
Competitively Evolving Decision Trees Against Fixed Training Cases
for Natural Language Processing

to appear in
Advances in Genetic Programming

editted by Kim Kinnear
Eric V. Siegel

Competitive fitness functions can generate performance superior to absolute fitness functions [Ange-
line and Pollack 1993], [Hillis 1992]. This chapter describes a method by which competition can be
implemented when training over a fixed (static) set of examples. Since new training cases cannot be
generated by mutation or crossover, the probabilistic frequencies by which individual training cases
are selected competitively adapt. We evolve decision trees for the problem of word sense disam-
biguation. The decision trees contain embedded bit strings; bit string crossover is intermingled with
subtree-swapping. To approach the problem of overlearning, we have implemented a fitness penalty
function specialized for decision trees which is dependent on the partition of the set of training cases
implied by a decision tree.

19.1 Introduction

Competitive fitness functions can generate performance superior to absolute fitness func-
tions [Angeline and Pollack 1993], [Hillis 1992]. A competitive fitness function is com-
puted through some type of interaction between co-adapting individuals. For example,
[Angeline and Pollack 1993] evolves Tic Tac Toe players whose fitness measurements are
computed by having population members participate in a Tic Tac Toe tournament. Hillis
[1992] evolves sorting networks in competition with a separate, evolving population of lists
of numbers to be sorted. A sorting network’s fitness depends on how well it sorts lists of
numbers from the competing population, and a list of number’s fitness is dependent on how
poorly it is sorted by sorting networks. Competitive fitness functions guide the adaptive
process since weaknesses of adapting individuals are discovered and therefore accented by
competing adapting individuals.

Hillis’ sorting networks are evaluated against a dynamic population of training cases
whose adaptation involves crossover and mutation. However, many induction tasks involve
a fixed, static “population” of training examples which cannot participate in these creative
evolutionary operations. Such situations arise when the training data have been empirically
collected, as in symbolic regression. In this chapter, we present a method by which the
training set can competitively adapt without the generation of new training examples.

Decision trees [Quinlan 1986] are appropriate for many pattern classification problems.
Koza [1991] has demonstrated that the genetic programming paradigm is capable of in-

ducing decision tree structures. In this chapter, we evolve decision trees for a real world
problem with noisy, empirical data.

In [Tackett 1993], genetic programming is used for a two class classification problem.
It is compared to a binary tree classifier, which statistically induces trees similar to the
decision trees presented in this chapter.

Sections 19.2 and 19.3 describe the problem domain and the set of training examples.
Sections 19.4 and 19.5 explain how decision trees work and how crossover is implemented
for the decision tree representation. Section 19.6 describes how fixed training data can
participate in competitive adaptation. Section 19.7 describes a method to avert overlearning
when inducing decision trees over a limited training set. Finally, section 19.8 draws
conclusions.

19.2 The Domain: Word Sense Disambiguation

In natural language, many words have multiple senses (meanings). For example, anyway
can mean “in any case”, as in, “I did it anyway.” (This is considered the sentential meaning
of anyway.) It can also mean, “Let’s return to a previous topic”, as in “Anyway, what were
you saying before?” (This is considered the discourse meaning of anyway.) The sense of
an ambiguous word such as anyway is dependent on the context in which it is used. A
major thrust of the natural language understanding field is deriving mechanisms to resolve
such ambiguities, a process called disambiguation.

The approach to word sense disambiguation taken here is to evolve decision trees
which attempt to establish word sense by looking only at immediate context, that is, the
tokens, (words and punctuations marks) residing within a small distance of the word to be
disambiguated. Specifically, a decision tree can examine the tokens residing immediately
to the left of the word, and those up to four positions to the right (positions -1 through 4).

The class of words being disambiguated are discourse cue words (e.g. anyway). Ta-
ble 19.2 contains example discourse cue words. A discourse cue word is used by a speaker
to convey intentions with respect to the “flow” of a discourse. Cue words often indicate
how a sentence or clause relates to the current topic of conversation, e.g. digression,
conclusion, etc. Each discourse cue word also has at least one alternative sense as a verb,
adverb or connective, its sentential sense. Therefore, any instance of such a word must be
disambiguated as to whether it is being used in a discourse sense or a sentential sense.

Hirschberg and Litman [1993] explore several methods for cue word sense disambigua-
tion, including the examination of intonational features. They also measure the ability to
perform this task by looking only at punctuation marks immediately before and after the

Table 19.1
Tableau for the competitive evolution of decision trees for word sense disambiguation

Objective: Evolve a decision tree which classifies occurrences of discourse cue words as
to their usage.

Terminal set: The two classes of this classification problem, specifically, discourse and
sentential.

Function set: Each internal node is like a switch statement in C. A series of comparisons is
made, and one downward arc is selected. See section 19.4 for detail.

Fitness cases: 513 examples of discourse cue words, their immediate context as used in spoken
English, and their meaning as used in that context.

Raw fitness: A decision tree is evaluated over a competitively selected distribution of training
cases (513 cases), and raw fitness is the number of training cases correctly
classified. See section 19.6 for details on competition against fixed training
cases. See section 19.7 for the description of a fitness penalty which averts
overlearning.

Standardized fitness: 513 minus raw fitness.

Parameters: Number of generations = 500, population size = 900.

Termination predicate: Reach final generation of run.

Identification of best: Every 20 generation, the population of decision trees is tested for absolute fitness
(as evaluated uniformly across the 513 training cases).

Table 19.2
Example discourse cue words – those which occur most frequently in this study. A total of 34 cue words occur.
The number of times each discourse cue word occurs as a training case is listed.

Cue word Instances Cue word Instances Cue word Instances Cue word Intances

and 348 like 71 say 36 actually 29

now 75 but 56 well 35 see 29

so 74 or 55 look 35 first 25

cue word, suggesting the strategy embodied by the decision tree in Figure 19.1.1 This
decision tree correctly classifies 79.16% of the training cases used in these experiments. If
the word is the first in a sentence, i.e. following a period, it is classified as discourse.

The next section introduces the set of training examples we have for the problem of
word sense disambiguation, and formalizes word sense disambiguation as a classification
problem.

1This decision tree is extrapolated from Table 11 in [Hirschberg and Litman 1993]. Their study used the same
transcript as this one, and primarily used the same training cases.

Table 19.3
Example training cases. Each training case has a value for each of 6 attributes, and a class. Attribute 0 is the cue
word to be disambiguated.

-1 0 1 2 3 4 Class:

work and we are really pleased discourse

. But we stop there because discourse

. Now that doesn’t mean we discourse

very well founded principle principled in sentential

to look more like sentences . sentential

, and that’s on the second sentential

description ok . Is a surgeon discourse

19.3 The Training Cases

For these experiments, we have access to the transcript of spoken English used by
Hirschberg and Litman [1993]. In this transcript, each discourse cue word has been
manually marked by a linguist as to whether its sense is discourse or sentential. The
training examples are therefore empirical data – measurements of human perception. The
transcript provides 1,027 examples.

Table 19.3 contains sample training data. Each training example has 6 attributes: posi-
tions -1 through 4. This includes position zero, the discourse cue word to be disambiguated.
For any given training example, each attribute has a corresponding value, that is, a token.
Each training example also has a class, that is, the word sense. Note that we have formalized
word sense disambiguation as a two class classification problem.

Decision trees operate on one training example at a time, attempting to derive the correct
classification. We evolutionarily induce decision trees which correctly classify a high
percentage of the training cases. In order to ascertain the generalization performance of
these trees, induction takes place over one half of the training cases, and evolved trees are
tested over the remaining cases, the test cases. The division into training and test sets is
made randomly upon each run.

The next section describes the decision tree mechanism, and how it is used for word
sense disambiguation.

−1

D S

. , <default>

Figure 19.1
This small, manually created decision tree correctly classifies 79.16% of the training examples. At leaves, “D”
stands for discourse and “S” for sentential.

A1
V1

V2

V3

S1

S2

A2 A3

S3 S4 S5 S6

V4 V5

Figure 19.2
Formal representation of a decision tree. Internal nodes are labeled with attribute sets, arcs are labeled with value
sets, and leaves are labeled with a class. Rightmost arcs are “default paths”.

19.4 How Decision Trees Work

Figure 19.2 shows the formal representation of a decision tree, and Figures 19.3 and 19.4
show example decision trees generated by evolution.2 Each internal node of a tree is
labeled with a set of attributes (token positions), each arc is labeled with a set of values
(tokens), and each leaf is labeled with a class name (word sense).

The internal nodes are treated like a switch statement in C. A series of comparisons is
made, and one downward arc is selected. For a given training example, the tree is traversed
deterministically from root to leaf, thus classifying the example, by the following recursive
process:

2These trees have been automatically edited to remove most redundant and useless data for the purpose of
inspection. The editing process preserves semantics and is not part of the evolutionary process.

−1

D 0

0 S −1 S

1

D 0

this
we I
that in

. and <default>

or say
and now so

like
look well

but
<default>

and
now

or so
say <default>

<default>,

<default>

and
now

<default>

S S D S D S

S S

Figure 19.3
Example decision tree, induced by evolution. At leaves, “D” stands for discourse and “S” for sentential. This
tree scored 81.09% over the training set and 83.27% over the test set. The original (unedited) tree has 37 nodes.

At the current internal node, the set of values from the training example which correspond
to the node’s attributes is identified, and the first arc with an intersecting value set, going
from left to right, is selected.

The rightmost arc under each internal node is a “default” arc which has no explicit value
set. This arc is traversed if none of its sister arcs has an intersecting value set.

For example, to classify the first training example from Table 19.3 with the decision tree
in Figure 19.3, the tree traversal starts at the root node. The right arc is traversed, since
position -1 has neither a period nor and. Then the leftmost arc is traversed, since position 0
has value and. Then two more leftmost arcs are traversed, leading to a leaf which classifies
the training example as discourse, the correct classification.

The superset of values which can be members of a decision tree’s value sets is the
compilation of all values which occur in the training examples. A value frequency threshold,

−1

D 0

1 1

D 4

. , <default>

and
or
well now

look
so but
like

say

<default>

I this
that it

we ,
<default>

to ,
I we
this

. it
the
that

<default>

of
we
and <default>

S D

D S D S S

D D

Figure 19.4
Example decision tree, induced by evolution. At leaves, “D” stands for discourse and “S” for sentential. This
tree scored 83.24% over the training set and 81.52% over the test set. The original (unedited) tree has 42 nodes.

15, has been selected manually; only values occurring frequently enough are considered for
explicit inclusion in decision trees. The resulting superset of values is of size approximately
26.3 Since some values cannot appear explicitly in value sets, the default arcs are necessary.

If a node contains attribute set
�
0 � , its arcs may only contain discourse cue words.

Therefore, a separate superset of values is used for the downward arcs leading from a node
with attribute set

�
0 � – The set of all discourse cue words. A frequency threshold of 4

has been selected for the superset of discourse cue words, resulting in a superset of size
approximately 20. The attribute sets are therefore restricted to either being

�
0 � or a subset

of
�
-1, 1, 2, 3, 4 � .

Note that although the attribute sets of the decision trees in Figures 19.3 and 19.4 are all
one-member sets, the representation allows for more than one attribute to appear at each
internal node. Also note that a decision tree does not necessarily have to look at the word
it is disambiguating; there are some generalizations that hold for all discourse cue words.

3Since the partition of train/test sets is randomly selected at the beginning of a run, the frequency count of the
tokens varies, so the number of tokens with frequency above the frequency threshold varies.

19.5 Crossover Operations on Decision Trees

The crossover mechanism is designed to allow for any decision tree architecture to emerge.
There are two representational issues which simple subtree swapping does not address.
First, there are a variable number of daughters per node. Second, there are attribute and
value sets at the internal nodes and arcs, respectively.

The attribute sets at internal nodes and value sets on tree arcs embedded in decision trees
are represented as bit strings. In order to represent a set as a bit string, each member of
the superset is assigned a location on the bit string. A bit string contains member x of the
superset if and only if x’s bit location has a 1. Therefore, attribute set bit strings are of
length 6, and value set bit strings are of length approximately 20 or 26.

One-point bit string crossover is intermingled with the subtree-swapping crossover of
genetic programming.4 Once two trees have been selected for crossover, a random node
from each is selected. If neither node is a leaf, and their attribute sets are compatible, i.e.
are both

�
0 � or neither contain 0, then with 66% probability bit string crossover will take

place. In all other cases, the subtrees which have the chosen nodes as roots are swapped.
When bit string crossover is selected, crossover takes place between the nodes’ attribute

sets. Then, a random downward arc is selected from each node, arc1 and arc2. The value
sets corresponding to these arcs are crossed over. Then, the set of sister arcs to the right
of arc1, as well as the subtrees they lead to, are exchanged with the set of arcs to the right
of arc2, as well as the subtrees they lead to. Note that this operation alters the number of
daughters per node.

19.6 How Fixed Training Data Participate in Competitive Adaptation

In order to measure the fitness of a decision tree, a subset of training cases is selected,
and raw fitness is the number of these training cases correctly classified by the decision
tree. The canonical method for induction over a training set is to select training cases with
uniform distribution. This section describes a method by which training cases are selected
competitively.

Fixed training cases cannot participate in creative evolutionary operations such as
crossover and mutation. Therefore, it does not make sense to use fitness-based selec-
tion for selecting reproduction participants. Instead, fitness-based selection of individuals
is used to select training cases when computing the fitness of a decision tree.

4David Andre’s chapter in this book presents work in which subtree-swapping is intermingled with bitmap
crossover.

Table 19.4
Performance improvement generated by a competitive fitness function in terms of performance over the training
set. The last row shows the average performance of the individual scoring highest over the training cases during
500 generations of evolution. For the other rows, the best individual of the given generation is selected. Runs
without competition compute decision tree fitness across 513 random training cases.

Without competition With competition

Number Average score Standard Number Average score Standard
Generation of runs over training cases deviation of runs over training cases deviation

100 58 80.85% 1.24 46 81.96% 1.35

200 52 81.22% 1.34 44 82.81% 1.35

300 44 81.49% 1.53 44 83.34% 1.31

400 42 81.65% 1.60 43 83.83% 1.26

500 42 81.79% 1.59 42 84.07% 1.29

Overall best 42 81.95% 1.55 42 84.09% 1.31

In a competitive environment, weaknesses are sought out by competitors. In our im-
plementation of competition, the training cases which tend to be incorrectly classified
by decision trees become more fit, and therefore selected more frequently during fitness
measurements.

Competition is implemented as follows:

� Each training case has a fitness measure which is initialized to zero before the first
generation of decision trees are evaluated. This fitness measure continuously adjusts. It is
never again initialized.

� Each time a decision tree is tested on a training case, the training case’s fitness is
incremented if the tree makes the incorrect prediction, and is decremented if the tree makes
the correct prediction.

� When calculating the fitness of a decision tree, 2-member tournament selection5 over the
set of training cases is repeatedly used to select 513 (non-unique) cases, so the decision
tree’s raw score is between 0 and 513. Note that the same training case may be used more
than one time during a fitness measure. Also note that the fitnesses of training cases change
during the fitness calculation of one decision tree.

Competitive fitness measurements are relative, that is, they are computed across a
non-uniform distribution of training cases, and measure fitness with respect to the current
fitnesses of the training cases. Therefore, in order to ascertain how much is being learned on

5Tournament selection is accomplished by selecting two or more individuals at random, and keeping only the
one with highest fitness.

Table 19.5
Performance improvement generated by a competitive fitness function in terms of score over the test set. See
caption of Figure 19.4 for more information.

Without competition With competition

Number Average score Standard Number Average score Standard
Generation of runs over test cases deviation of runs over test cases deviation

100 58 78.51% 1.33 46 78.49% 1.18

200 52 78.59% 1.34 44 78.80% 1.62

300 44 78.72% 1.35 44 79.02% 1.49

400 42 78.54% 1.45 43 79.11% 1.68

500 42 78.64% 1.52 42 78.92% 1.71

Overall best 42 78.45% 1.44 42 79.12% 1.72

an absolute scale, it is necessary to periodically compute the absolute fitness measurements
(that is, uniformly across the entire training set) of the population of decision trees. The
measurements of absolute fitness are used only to keep track of the best decision tree created
so far; it is never used by the evolutionary process. Absolute fitness is computed every 20
generations.

Since 2-member tournament selection is used to select training cases, the distribution of
selected cases is not as skewed as it could be for fitness proportional selection, and decision
trees are given less of an opportunity to “forget” what they’ve already learned. Further
experiments would be necessary to determine the effect of other selection procedures. It is
possible that cyclic behavior could emerge, during which absolute fitness stops increasing.

Table 19.4 shows the improvements gained from a competitive fitness function in terms
of the score attained over the training cases, and Table 19.5 shows the scores over the test
cases for the same batch of runs. Section 19.8.2 discusses these results.

The decision trees in Figures 19.3 and 19.4 were evolved with competition.

19.7 Averting Overlearning with Decision Trees: Fitness Penalty

When evolving decision trees, there is an intrinsic tendency towards generalized learning.
This is because subtrees with smaller depth have the survival advantage that they have a
greater probability of remaining intact, and since shorter subtrees have fewer choice points
they have less of an opportunity to over-tune to the training data than subtrees with greater
depth. Also, the frequency threshold imposed on members of the value sets will tend to
avert overlearning. In spite of these factors, average performance of an evolved decision
tree over the test cases does not out-perform the decision tree in Figure 19.1. We therefore
have implemented a fitness penalty to avert overlearning.

A decision tree can be viewed as the compilation of many rules. Any traversal of the
tree from root to leaf in which one attribute and one value is selected at each choice point
(i.e. node) is a rule of the form:

if (attribute1= value1) and (attribute2= value2) and (attribute3= value3)...
then classification = class1

When a decision tree is used to classify a set of training cases, each training case will be
classified by one and only one of these rules. Therefore, the rules indicate a partition of the
set; each rule corresponds to one partition. When training over a small set of examples, the
same examples must be used repeatedly for fitness measure. Therefore, it is possible for
decision tree fitness to improve by discovering many rules with small partitions. However,
the smaller a rule’s partition, the less likely it is that the rule embodies a valid generalization.
Therefore, we have implemented the following fitness penalty:

Rules with a corresponding partition with size less than a preselected threshold are con-
sidered “illegal”, and their contribution to raw fitness is subtracted.6

With this fitness penalty in effect, a rule must apply to some minimal number of training
cases in order to add to the fitness of the decision tree it is a part of. Therefore, the penalty
adds pressure for decision trees to find generalizations by prohibiting decision trees to
gather data which is idiosyncratic to the training set.

This fitness adjustment is active in two contexts, both with the same threshold. First, it
is used when computing a decision tree’s absolute fitness (that is, over the entire training
set, uniformly). Second, when computing the competitive (i.e. relative) fitness of a
decision tree, it is applied by looking at the partition of the set of training cases selected
for that particular fitness measure, which is also a 513 member set, but is not uniform,
i.e. it can contain zero copies of some training cases, and more than one copy of other
training cases. Therefore, when computing competitive fitness, the penalization is based
on an approximation of the partition sizes implied by the decision tree. However, since
tournament selection is used to select training cases, the distribution of training cases is less
skewed than it could be for fitness proportional selection. The penalty is not used when
evaluating a decision tree over the test cases.

Note that this strategy for increasing generalization performance is not a change to the
evolutionary process, but simply a change to the fitness measure. Also, although this

6Since the rule defining a partition is not necessarily correct for every training case it applies to, the amount it
contributes to raw fitness can be different (less) than the size of its partition.

Table 19.6
Results from 4 batches of runs, all with competition. See table 19.1 for the parameters used for these runs. The
fourth row shows the performance of the tree in figure 19.1, illustrating the standard deviation which results from
the random partitioning of the example data into training and test sets.

Threshold on size Number Average score Standard Average score Standard
of rule partitions of runs over test cases deviation over training cases deviation

0 42 79.12% 1.72 84.09% 1.31

3 58 79.20% 1.71 81.84% 1.22

4 35 78.88% 1.73 80.78% 1.18

N/A (Tree in fig 19.1) 100 78.99% 1.23

penalty bears similarity to a parsimony factor, it does not directly penalize a tree based on
its size.

Table 19.6 shows the results of experiments with particular thresholds. Section 19.8.3
discusses these results, and section 19.9 suggests more sophisticated methods of penalizing
raw fitness.

19.8 Conclusions

19.8.1 Non-trivial Learning and Generalization Performance

The existence of the decision tree in Figure 19.1, which is small yet achieves a high
success rate, adds to the difficulty of this problem domain. It is easy to induce a strategy
similar to the one embodied by the small decision tree, even by random search, so every
run accomplishes at least that. This weakens the comparisons made between different
fitness measures, since the range of possible performance is small. Additionally, the loss
in performance over the test cases as compared to the performance over the training cases
is just enough that the average test score is comparable to the performance of the small tree
in Figure 19.1. This is illustrated in Tables 19.6 and 19.5.

It is important to recognize that a non-trivial task is taking place when evolving a decision
tree with a higher success rate than that in Figure 19.1. High scoring decision trees implicitly
partition the training and test sets into portions which are mostly non-trivial in size. (See
section 19.7 for a description of how decision trees partition the training examples.) For
example, the decision tree in Figure 19.3 partitioned the test set into partitions of sizes 12,
130, 4, 5, 1, 2, 11, 17, 32, 97, 21, 6, 14, 5, 1, 31, 15, 94, 1, and 15. Therefore, it would
be a mistake to assume that the rules embodied in an evolved decision tree other than the
simple rules of the tree in Figure 19.1 are exactly the ones which fail when evaluating the
decision tree over the test cases; each rule of an evolved decision tree tends to perform

more poorly over the test cases. It is coincidental that the average score over the test set is
approximate to the score attained by the decision tree in Figure 19.1. In domains without
a small, high-scoring tree, evolved decision trees will outperform simple trees over the
training set to a greater degree. When this is the case, the relative loss of performance over
the test cases will likely not bring performance below that of any simple decision tree.

19.8.2 Competition

The mean training score for the best decision tree found over 500 generations of compet-
itive evolution was significantly different from the mean training score for trials without
competition (t=6.760, P<.001). The improvement over test cases with competition is less
obvious, however the mean test score for competitive evolution with a threshold of 3 (Ta-
ble 19.6, second row) was significantly different from the mean test score for trials without
competition and with a threshold of 0 (Table 19.5, last row) (P<.0265). The usefulness of
competition will prove to be dependent on the domain to which it is applied.

19.8.3 Fitness Penalty

Table 19.6 compares the average train and test performances attained when the threshold
on rule partition size is set to 0 (i.e. no fitness penalty), 3 and 4. The usefulness of the
fitness penalty for this domain is inconclusive, however the results are informative. With
a threshold of 3 or 4, learning is inhibited and the average training score is less than that
with a threshold of 0. A higher average training score is expected to correspond to a
higher average test score. This can be verified by cross-referencing Tables 19.4 and 19.5.
However, the average test score attained with a threshold of 3 is not lower than the average
test score attained with a threshold of 0. That is, the difference between average training
score and average test score is smaller when the penalty is in use. One way to view this is
that the penalty decreases learning potential, but also decreases overlearning. It is possible
that with the fitness penalty, many extraneous rules which help a tree’s training score, but
do not help its test score, are “trimmed”.

Since the classification problem in this chapter has only two classes, a rule which has
overtuned to the training set (i.e. only applies to a small number of training examples)
has as least a 50% chance of correctly classifying a test case it applies to. Therefore, in
a classification problem with more than two classes, the negative effects of overlearning
will probably prove to be more detrimental. See section 19.9 for variations which could
increase the usefulness of a fitness penalty.

19.8.4 Linguistic Data

Evolved decision trees often include rules which provide insightful hints for linguists. For
example, the decision tree in Figure 19.3 contains a rule that and followed by in is of
class discourse. In looking at the training cases we note that the in always prefaces the
prepositional phrases in particular, in fact, and in a certain respect when following and.
These are cases in which and is being used to introduce an elaboration. As another example,
some decision trees contain the rule that say preceded by to is of class sentential. This is
linguistically viable, since, when preceded by to, say is most likely a verb, as in, “That is
what I wanted to say.”

19.9 Further Work

There are ways to vary the method by which competition has been implemented for induc-
tion over a fixed set of training cases. For one, higher selection pressure for selecting train-
ing cases by way of greater than two-member tournament selection or fitness-proportional
selection should be evaluated for various domains. Also, it may be beneficial to have the
fitness scores of training cases change only at generation boundaries, so that their adaptation
is synchronous with the adaptation of the decision trees.

Various fitness penalties should be contrasted for evolving decision trees. In particular,
instead of an absolute threshold, a weighted penalty could be implemented by which the
bigger the partitions of a decision tree are, the smaller the fitness penalty. The weight
would have to be tuned in a domain-specific manner.

The method by which competition is implemented could influence generalization perfor-
mance. Other parameters which have potential to influence performance over the test set
include the fitness penalty weight and the token frequency thresholds mentioned in section
19.4. Schaffer et al. [1990] have used a GA to tune parameters to increase the performance
of a neural network over test cases after back-propagation. A similar method could be
employed to tune the parameters listed above, i.e. meta-GA.

Ryan’s chapter in this book discusses a method by which diversity can be maintained
when a parsimony factor is in use. This method could also apply to a penalty based on
the partition sizes implied by a decision tree; this penalty bears similarity to a parsimony
factor.

Automatically attained statistical data concerning how often words co-occur (e.g. Hatzi-
vassiloglou and McKeown [1993] and Schuetze [1992]) can aid predictive tasks such as
word sense disambiguation. [Brown et al. 1991] We intend to evolve disambiguation
mechanisms which have access to such data.

Acknowledgments

Thanks to Andy Singleton, Alex Chaffee, David Schaffer and Kathy McKeown for their
supportive exchange of ideas. Thanks to Diane Litman for providing the transcript of
spoken English used in this work.

Bibliography

Angeline, P. J. and Pollack, J. B., (1993) Competitive Environments Evolve Better Solutions for Complex Tasks,
In Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann.

Axelrod, R. (1989) Evolution of strategies in the iterated prisoner’s dilemma. Genetic Algorithms and Simulated
Annealing, L. Davis editor, Morgan Kaufmann.

Brown, P. F., DellaPietra, S. A., DellaPietra, V. J., and Mercer, R. L., (1991) Word sense disambiguation
using statistical methods, in Proceedings 29th Annual Meeting of the Association for Computational Linguistics,
(Berkeley, CA), pp. 265-270, June 1991.

Hatzivassiloglou, V. and McKeown, K., (1993) Towards the Automatic Identification of Adjectival Scales:
Clustering Adjectives According to Meaning. Proceedings of the 31st Annual Meeting of the ACL, Association
for Computational Linguistics, Columbus, Ohio, June 1993.

Hillis, D. (1992) Co-evolving Parasites Improves Simulated Evolution as an Optimization Procedure, In Artificial
Life II, edited by C. Langton, C. Taylor, J. Farmer and S. Rasmussen. Reading, MA: Addison-Wesley Publishing
Company, Inc.

Hirschberg, J. and Litman, D., (1993) Empirical Studies on the Disambiguation of Cue Phrases, in Computational
Linguistics, Vol. 19, No. 3, in press.

Holland, J. (1975) Adaptation in Natural and Artificial Systems, Ann Arbor, MI: The University of Michigan
Press.

Christie, A. M. (1993) Induction of decision trees from noisy examples, in AI Expert, 5(8).

Koza, J. R. (1991) Concept formation and decision tree induction using the genetic programming paradigm. In
Schwefel, Hans-Paul, and Maenner, Reinhard (editors), Parallel Problem Solving from Nature. Berlin, Germany:
Springer-Verlag.

Koza, J. R. (1992a) Genetic programming:On the programming of computers by mean of natural selection.
Cambridge, MA: MIT press.

Koza, J. R. (1992b) Genetic Evolution and Co-Evolution of Computer Programs. In Artificial Life II, edited by
C. Langton, C. Taylor, J. Farmer and S. Rasmussen. Reading, MA: Addison-Wesley Publishing Company, Inc.

Quinlan, J.R. (1986) Induction of decision trees. Machine Learning 1(1),New York: Kluwer Academic Publishers,
1986, pp. 81-106.

Schaffer, D., Caruana, R. A. and Eshelman, L. J., (1990) Using Genetic Search to Exploit the Emergent Behavior
of Neural Networks. Physica D 42, p. 244-248.

Schuetze, H. (1992) Dimensions of meaning. In Proceedings of Supercomputing ’92.

Tackett, W. A. (1993) Genetic Programming for Feature Discovery and Image Discrimination. In Proceedings of
the Fifth International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann.

