Skip to main content

A Multigene Genetic Programming Approach for Soil Classification and Crop Recommendation

  • Conference paper
  • First Online:
  • 224 Accesses

Abstract

The economy of Bangladesh depends to a large extent on agriculture. Besides, a large number of the total population are employed in this sector. In Bangladesh, the population is fast expanding while the overall amount of arable land is constantly diminishing. Because various crops require different soil types, identifying and selecting the proper kind of soil is critical to ensuring optimal crop yield while working with limited land resources. In this study, we present a soil classification method using symbolic regression of multigene genetic programming. Dataset for this work is collected from Soil Resource Development Institute, Government of the people’s republic of Bangladesh. GPTIPS toolbox is used to select the appropriate features for training and developing a mathematical model. In a short period of time, the model generates correct results for both the training and testing datasets. Besides, the error rate for soil type classification is extremely low. Finally, suitable crops are recommended based on the accurate classification. According to the results, the proposed multigene genetic programming (MGGP)-based approach performs the best in terms of accuracy, with an accuracy of 98.04 percent. Moreover, our proposed soil classification method outperforms many existing soil classification methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Srivastava P, Shukla A, Bansal A (2021) A comprehensive review on soil classification using deep learning and computer vision techniques. Multimedia Tools Appl 80(10):14887–14914

    Article  Google Scholar 

  2. Uddin M, Hassan M (2022) A novel feature based algorithm for soil type classification. Complex Intell Syst 2(5):1–17

    Google Scholar 

  3. Soil Resource Development Institute (SRDI). http://www.srdi.gov.bd/. Last accessed 28 May 2022

  4. Daryati D, Widiasanti I, Septiandini E, Ramadhan MA, Sambowo KA, Purnomo A (2019) Soil characteristics analysis based on the unified soil classification system. J Phys Conf Ser 1402(2):022028

    Google Scholar 

  5. Padarian J, Minasny B, McBratney AB (2020) Machine learning and soil sciences: a review aided by machine learning tools. Soil Discuss 6(1):35–52

    Google Scholar 

  6. Pandith V, Kour H, Singh S, Manhas J, Sharma V (2020) Performance evaluation of machine learning techniques for mustard crop yield prediction from soil analysis. J Sci Res 64(2):394–398

    Google Scholar 

  7. Renuka ST (2019) Evaluation of machine learning algorithms for crop yield prediction. Int J Eng Adv Technol 8(6):4082–4086

    Article  Google Scholar 

  8. Arooj A, Riaz M, Akram MN (2018) Evaluation of predictive data mining algorithms in soil data classification for optimized crop recommendation. In: 2018 International conference on advancements in computational sciences (ICACS), IEEE, pp 1–6

    Google Scholar 

  9. Taher KI, Abdulazeez AM, Zebari DA (2021) Data mining classification algorithms for analyzing soil data. Asian J Res Comput Sci 8(2):17–28

    Article  Google Scholar 

  10. Rahman SAZ, Mitra KC, Islam SM (2018) Soil classification using machine learning methods and crop suggestion based on soil series. In: 2018 21st International conference of computer and information technology (ICCIT). IEEE, pp 1–4

    Google Scholar 

  11. Koza JRGP (19920 On the programming of computers by means of natural selection. Genetic programming. MIT Press

    Google Scholar 

  12. Searson DP (2015) GPTIPS 2: an open-source software platform for symbolic data mining. In: Handbook of genetic programming applications. Springer, Cham, pp 551–573

    Google Scholar 

  13. Golap MAU, Hashem MMA (2019) Non-invasive hemoglobin concentration measurement using MGGP-based model. In: 2019 5th International conference on advances in electrical engineering (ICAEE). IEEE, pp 1–6

    Google Scholar 

  14. GPTIPS. https://sites.google.com/site/gptips4matlab. Last accessed 28 May 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishrat Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, I., Shill, P.C. (2023). A Multigene Genetic Programming Approach for Soil Classification and Crop Recommendation. In: Ahmad, M., Uddin, M.S., Jang, Y.M. (eds) Proceedings of International Conference on Information and Communication Technology for Development. Studies in Autonomic, Data-driven and Industrial Computing. Springer, Singapore. https://doi.org/10.1007/978-981-19-7528-8_32

Download citation

Publish with us

Policies and ethics