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Abstract

This paper presents a dynamic strategy for mon-
itoring the depth of program trees evolved by
STEPS (Strongly Typed Evolutionary Program-
ming System). STEPS evolves higher-order
functional programs in the form of trees, which
are allowed to grow or shrink to fit the size of the
problem, via specialised genetic operators. Thus,
the need for arbitrary cut-off mechanisms is elim-
inated.

1 INTRODUCTION

Most evolutionary algorithms rely on fixed-length repre-
sentations. Clearly, such representations simplify imple-
mentations. However, they often require the user to have
some knowledge of the appearance and structure of the
final solution. More recently, variable-length representa-
tions have been used to alleviate these limitations. One
notable example is in the area of Genetic Programming
where programs in the form of parse trees are evolved
(Koza 1992). Although, more flexible and less demand-
ing of prior knowledge, the variable- length representation
can lead to a general increase in the depth and size of the
individuals in the population over successive generations.

This increase in size is calledbloat and is due tointrons
(Angeline 1994, Blickle and Thiele 1994), i.e., extra pieces
of information/code that do not contribute anything to the
fitness of the individual. Although not useful in terms of
fitness, introns seem to protect fit pieces of code from the
destructive effects of crossover (Angeline 1996). Unfortu-
nately, introns tend to spread throughout the population by
Hitch-Hiking along with the good pieces of code they are
protecting during evolution (Tackett 1994). Hence, if left
unchecked, introns may allow the individuals in the popu-
lation to bloat uncontrollably, thus putting a considerable
strain on the computational resources. Consequently, it is

generally agreed that some form of restriction on the depth
and/or size of the trees generated during evolution has to be
incorporated into the system.

In general, size restrictions are implemented statically in a
somewhat ad hoc way. For example, a size cut-off or max-
imum depth value are used in GP. These parameters are
set a priori by the user. Within an evolutionary paradigm,
there is something rather unnatural about such hard-coded
bounds. It would be more elegant (and more in keeping
with the philosophy of evolutionary computing) to let solu-
tions grow or shrink according to the demands of the envi-
ronment, as measured by the fitness function.

STEPS (Strongly Typed Evolutionary Programming Sys-
tem) provides such flexibility through the use of specialised
genetic operators. Large/deep trees are allowed in the
population, thus preserving potentially good genetic ma-
terial that would otherwise be lost if a hard bound on tree
size/depth were used. However, large trees have a higher
probability of being pruned than smaller trees, whilst small
trees have a higher probablity of being grown.

The paper is organised as follows. Section 2 describes the
STEPS Learning algorithm. Section 3 reviews some of the
existing depth controlling options available with variable
length representations. Section 4 describes the alternative
depth controlling strategy available with STEPS and re-
ports and discusses some preliminary experiments. Finally,
section 5 concludes the paper.

2 STEPS

2.1 REPRESENTATION

The evolutionary approach used in this study is that of
STEPS - Strongly Typed Evolutionary Programming Sys-
tem (Kennedy and Giraud-Carrier 1999). STEPS evolves
Escher programs in the form of parse trees. Escher is
a strongly typed functional logic language that provides
higher-order functionality such as set processing (Lloyd



v2 :: (Shape,Int)

v2 :: (Shape, Int) v1 :: Diagram

in :: (Shape, Int) -> Diagram -> Bool

v4 :: Shape Triangle :: Shape

== :: Shape -> Shape -> Bool

&& :: Bool -> Bool -> Bool

exists :: (Shape,Int) -> Bool -> Bool Class1 :: Class Class2 :: Class

if then else :: Bool -> Class -> Class -> Class

Figure 1: A program tree exhibiting variable consistency violation

1995). STEPS is mainly used for concept learning where
the concept descriptions are of the formif Cond then
Ci else S . Here the condition,Cond, is a boolean ex-
pression,Ci is a class label andS is either the default class
label or anotherif then else statement.

The training examples provided to STEPS are represented
as closed terms, which give a compact and self-contained
description of each example (Flachet al. 1998). Selector
functions in the form of subtrees are used to pull informa-
tion out of the closed terms in order to make inferences
about them. An algorithm has been designed to automati-
cally generate the appropriate selector functions associated
with a set of types (Bowerset al. 1999). This algorithm has
been adapted to return selector functions in partially cre-
ated subtree form. This adapted process is described in de-
tail in (Kennedy and Giraud-Carrier 1999). These selector
function subtrees form the alphabet for the problem along
with some connective functions (conjunction, disjunction
and negation) and the problem dependent constants.

2.2 EVOLUTIONARY APPROACH

Since Escher is a strongly typed language, an evolution-
ary paradigm that incorporates type information is neces-
sary so that only type-correct programs are generated dur-
ing learning. Traditional program tree based evolutionary
paradigms, such as Genetic Programming (GP), assume the
closure of all functions in the body of the program trees
(Koza 1992). This means that every function in the func-
tion set must be able to take any value or data type that
can be returned by any other function in the function set.
While this characteristic simplifies the genetic operators, it
limits the applicability of the learning technique and can
lead to artificially formed solutions. In order to overcome
this problem, a type system was introduced to standard
GP to give Strongly Typed Genetic Programming (STGP)

(Montana 1995). STGP helps to constrain the search space
by allowing only type correct programs to be considered.
STEPS extends the STGP approach to allow the vast space
of highly expressive Escher concept descriptions to be ex-
plored efficiently.

2.2.1 Creation of Initial Population

Program trees in the initial population are formed by ran-
domly selecting subtrees from the alphabet. However sub-
trees selected to fill a blank slot in a partially created pro-
gram tree must satisfy certain constraints so that only valid
Escher programs are created.These constraints are type and
variable consistency. In order to maintain type consistency,
each node in a subtree in the alphabet is annotated with a
type signature indicating its argument and return types. A
subtree selected to fill in a blank slot must be of the appro-
priate return type.

In order to maintain variable consistency, the local vari-
ables in a subtree selected to fill in a blank slot in the par-
tially created program tree must be within the scope of a
quantifier. In addition, all quantified variables in a program
tree must be used in the conditions of their descendant sub-
trees to avoid redundancy. The program tree in Figure 1
provides an example of variable consistency violation.

The addition of the subtree rooted at== :: Shape ->
Shape -> Bool in Figure 1 violates variable consis-
tency as the variablev4 :: Shape is not within the
scope of a quantifier. In addition variable consistency
is violated by not using the quantified variablev2 ::
(Shape, Int) .

2.2.2 Modified Crossover

The requirement for type and variable consistent program
trees needs to be maintained during the evolution of the
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Figure 2: Sample AddConjunction Mutation

programs so that only syntactically correct programs are
evolved. In addition to this, it is necessary to preserve the
structure of the selector function subtrees. This results in
a situation where crossover can only be applied to certain
nodes within a program tree. These crossover points corre-
spond to the roots of the subtrees in the function set. Once
a crossover point has been randomly selected from the first
parent, a crossover point that will maintain type and vari-
able consistency can be randomly selected in the second
parent. If no such crossover point is available in the second
parent then an alternative crossover point is selected from
the first parent and the process is repeated.

2.2.3 Specialised Mutation Operators

The constraints on the evolutionary process that are necces-
sary to ensure that only valid Escher programs are evolved
can result in a decrease in the diversity of genetic material
over successive iterations. In an extreme case, this can lead
to the loss of genetic material that is essential to the search
for an optimal solution and a method for reintroducing such
lost material is required. STEPS ensures the preservation
of genetic diversity through six distinct forms of mutation.
These mutation operators are the terminal and functional
mutation operators of conventional GP and four specialisa-
tions of functional mutation. The various functional muta-
tions can only be applied at the crossover points in a pro-
gram tree and must preserve type and variable consistency.
The specialised functional mutations include AddConjunc-
tion, DropConjunction, AddDisjunction and DropDisjunc-
tion. AddConjunction and AddDisjuction involve inserting

an&&or || respectively at the node to be mutated. Its first
argument is the subtree originally rooted at that node and
its second argument is randomly grown. For example, if we
apply the AddConjunction operator to the== node in the
tree of Figure 2(a), then we could obtain the tree of Figure
2(b).

The DropConjunction and DropDisjunction operators in-
volve randomly selecting an&& or || crosspoint respec-
tively, replacing it with the subtree that makes up its first
argument.

2.2.4 Specialised Crossover Operators

In addition to the specialised mutations, some specialised
crossover operators are available during evolution. The
first operator AndCrossover involves randomly selecting a
crossover node with a return typeBoolean in the first par-
ent and a crossover node that preserves type and variable
consistency in the second parent. The subtrees rooted at
the crossover points in both parents are combined as the
arguments to an&&node and this new subtree is used to re-
place the subtree selected from the first parent. The second
operator OrCrossover works in the same way, except the
subtrees selected from both parents are combined as the ar-
guments to an|| node.

3 DEPTH RESTRICTIONS

There are three main types of restrictions for prevent-
ing the unbounded growth of individuals in the evolving
population. These include aborting offspring if they are



greater than a specified depth or size, editing the extra non-
contributing code in the individuals, and penalising large
individuals through the fitness function.

3.1 MAX-DEPTH/SIZE CUT OFF

This is the most common approach to restricting the growth
of trees during evolution in GP. It works by putting a limit
on the depth (the longest path from the root of a tree to any
of its leaf nodes) or size (the number of nodes) of an indi-
vidual. Once an offspring has been obtained, its depth (or
size) is measured. If its depth (or size) exceeds the max-
imum allowed depth (or maximum allowed size) then it
is considered to be illegal and is not placed into the next
generation. Instead a copy of its parent is placed into the
population or the genetic operator is re-applied until a legal
offspring is produced.

3.2 EDITING

Another method for restricting the size of the variable
length individuals is to remove or edit from the individ-
ual the extra pieces of code that are not contributing to its
fitness. These extra pieces of code can be calculated a pri-
ori from properties of the function set (Souleet al. 1996).
Deleting Crossover is a variation of this method (Blickle
1996). It involves marking the parts of the code traversed
during evaluation and removing the unmarked parts of the
code as they are redundant and do not contribute to the in-
dividual’s fitness.

3.3 PARSIMONY PRESSURE

The idea behind parsimony pressure is to penalise large
programs. A penalty proportional to the size of an indi-
vidual is incorporated into the fitness function. Therefore
larger trees will have a lower fitness value providing a bias
towards smaller solutions.

3.4 DISCUSSION

When the cut-off depth control method is used in conjunc-
tion with crossover as the main genetic operator, it can lead
to a loss of diversity of genetic material which can cause
the population to converge on a suboptimal solution (Gath-
ercole and Ross 1996). In addition to this, it is difficult to
identify which value to set the cut-off limit at. If it is too
big then you will be wasting memory and CPU time - too
small and the solution will never be found. It is an unnat-
ural and harsh way to control depth and is not in keeping
with the theme of natural evolution.

Editing explicitly removes the introns that are protecting
the good pieces of code from the destructive effects of
crossover and other genetic operators. The removal of the

introns is computationally expensive and removes the pro-
tection exposing the good code and thus making it vulner-
able to destruction. In addition to this, these ineffective
blocks of code can be modified during the evolutionary pro-
cess into useful pieces of code.

Parsimony pressure favours smaller solutions but selecting
the correct pressure bias to apply is difficult to determine.
In addition to this it is not always possible to use parsimony
pressure without an explicit depth restriction such as max-
imum depth cut off (Gathercole 1998).

4 THE STEPS DEPTH CONTROLLING
STRATEGY

4.1 THE STEPS APPROACH

During evolution, as an alternative to picking a genetic op-
erator according to a particular distribution, STEPS allows
the choice of the genetic operator to be based on the ge-
netic material of the individual that is randomly selected
from the population. The depth controlling strategy works
by allowing a randomly selected program tree to select its
own genetic operator according to its depth. If the depth
of the program tree is greater than the specified maximum
depth, then the tree is considered to be too big so a mutation
operator that is likely to reduce the size of the tree (i.e., by
dropping a disjunction or a conjunction) is chosen to mod-
ify the tree. If the depth of the selected tree is less than the
minimum specified depth, then the tree is considered to be
too small so a mutation operator that is likely to increase
the size of the tree (i.e., by adding a disjunction or a con-
junction) is chosen to modify the tree. If the depth of the
program tree lies within the specified depth constraints then
any genetic operator can be randomly selected to modify it.

This strategy is a depth controlling strategy used to keep the
size of the program trees under control rather than allow-
ing the the trees to grow in an unconstrained manner. This
provides a more flexible method for controlling the depth
of the tree. If a tree is considered too big it is not thrown
away, but its size is reduced giving any good genetic mate-
rial that it may contain a chance to survive.

4.2 EXPERIMENTS

In order to evaluate the STEPS depth controlling strategy
(Depth) its performance on a number of simple problems is
compared to that of GP (i.e., crossover as the sole genetic
operator) and the STEPS’ basic learning strategy (Basic -
where any of the specialised genetic operators can be ran-
domly selected by each individual). Both the GP and Basic
approaches use max depth cut off in order to prevent the
uncontrollable growth of the program trees. The Basic and
Depth approaches both apply mutation operators to newly



created offspring to ensure that all program trees in a pop-
ulation are unique.

During the experiments the use of solution structure knowl-
edge such as minimal required alphabet for optimum so-
lution was avoided. This leads to a sub-optimal perfor-
mance of the algorithm, but gives more realistic conditions
as for real world problems where such information is not
available. Therefore for each problem the alphabet con-
sists of the selector function subtrees, all available connec-
tives (conjunction, disjunction and negation) regardless of
whether they were necessary for the solution, and the prob-
lem dependent constants.

For each problem, each learning approach was carried out
with a large maximum depth parameter and then with a
small maximum depth parameter. The large maximum
depth parameter was set to 15 - sufficiently big enough
to find the known optimal solution for each problem. The
small maximum depth parameter’s value varied with each
problem. It was set to be small enough so that it was
smaller than the depth of the known optimal solution but
large enough so that complete program trees could be gen-
erated. The experiments were carried out 30 times for each
of the three learning approaches. For each run, Tournament
selection was used to select individuals from a population
of size 300. Predictive accuracy was used as the fitness
evaluation and for each problem the optimal solution was
defined as a program tree with an error of 0.0.

The next section gives a description of each problem with
their associated results followed by a discussion of the re-
sults.

4.2.1 Playing Tennis

The objective of the Tennis problem is to generate a con-
cept description that distinguishes weather conditions that
allow you to play tennis from weather conditions that do
not (Mitchell 1997). For this problem there are fourteen
training examples.

The experiments were first carried out with the maximum
depth parameter set to 15 and then repeated with the max-
imum depth parameter set to 5. The results are expressed
as the average number of generations taken to find an opti-
mal solution, and the average size of the solution, in Table
1 for the maximum depth of 15 and Table 2 for the maxi-
mum depth set to 5. The number in brackets indicates the
percentage of runs in which an optimal solution was found
within the maximum number of generations (set to 60). A
’-’ indicates that an optimal solution was not found in any
of the runs carried out.

Table 1: Average No. of Generations for Tennis, Max-
Depth = 15

STRATEGY AV. GENS AV. SIZE

GP 16.69 (87%) 30.19
Basic 11.17 (100%) 31.067
Depth 11.40 (100%) 30.17

Table 2: Average No. of Generations for Tennis, Max-
Depth = 5

STRATEGY AV. GENS AV. SIZE

GP - (0%) -
Basic - (0%) -
Depth 39.41 (57%) 27.7

4.2.2 Michalski’s Train

The objective of the Michalski’s train problem is to gen-
erate a concept description that distinguishes trains that are
travelling East from trains that are travelling West (Muggle-
ton and Page 1994). For this problem there are ten training
examples.

The experiments were carried out first with the maximum
depth parameter set to 15 and then repeated with the maxi-
mum depth parameter set to 6. The results are expressed in
Table 3 for the maximum depth set to 15 and in Table 4 for
the maximum depth set to 6.

Table 3: Average No. of Generations for Trains, Max-
Depth = 15

STRATEGY AV. GENS AV. SIZE

GP 8 (100%) 34.57
Basic 5.6 (100%) 35.37
Depth 6.8 (100%) 35.67

4.3 Animal Class

The objective of the animals problem is to generate a con-
cept description that distinguishes between four classes of
animals. For this problem there are sixteen training exam-
ples.

The experiments were first carried out with the maximum
depth parameter set to 15 and then with the maximum depth
parameter set to 5. The results are expressed in Table 5
for the maxmum depth set to 15 , and in Table 6 for the
maximum depth set to 5.



Table 4: Average No. of Generations for Trains, Max-
Depth = 6

STRATEGY AV. GENS AV. SIZE

GP - (0%) -
Basic 21.5 (20%) 29
Depth 12.8 (100%) 32.8

Table 5: Average No. of Generations for Animals, Max-
Depth = 15

STRATEGY AV. GENS AV. SIZE

GP 7.167 (100%) 27.8
Basic 9.133 (100%) 30.433
Depth 10.1 (100%) 34.167

4.4 DISCUSSION OF RESULTS

Results show that for a large maximum depth there is no
real difference between the performance of the Depth and
Basic approaches. Both perform slightly better than GP on
the Tennis and the Michalski’s train problem. However for
the Animals problem, it is the GP approach that performs
slightly better than the other two approaches, finding a so-
lution on average in fewer generations.

But on runs with a small maximum depth the Basic and GP
approaches never find a solution for the Tennis problem,
whereas the STEPS’ Depth control approach finds a solu-
tion in over half the runs for the Tennis problem and in ev-
ery run for the Animals and the Michalski’s train problems.
The Basic approach is able to find a solution in 6 out of 30
of its runs for the Michalski’s train problem with the max-
imum depth threshold set to 6, and 4 out of 30 of its runs
for the animals problem with the maximum depth threshold
set to 5. This is due to the application of the mutation op-
erators to newly created offspring. The GP approach never
finds the solution if the depth bound is set too small.

The basic idea behind the STEPS depth controlling strategy
is to grow or shrink trees to fit the problem. Consequently,
no real advantage is gained by using this strategy when
a large maximum depth is specified. On the other hand,
such large bounds often lead to inefficiency. The STEPS
depth controlling strategy allows experienced users to re-
tain efficiency without jeopardising the chances of finding
a (larger) optimal solution by specifying conservative depth
restrictions. The system will compute efficiently within
these restrictions and only incur additional computational
costs if these are strictly necessary to produce a better so-
lution. In addition, the system also becomes more robust
since the uninformed guesses of inexperienced users do not

Table 6: Average No. of Generations for Animals, Max-
Depth = 5

STRATEGY AV. GENS AV. SIZE

GP - (0%) -
Basic 27.125 (27%) 20.75
Depth 10.166 (100%) 30.55

hinder its capacity to find an optimal solution.
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Figure 3: A graph of the depth statistics from a run us-
ing the STEPS’ depth monitoring strategy with maximum
depth set to 5

5 CONCLUSION

This paper details the dynamic depth monitoring strategy
of STEPS. The strategy allows the depth of individuals to
grow as necessary while keeping the average depth of the
population under control. Figure 3 illustrates that while
the average depth of the program trees are kept to (ap-
proximately) within the depth constraints, the depth of the
fittest trees are allowed to grow beyond this threshold as
necessary. The preliminary experiments demonstrate that
the depth approach performs as well as the other two ap-
proaches when a more than sufficient maximum depth is
set, and outperforms the other approaches when a small
maximum depth threshold is set. Further experimentation
is necessary to determine the full implications of the ap-
proach. In particular experiments will be carried out on
some more substantial, real world problems.
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