents of their respective units of measurement:

T = { v1[xv1,yv1,zv1], � , vn[xvn,yvn,zvn],

c1[xc1,yc1,zc1], � , cm[xcm,ycm,zcm] } ( 1)

Where v designates a variable, c a constant and [x,y,z] the
corresponding array containing the units of measurement.
For example, v1[0,0,1] designates a variable � v1 �  with a
dimension of mass. User-defined constants can be defined
along with their dimensions, such as 9.81[1, -2,0] defining
the earth�s gravitational acceleration. Randomly generated
constants are allowed only as dimensionless quantities
([0,0,0]). There is a definitive reason for allowing random
numbers to be dimensionless only. Should random
constants with random dimensions be allowed, GP would
have an easy way to correct the dimensions by in-
troducing transformation from one arbitrary unit of
measurement to another. Some form of pressure should be
applied on the application of unit transformation. This
issue is addressed during the experimentation.

2.3 DEFINITION OF THE FUNCTION SET

Application of arithmetic functions on dimension-
augmented terminals violates the closure property for
these functions (Koza, 1992). For example, adding meters
to seconds renders a dimensionally incorrect result of the
operation. Therefore, the definition of arithmetic
operators is augmented to: (1) specify the transformation
of units of measurement, (2) accommodate units of
measurement-related constraints on the application of
functions and (3) introduce additional functions that
repair trees and provide the benefits of closure.

Table 1 summarises the effects of the application of
functions on units of measurement and specifies
constraints on the applications of functions. For example,
exponentiation of a value can only take place when the
operand is dimensionless, in which case the result of the
operation is also a dimensionless value. Similarly,
addition and subtraction are constrained so that their
operands must have the same dimensions. Multiplication
and division combine the exponents by adding and sub-
tracting the dimension exponents respectively. The
standard Power function can be applied to dimensionless
values only, whereas PowScalar can be applied to
dimensional operands, affecting their dimensions
correspondingly. Other functions can be defined in similar
ways.



Table 1 Effects and constraints that units of measurement
impose on function set

Function Operand
Dimensionality

Result

Exponentiation: [0,0,0] [0,0,0]

Logarithm: [0,0,0] [0,0,0]

Square Root: [x,y,z] [x/2, y/2, z/2]

Addition: [x,y,z], [x,y,z] [x,y,z]

Subtraction: [x,y,z], [x,y,z] [x,y,z]

Multiplication: [x,y,z], [u,v,w] [x + u ,y + v, z + w]

Division: [x,y,z], [u,v,w] [x - u ,y � v, z - w]

Power: [0,0,0], [0,0,0] [0,0,0]

PowScalar (c): [x,y,z] [x*c, y*c, z*c]

If less than zero: [0,0,0], [x,y,z], [x,y,z] [x,y,z]

2.3.1 DimTransform

As mentioned earlier, an additional function should be
introduced in order to guarantee closure:

Function Operand
Dimensionality

Result

DimTransform

c[x,y,z]:

[u,v,w] [x + u ,y + v, z + w]
(2)

This transformation operator multiplies its operands with
the constant value c and also affects dimensions through
applying values for x, y and z as indicated in (2).
DimTransform can be used to resolve dimensional
violations that will inevitably arise when using standard-
GP-style randomized crossover on formulae with
dimensional variables. For example, when meters are
added to seconds, the second operand can be transformed
into meters by wrapping it with a transformation of
magnitude 1.0 and unit description [1,-1,0].
DimTransform can therefore transform a quantity
expressed in one unit into a quantity expressed in a
completely different unit.

At first sight, it appears that the application of
DimTransform eliminates all the problems related to
dimensions. It is evident, however, that the application of
DimTransform can �fix� any dimensionality-related
problem by introducing physically meaningless
transformations into evolving formulae.

Initialisation, crossover and mutation impose heavy
demands on the use of this transformation. Whenever a
constraint violation occurs (for instance after an insertion
of a subtree), a DimTransform function which solves
this violation is inserted. At present, this is done in an

arbitrary manner i.e. no attempt is made to find the
optimal sequence of transformations for a given formula.

Therefore, the application of DimTransform does not
always contribute to an interpretable solution to the
problem. To control its application an additional objective
is introduced  (see section 2.4).

The DimTransform-based mechanism is not a form of
strongly typed GP. A strongly typed GP would initialise
and keep all expressions dimensionally correct throughout
evolutionary process. For ill-posed and incomplete
problems, a strongly typed GP would fail even at
initialisation. The current approach allows dimensionally
incorrect solutions, but introduces evolutionary pressure
on dimensional incorrectness.

2.4 DEFINITION OF GOODNESS-OF-
DIMENSION CALCULATION

Apart from the usual goodness-of-fit statistic, a second
objective �  goodness-of-dimension �  is introduced. As
stated earlier, the application of the DimTransform
operator can result in an arbitrary transformation of units.
This is not necessarily a desirable behaviour, as multiple
occurrences of this operator do not enhance the
interpretability of the resulting formulae. When no
constraints are placed on the frequency of
DimTransform, the approach reduces to a standard GP
with the added �feature� that the resulting formulae grow
proportionately to the number of unit violations.

One of the approaches used to reduce the number of
applications of DimTransform takes full advantage of
the explicit representation of the dimensions as a vector of
real valued exponents. The distance of an expression from
a dimensionally correct formulation can be calculated as
the number of required transformations, i.e.

Goodness-of-Dimension ∑ ++= iii zyx ( 3)

where the subscript i ranges over all applications of the
DimTransform operator in the formula, whereas x, y
and z are the components of the dimension vector. The
goodness-of-dimension acts as an effective metric of
distance from desired dimensions and can be treated as an
additional measure of fitness. Goodness-of-dimension can
be combined with the goodness-of-fit statistic in a multi-
objective optimization fashion (see 3.2).

2.5 DIMENSION-BASED BROOD SELECTION

Brood selection (Tackett, 1994) is a technique where the
parents produce a large number of offspring. These
offspring are evaluated against a �cheaper� fitness
function (often referred to as the culling function). The
best of these offspring are moved to the next generation.



The evaluation of a large collection of the offspring by a
culling function improves the overall performance
because little effort is wasted on the evaluation of bad
offspring on the expensive complete fitness function.

The culling function used in dimensionally-aware GP is
the goodness-of-dimension of the formula. This
evaluation is very cheap as it can be calculated
independently of the training set and it requires a single
pass through the parse tree.

The present implementation reads as follows: two parents
are chosen for crossover; they produce m offspring by
repeated application of the random sub-tree crossover
operation; constraint violations are corrected for
dimensions in the manner outlined in 2.3.1
DimTransform; and, finally, the best among the m
offspring with respect to goodness-of-dimension are
added to the intermediate population.

Therefore, this operation can be best understood as a unit-
informed crossover. Although the use of a culling
function equates to selection, it is applied immediately
after individual crossovers, thus modifying the results of
crossover to produce formulae that are dimensionally
more correct.

3 EXPERIMENTS
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Figure 1: Definition sketch for the energy conservation
law for steady, one-dimensional fluid flow

Dimensionally-aware GP can best be tested in a fully
controlled experimental setup, that is, one for which a
unique solution is known to exist. Also, the experiments
should involve non-trivial units of measurement.

Therefore, a choice has been made to generate data using
the following scientific law.

3.1 THE ENERGY CONSERVATION LAW FOR
STEADY, ONE-DIMENSIONAL FLUID
FLOW

Some of the most important principles of modern fluid
dynamics are conservation laws.  The conservation laws
for the flow of fluids state that mass must be conserved
and that the impulses must be balanced by changes in
momenta. The conservation of energy is another such law
formulated by Daniel Bernoulli in early XVIII century.
The Bernoulli equation expresses the constancy of the
sum of kinetic energy, potential energy and work done per
unit mass and can be expressed in a simplified form as:
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(4)

where
z denotes distance above a certain energy datum,
p denotes pressure,
v denotes velocity,
g denotes the Earth�s gravitational acceleration [ g=9.81
m2/s], and
γ denotes the specific gravity of a fluid [for water γ=9810
N/m3].

Formula (4) is a simplified formulation that ignores
energy losses due to friction and local losses induced by
sudden changes in a cross-section of the conduit. In
accordance with tradition in hydraulics, energy in
formulation (4) is expressed in implicit potential energy
terms, as meters of a water column, rather than in more
conventional energy units.

3.2 EXPERIMENTAL SETUP

Four different versions of evolutionary algorithm have
been tested and reported:

• standard GP,

• GP with brood selection,

• multi-objective GP, and

• multi-objective GP with brood selection.

These were designed so that the investigation of the most
appropriate way to inject and control knowledge about the
units of measurement is conducted. The standard method
does not use any dimension information. The brood
selection method uses knowledge of dimension within the
variation component only. The multi-objective approach
is dimensionally-aware only within its selection
component. The multi-objective approach combined with
dimensionally based brood selection utilises dimensions
in both the selection and variation components. Basically,
the question addressed is whether most benefit is gained
through variation, selection or a combination of the two.



Table 2 Overview of the evolutionary algorithm setup

Parameter Value

Objective Find the Bernoulli Equation
of Energy Conservation.

µ 250

λ 500

Tournament size 3

Brood size 2 (culling function on unit
error)

Crossover probability 1.0

Mutation probability 0.05

Crossover method Random subtree crossover

Objective Functions RMSE and/or unit error and
fitness sharing

Function set {+, *, %, -} (% denotes
protected division)

Terminal set Variables:  z, v, p;
Constants:   g, γ,  random
constants

Maximum size at initialisation 15

Maximum size 41

Probability of selecting a constant vs.
a variable

0.05

Constant mutation probability 0.05

3.2.1 Evolutionary algorithm

Present experiments use a (µ +  λ)  type of evolutionary
process encountered in evolution strategies (Schwefel,
1981). This kind of evolution maintains a population of
µ  formulae. Crossover and mutation are applied to this
population of the size of µ to produce λ offspring.
Selection then chooses the µ best performing formulae
from the intermediate (µ +  λ)  to form the new generation.
Selection is implemented as a k-tournament selection
(Syswerda, 1991). Table 2 summarises the details for the
runs. Before selection is applied to choose the µ formulae
from the intermediate population (µ +  λ), all clones
(syntactically equal formulae) in the population are
deleted. The elimination of clones can be efficiently
implemented since the evaluation is performed in a
directed acyclic graph (Handley, 1994; Keijzer, 1996),
whereby clone investigation reduces to integer
comparison.

3.2.2 Multi-objective approaches

In multi-objective settings, one considers a number of
objectives. Solutions to multi-objective optimisation
problems are expressed mathematically in terms of non-
dominated or superior points. A solution is said to
dominate another solution if it is not worse in any of the
objectives and better in at least one. Obviously, in a multi-

objective environment, a set of solutions must exist, a so-
called �front� of non-dominated solutions, or Pareto-front.
In general, there is a number of issues that need to be
addressed in multi-objective optimisation. For a review
from an evolutionary perspective, the reader is referred to
Srinivas and Deb (1994).

In the present multi-objective implementation a
goodness-of-fit statistic �   root mean squared error
(RMSE) �  and the goodness- of-dimension statistic were
used.

In order to prevent premature convergence towards
formulae with poor RMSE and perfect goodness-of-
dimension, a simple, yet effective, mechanism was
employed through the application of an auxiliary
objective: a penalty on fitness similarity. Firstly, a check
is performed on how many formulae have equal values on
the other two objectives. The first of the encountered
formulae is assigned a penalty of 0, the second a penalty
of 1and so forth. Such fitness penalty is used as an
auxiliary objective function that is used in the ranking
process alongside the other objectives. This setup ensures
that no two equivalent formulae can have the same rank
on all three objectives. The k-tournament selection in the
multi-objective approach is implemented as a tournament
on dominance. Parents chosen in this way are then
crossed (with or without guidance) and the resulting
offspring is subsequently mutated (random only) to form
one of the λ offspring.

During the selection process (from the intermediate
population of (µ +  λ) to µ), formulae are assigned a rank
equal to the number of formulae that dominate it. The
population is sorted on the basis of the rank in ascending
order and subsequently reduced to the desired population
size of µ. In this way, non-dominated solutions will
remain in the population.

3.3 RESULTS

Several experiments have been performed, each
increasing the amount of knowledge provided, either by
adding information, or by removing unneeded (and
potentially confusing) information.

For each of the experiments, the four versions of the
genetic programming algorithm ran concurrently for the
same amount of wall clock time. Because the number of
individuals processed varies from setup to setup and from
run to run, the usual graphs presenting the number of
generations were not used. Instead, the results were
binned into 25 buckets representing equal stretches of
time, calculating aggregates for the values falling in the
particular bucket. This provides a fairer picture of the
actual effort involved �  this method does not assume that
every individual takes the same amount of time to be
processed � a false assumption given the variable length
nature of genetic programming. By using wall clock time
instead of intricate calculations of the effort involved the



potential for making errors or false assumptions is
effectively eliminated: if a method runs faster for
whatever reason, it will be able to process more
individuals.

3.3.1 Setup with randomly generated
(dimensionless) constants only

In this setup, GP was allowed to use only randomly
generated dimensionless constants. Therefore, a solution
with both perfect goodness-of-fit and perfect goodness-of-
dimension was unattainable. In this case, even if the
perfect formula � the Bernoulli Law � were found, its
goodness-of-dimension would equal 5. Note that an
approach that only represents dimensionally correct
expressions would get stuck in the very first generation
with the only correct formulation possible: z multiplied by
a constant.
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Figure 2. Results for an experiment with random
constants only, averaged over 30 runs showing the RMSE

of the best performing individuals for the 4 methods.

Figure 2 shows the RMSE evolution averaged over 30
runs. None of the 120 runs produced a perfect solution.
Although the differences between the methods are very
small, the multi-objective method (M-O) and the standard
method produce the best results.
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Figure 3. Average goodness-of-dimension for the best
performing (RMSE) individuals in each run.

To illustrate the evolution of the goodness-of-dimension
Figure 3 is presented. In both cases, brood-selection

effectively reduces the magnitude of dimension errors
made. In the present case where a perfect goodness-of-
dimension is unattainable, this might hinder the search
efficiency as seen in Figure 2.

Figure 4 illustrates a useful side effect of dimensionally-
aware GP: promotion of parsimonious expressions. This
figure illustrates that the best-performing individuals,
averaged over 30 runs, are significantly different in size.
Standard GP quickly fills up the available space, a
phenomenon popularly referred to as bloating. The
dimensionally aware methods do not grow as quickly, but
rather utilise information contained in the units of
measurements. Especially, the multi-objective methods
result in smaller, dimensionally more correct expressions
with a similar RMSE.
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Figure 4 Results for an experiment with random constants
only, averaged over 30 runs, showing the size of the best

performing individual in population

3.3.2 Setup with randomly-generated and user-
defined g and g constants

In this series of experiments, the user-defined constants g
and γ  were added to the terminal set, all other parameters
remaining the same.
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Figure 5. Results for an experiment with random
constants together with user-defined constants g and γ,
averaged over 30 runs showing the RMSE of the best

performing individuals for the 4 methods.



The introduction of user-defined constants (g and γ)
produced hardly any effect on the performance of the
standard GP because these act merely as another two
constant values, while the dimensionally-aware methods
greatly benefited from the information so provided. The
multi-objective methods now outperform the single-
objective methods.  Some optimal solutions were now
found, see Table 3 for details. In this setup, the multi-
objective methods produced expressions that were more
accurate in both goodness-of-dimension and goodness-of-
fit. In the single objective setup, the brood selection on
goodness-of-dimension has a limited effect on the
performance, while it has a much greater effect in the
multi-objective setup.

3.3.3 Setup with user defined g and g constants only

In this series of experiments, the random (dimensionless)
constants were entirely removed from the terminal set.
The problem now reduces to finding the proper formula
using only z, v, p, g and γ. In such a rather constrained
setup, perfect solutions were found on a regular basis.
Table 3 provides more detailed information.
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Figure 6. Results for an experiment with user-defined
constants g and γ, averaged over 30 runs showing the

RMSE of the best performing individuals for the 4
methods.

Table 3. Number of optimal solutions found in 30 runs
(without g + g no perfect solutions were found)

Method R + g + g g + g
Standard 0 0

Dimensionally-based brood
selection

0 0

Multi Objective 1 13

Multi Objective with brood
selection

2 20

It is slightly disappointing that only in the situation with
the highly constrained experimental setup (the one
without randomly created constants) the system is capable
of finding the perfect solution on a regular basis.
However, it is noteworthy that the combination of

selection on goodness-of-dimension with variation using
goodness-of-dimension produces the best results in the
latter two experiments.

Strong points of the reported extensions are that
dimensional awareness produces perfect solutions, and
that dimensionally more correct formulae are produced
consistently in all runs.

3.4 EXPERIMENTS ON NOISY DATA

In order to test the applicability of this method on noise-
contaminated data, two additional data sets were created
using 3% and 10% signal-to-noise ratios. These new,
noisy data sets were characterised by non-smooth
response surfaces and more pronounced local minima.
The results obtained were qualitatively the same as those
found for noise-free experiments: the techniques based on
multi-objective fitness evaluation found perfect solutions.
The evolution of the RMSE for the data with 3% noise
and 10% noise are depicted in Figure 7 and Figure 8
respectively.
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Figure 7. Results for an experiment on data with 3% noise
contamination using R+ g + γ, averaged over 30 runs

showing the RMSE of the best performing individuals for
the 4 methods.
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Figure 8. Results for an experiment on data with 10%
noise contamination using R+ g + γ, averaged over 30

runs showing the RMSE of the best performing
individuals for the 4 methods.

Such results are rather encouraging, since it is obvious
that the information contained in the units of



measurement is helpful and can be effectively used in a
search on noisy error surfaces. What is even more
surprising is that these runs produced a perfect solution
more often than the runs on non-contaminated data. These
runs were performed using both type of constants and are
thus comparable with the runs described in section 3.3.2.
The runs involving noisy data had a success rate of one
out of five or six, while the non-contaminated runs had a
success rate of one or two out of thirty (see Table 3).

There is an added bonus in multi-objective approaches of
this kind: it is possible to recognise an overfit without
utilising test data. For example, when the perfect solution
was discovered early in a run, continued evolutionary
search produced formulae with even better goodness-of-
fit. Noise in data allowed a better than optimal goodness-
of-fit. Inspection of the final front of non-dominated
solutions enabled an easy identification of the correct
formulation as the one with the best goodness-of-
dimension. The slight increase in goodness-of-fit of the
overfitted formulae did not outweigh the much poorer
dimensional fit.

4 DISCUSSION

The present contribution introduced an augmented version
of GP that makes it more useful in the process of
scientific discovery. Throughout science, the units of
measurement of observed phenomena are used to classify,
combine and manipulate experimental data. Exploitation
of this information within GP makes this algorithm
somewhat stronger as a search method. However, its
applicability is broadened to encompass problems
containing information on units of measurement.

The presented experiments constitute the first efforts in
this direction. The results of the present work are
encouraging since they consistently demonstrate the
usefulness of dimensionally-aware GP. It has been shown
that selection towards both goodness-of-fit and goodness-
of-dimension produces the best results. It is also
interesting that when a dimensionally correct formulation
is attainable, brood-selection on goodness-of-dimension
produces the best results when combined with the multi-
objective approach, while it did not hinder the search in a
single-objective approach.

Although this GP does not always improve goodness-of-
fit, it invariably results in more parsimonious, closer-to-
correct and easier-to-interpret formulations. Funda-
mentally, augmentation of GP with dimensional
information adds a descriptive, semantic component to the
algorithm. This is an addition to the functional semantics
that defines the manipulation on numbers. While
functional semantics grounds formulae in mathematics,
the dimensional semantics grounds them in the physical
domain.
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