
16 • BIOINFORMATICS WORLD JANUARY/FEBRUARY 2002

� GENETIC COMPUTING

The post-genomic era is generating such
torrents of data that researchers now
face the question of how to build a

working data-flood defence system. Existing
software is just not coping and the problem
is to find new ways of extracting knowledge
from all these data.

‘Genomic computing’ is a new and valuable
strategy for analysing very complex datasets of
high dimensionality by evolving simple, intel-
ligible rules with high explanatory power.

Currently the majority of packages
require the user to write a lot of code as
part of their operation. Few packages have
a user interface good enough to enable rel-
ative novices to use these techniques
smoothly and easily. However, genomic
computing’s potential for ploughing
rapidly through vast amounts of data to
evolve simple, human-readable solutions,
would appear to make it the ideal
approach. The reason for its lack of wider
recognition probably stems from the fact
that the bulk of the real expertise still
resides in the form of ‘hair shirt’ programs
within university departments. Until the
mainstream software vendors become flu-
ent in this branch of computer science,
the market is still open to any resourceful
software development group. The Welsh
software company Aber Genomic Com-
puting has now made available a genomic
computing package (gmax-bio) that is
designed to address data mining and pre-
dictive modelling problems encountered
in the life sciences and elsewhere.

The reason data analysis is becoming ever
more complex is that it has to deal with
large numbers of data objects, each repre-
sented by tens, hundreds, or thousands of

variables, as in DNA microarray analysis.
The combinatorial explosion of solutions to
be evaluated can thwart conventional
attempts at empirical interpretation.

Consider a predictive model with only
100 variables (e.g. levels of metabolite, anti-
gen, gene expression etc). The simple prob-
lem of deciding whether or not (a simple
‘yes’ or ‘no’) to use each of these 100 vari-
ables gives 2100 possibilities, which is about
1030 . Considering that the lifetime of the
universe is ‘only’ 1017 seconds, to find a solu-
tion for this comparatively trivial problem
by random search would take more than an
eternity. Fortunately nature has shown us a
way – a process that is incredibly simple and
yet phenomenally powerful – natural selec-
tion. Computing has an equivalent
approach to solving these complex prob-
lems: ‘evolutionary computing’ or the evo-
lution of computer programs by methods of
Darwinian selection.

All datasets can be viewed as a spread-
sheet or database table (Fig. 1), in which
different samples (individuals, objects)
appear in different rows while the values or
classes of variables (properties) associated
with them appear in different columns. It is
frequently the case that we wish to account
for some properties in terms of combina-
tions of some of the other variables. In data
mining, the ones we want to account for are
usually termed the dependent variables or y-

variables or y-data while the ones contribut-
ing to the explanation are usually called the
explanatory variables or x-variables or x-
data.

In a pharmaceutical drug discovery prob-
lem, the x-variables could be structural
and/or physico-chemical attributes of candi-
date drug molecules and the y-variable the
potency or binding efficiency of the mole-
cule in an appropriate assay. In predictive
medicine, the x-variables could be relevant
or surrogate metabolic properties, or mark-
ers, and the y-variable the existence or
severity of some disease state. In all cases,
the aim of predictive modelling is to find
those x-variables which, when combined in
a stated way (to make a mathematical
model), best account for the values or prop-
erties of the y-variables in a statistically
robust fashion (so that the models produce
correct predictions for other examples on
which they are subsequently tested).

Class assignment
from multivariate data
This problem can be set out equivalently in
the form given in Fig. 2. In this formulation,
it can be restated as a ‘class assignment
problem’, represented in general terms by:
(1) a set of inputs, whose choice one might

hope to optimise;
(2) a set of output classes into which one

might wish to assign a sample whose

Defence against
the flood
Douglas Kell suggests that
genetic computing can offer
a solution to the data mining
and predictive modelling
challenges of today

Variables are arrayed in different columns

XVar1 Xvar2 Xvar3…. Yvar1 Yvar2… Yvar3…

Objects Obj1

(Samples) Obj2

Going Obj3

Down Obj4

In Obj5

Different Obj6

Rows Obj7

Explanatory (x-) Variables……. Dependent (y-) Variable(s)

Fig. 1: Structure of a database table or spreadsheet matrix.

BIWJan02Kellpp16-18 06/03/2002 01:29 pm Page 16

JANUARY/FEBRUARY 2002 BIOINFORMATICS WORLD • 17

GENETIC COMPUTING �

measured properties are to be used as the
inputs; and

(3) a set of mathematical relationships
(functions) which use the differential
data in the input patterns to establish
the correct functional class assignments
on the basis of those input patterns.

Data mining is designed to optimise (1)
and (3), given (2).

Data mining is thus, in essence, a prob-
lem in pattern classification. Indeed, there
are many areas of science in which pattern
classification methods developed in statis-
tics and artificial intelligence are important,
and where the arrangement is exactly as
shown in Fig. 2. The goal of pattern recog-
nition is to classify objects of interest that
possess particular attributes into a number
of categories or classes. Functional
genomics, predictive medicine, and other
extremely important problems are therefore
to be seen, in part, as problems of pattern
recognition.

Pattern classification methods of this type
can be grouped into two different cate-
gories, called ‘unsupervised’ and ‘supervised’
learning methods. If a set of multivariate
observations is given with the aim of estab-
lishing the existence of classes in the input
data, with no knowledge or care for an
imposed class structure (i.e. we use only the
x-data as defined above), we will be using
clustering or unsupervised learning. Alter-
natively, there may be a defined class struc-

ture (based on knowledge for at least some
samples of the y-data) and the need is then
to establish rules by which new objects are
correctly classified into one or more of the
existing classes. This supervised learning is
often referred to as ‘discrimination’ or ‘mul-
tivariate calibration’ in the statistical litera-
ture, as the class structure is produced on
the basis of known, correctly classified
objects and their attendant properties.

Because the input data may have hun-
dreds or thousands of variables, getting the
correct classification is only part of the
answer. We also require our solutions to be
intelligible, so simple, explanatory rules are
greatly favoured over complex, incompre-
hensible ones.

Models are made with explanatory vari-
ables (and not objects) as the inputs. Histor-
ically, datasets might have had many objects
and few variables, but now the opposite is
true. There are many cases in which we can
have a large number of variables on both
large and small numbers of objects. The
interesting fact is that the number of vari-
ables and not the number of objects domi-
nates the mathematical difficulty of a
modelling problem.

Imagine that we have one dependent
variable in a diagnostics problem (this per-
son does/doesn’t have a certain disease such
as cancer) but that there are N explanatory
variables (levels of metabolites, antigens,
gene expression profiles, etc).

As discussed above, even if each variable
(of the N) can take only 2 values – present
or absent – the number of models one can
make to try and solve the problem is 2N. If
each variable could take 10 values then for
100 variables there are 10100 models. In gen-
eral, obviously, the complexity of a system
with N variables present at M levels scale as
MN and if N >> M then MN is always likely
to be enormously greater than NM. Combi-
natorial difficulty scales exponentially (or
worse) with the number of explanatory
variables. (Gene microarrays, for examply,
normally have several thousand vari-
ables….) The combinatorial difficulty
scales only linearly with the number of
objects. It is the experimental ability to
acquire huge numbers of explanatory vari-
ables that opens up the opportunity for seri-
ous and efficient data mining (or,
equivalently, provides competitive advan-
tage to those who can deal with them and
competitive disadvantage to those who
cannot).

The ideal data mining system has seven
key features:
• Automatically identifies the key compo-

nents and patterns in huge datasets;

• Gives the solution within minutes;
• The solution is simple, intelligible, robust,

and maps directly into the measured
input variables;

• Has the ability to provide several alterna-
tive solutions to a problem;

• Fully transparent, easy to follow solutions
– no black box operations or answers;

• Able to incorporate prior knowledge from
the database; and

• Produces readily exportable solutions to
be applied to new datasets.
Systems such as neural networks can

address only part of this profile – they are
flexible, non-linear fitting systems – but
they are rather poor at explaining how they
arrive at their answer since every input
tends to contribute. Only rule-based systems
can give simple, effective, and intelligible
explanations, but traditional rule-based sys-
tems (deterministic, tree-based classifiers),
in which each variable is selected in the
order of its apparent individual importance,
often perform poorly on complex datasets.

The ideal method would evolve rules
based on an optimal selection of the vari-
ables and an optimal selection of the form
of the interactions between them, to pro-
duce a rule – exactly equivalent to a little
computer program – in which the selected
variables are applied at the input, the rule
followed, and the correct classification
arrived at as the output. The generalised
methods of data mining known as Genetic
Programming or Genomic Computing do
exactly this.

Genomic computing is a new develop-
ment within the more general field known
as evolutionary computation, and as such
shares its underlying principles (Fig 3).

Its operation is based on the Darwinian
ideas of ‘survival of the fittest’ and natural
selection. In evolutionary computing, we
have a population of individual computer

Fig. 2: By restating the spreadsheet formulation of
the data mining problem, it can be transformed into
an equivalent, class assignment problem and this
becomes an issue of pattern recognition.

INPUT DATA

MATHEMATICAL
TRANSFORMATION(S)

OUTPUT CLASS(ES)
OF INTEREST

Produce a ‘random’ population
�

Calculate fitness function
�

Rank according to fitness
�

Select new’parents’ via fitness
�

Breed variant forms and evaluate
�

Good solution found?
�

STOP

No

Yes

Repeat

Fig. 3: The basic strategy of evolutionary computing.

BIWJan02Kellpp16-18 06/03/2002 01:29 pm Page 17

18 • BIOINFORMATICS WORLD JANUARY/FEBRUARY 2002

� GENETIC COMPUTING

programs or algorithms whose output is a
potential solution to a problem (typically a
combinatorial optimisation problem).

The process begins with a fitness function
and a set of user-selectable mathematical
and logical operators. A first generation of
as many as a thousand models is randomly
generated using the operators available,
usually in the form of a tree; the ‘fitness’ of
each model is evaluated using a training
data set. These outputs are ranked accord-
ing to their ‘fitness’, and the better perform-
ing individuals retained.

Some of these individuals are then modi-
fied, by mutation (‘asexually’) or by recom-
bining parts of them from more than one
parent (‘sexually’), and the process of gen-
erating an output, evaluating their fitness
and mutating and selecting at each genera-
tion is continued until an individual
evolves with the ability to solve the prob-
lem or reaches a stopping criterion.

Although there can be specific operations
that are not known to occur in the natural
world, there is an equivalence or mapping
between biological evolution and evolu-
tionary computing (Fig. 4).

Although there are many approaches
and algorithms within the evolutionary
computing field, most (such as genetic
algorithms, evolutionary strategies, evolu-
tionary programming) assume knowledge
of the basic equation and variables to be
used, and simply seek to parameterise
them optimally. However, an important
alternative approach, popularised by John

Koza as genetic programming, seeks not
only to extract the most important subset
of the variables but also to derive the func-
tional form of the relationship between
them that best accounts for the problem at
hand. This strategy can automatically and
inductively derive new knowledge in the
form of simple, explanatory rules, and is
implemented in genomic computing.
Importantly, it is particularly good at

selecting only a small subset of the avail-
able variables; this both makes the search-
ing a lot easier and ensures that the rules
which are generated are simple and intelli-
gible.

All output functions can be discussed in
terms of classification or quantification.
However, although there are technical rea-
sons why one might treat them differently,
quantification is really just a special form of
classification (‘this sample is in the class
whose values lie in the range x to (x+∂x)’).
Problems that have exploited these rule-
generating methods of evolutionary com-
puting include spectroscopy, searching
biological sequences for important motifs,
DNA microarray analysis for functional
genomics and metabolic profiling.

The gmax-bio genomic computing pack-
age, now available from Aber Genomic
Computing, addresses data mining and pre-
dictive modelling in the life sciences, other
natural sciences, and elsewhere. Fig. 5
shows a simple rule which the software has
evolved to solve a bacterial biomarker
identification problem. Gmax-bio has iden-
tified a simple rule, which uses just 3 vari-
ables out of 150 and which correctly
classifies all examples in a dataset from bac-
terial physiology.
Professor Douglas B. Kell is at the Institute of
Biological Sciences, University of Wales,
Aberystwyth, SY23 3DD. DBK@aber.ac.uk
For further information on organisations and
products mentioned in this article, please visit
http://enquiries.scientific-computing.com

Recombination Mating between organisms
leading to exchange of alleles
via recombination

Change of an individual string, tree,
algorithm or computer program at a
certain location by taking segments of
encoding from (usually) 2 or more
‘parents’ and recombining them to
create a new string, tree, algorithm or
program

Property Biological Evolution Evolutionary computation

Unit of selection Individual organism Individual string, tree, algorithm or
computer program

Fitness Relative closeness to desired property
and hence propensity to be chosen for
next generation

Likelihood of surviving long
enough to produce offspring

Mutation Change of the nucleotide at a
certain position

Change of an individual string, tree,
algorithm or computer program by
changing the encoding at a certain
location

Fig. 4: Some relationships between biological evolution and evolutionary computing.

Fig. 5: A screenshot showing how gmax-bio identified a simple rule using just 3 variables (out of 150) to cor-
rectly classify all entries in a dataset from bacterial physiology. The rule is read ‘up’ the tree from right to left
and is (output = V105*V63*V85/3).

BIWJan02Kellpp16-18 06/03/2002 01:29 pm Page 18

