
Evolving Teleo-Reactive Programs for Block Stacking using
Indexicals through Genetic Programming

Mykel J. Kochenderfer

63 Abrams Court, Apt. 6F
Stanford, CA 94305

650-497-1750
mykel@cs.stanford.edu

Abstract

This paper demonstrates how strongly-typed
genetic programming may be used to evolve
valid teleo-reactive programs that solve the
general block-stacking problem using indexi-
cals.

1 INTRODUCTION

Teleo-reactive programs have been proposed by Nils
Nilsson (1992, 1994) as a robust agent control struc-
ture. The agent is directed towards a goal based on
continuous evaluation of perceptual inputs. Teleo-
reactive programs consist of an ordered list of pro-
duction rules, and they tend to be relatively simple
for humans to write and understand. Teleo-reactive
programs have been successfully applied to a variety
of domains, including robot planning and aircraft con-
trol in a flight simulator (Benson, 1996).

The effectiveness of teleo-reactive programs has also
been demonstrated in the blocks world domain.1 A
teleo-reactive system proposed by Nilsson (2001) is ca-
pable of stacking any specified tower of blocks on a
table from any configuration without search. A wide
variety of learning techniques for teleo-reactive pro-
grams have been proposed (Nilsson, 2000) that may be
applied to solving block-stacking problems and other
robot problems.

This paper demonstrates the suitability of genetic pro-
gramming for the automatic creation of teleo-reactive
programs for the block-stacking problem. Although
work has already been done involving genetic program-

1A link to an animated Java applet demon-
strating the use of teleo-reactive programs and the
triple tower architecture may be found online here:
http://cs.stanford.edu/∼nilsson/trweb/tr.html.

ming and block stacking (Koza, 1992; Baum and Dur-
danovic, 2000), this paper is the first to apply genetic
programming to learning teleo-reactive programs.

Work done by Koza (1992) focused on a simplified
block-stacking problem. The goal of the reduced ver-
sion of the problem is to move a predefined set of blocks
from the table to a specified tower. Any blocks on the
table may be randomly accessed in Koza’s problem,
but in the version of the problem treated in this pa-
per, only blocks at the top of stacks are accessible.
In other words, in this paper we assume that for the
agent to manipulate a block in the middle of a partic-
ular stack, the agent must first remove the blocks on
top of it.

The block-stacking teleo-reactive program discussed
in Nilsson’s paper (2001) uses predicates of the form
On(x,y) to describe the environment sensed by the
agent, where x may be any block and y may be any
block or the table. The blocks are denoted by letters,
A, B, C, . . . , and the table is denoted by Ta. The only
action available to the agent is Move(x,y) that moves
block x, which does not have any blocks on top of it,
to the top of y, which may be either another block or
the table.

Work done by Baum and Durdanovic (2000) involving
strongly-typed genetic programming and block stack-
ing followed a convention similar to that of Nilsson.
In addition to constants, arithmetic functions, condi-
tional tests, loop controls, their S-expressions included
the following functions: Look(i,j) that returns the
color of the block at location (i,j), Grab(i) that
grabs the top block off of column i, Drop(i) that
drops the block the agent is holding onto the top of
column i, and Done that terminates the program.

In Koza’s application of genetic programming to block-
stacking (1992), he decides to use indexicals instead of
explicit references to the blocks. Indexicals are ex-
pressions whose meaning depends upon the context in



which it is employed (as discussed in Perry, 1996). The
indexicals used by Koza included terminals such as NN,
which represents the “next needed block”, and func-
tions such as MS, which moves the specified block to
the target tower. The experiments described in this
paper use indexicals similar to those used by Koza for
the function and terminal sets.

This paper demonstrates how strongly-typed genetic
programming can evolve valid teleo-reactive programs
that solve the general block-stacking problem using
indexicals.

Some of the relevant details of teleo-reactive programs
and a discussion of their incorporation into genetic
programming is found in the next section. In section 3,
we discuss the methods used in evolving teleo-reactive
programs for block stacking. A report of the results
follows in section 5, and conclusions are drawn from
these results in section 6. Further work is discussed in
the final section.

2 TELEO-REACTIVE PROGRAMS

A teleo-reactive program, as proposed by Nilsson
(1992, 1994), is an ordered list of production rules,
as shown below:

K1 → a1

...

Ki → ai

...

Km → am

The Ki are conditions, which are evaluated with ref-
erence to a world model, and the ai are actions on the
world. The conditions Ki may have free variables that
are bound when the teleo-reactive program is called.
Actions may be primitive, they may be a set of ac-
tions to be executed in parallel, or they may be an-
other teleo-reactive program (thereby enabling recur-
sion). Typically, K1 is the goal condition, and a1 is
the null action.

The rules are scanned from top to bottom for the first
condition that is satisfied and then the correspond-
ing action is taken. Since the rules are scanned con-
tinuously, durative actions are possible in addition to
discrete actions. In our version of block stacking, we
are concerned only with discrete actions. For a more
detailed explanation of how teleo-reactive programs
work, see Nilsson (1992, 1994).

Teleo-reactive programs may be represented as S-
expressions, making it possible to evolve such pro-

grams using the standard genetic programming algo-
rithms. Figure 1 shows the general structure of such
an S-expression, as proposed by Nilsson (2002).

IF

IFP

P

a

a IF

P a etc.

Figure 1: The general structure of a teleo-reactive pro-
gram represented as an S-expression.

P is any allowed condition, a is any primitive action,
and IF is the three-place “if-then-else” function. If we
limit conditions to be conjunctions, the condition P
may be expanded in BNF according to the rule

P → Q | (and Q P)

where Q is an atomic formula and and is the usual two-
place conjunction. Nilsson suggests that the bottom
node of the program should be a two-place if function
whose condition is T.

This paper uses a slightly different structure for the
teleo-reactive S-expression than the form proposed by
Nilsson. The S-expression may be represented by the
following grammar. The terminal p may be any primi-
tive perception of the agent, including T and nil. The
terminal a may be any primitive action, including the
action nil that does nothing.

S → A

A → (if P A A) | a

P → (and P P ) | p

The adapted structure makes it so that the strongly-
typed genetic programming system only has to deal
with two types instead of three. The two types used
in this paper are the action type and the perception

type, which corresponds to the variables A and P in
the grammar. The grammar allows actions to be ei-
ther primitive actions or other teleo-reactive programs.
The actual terminals used will be discussed in the fol-
lowing section.



3 METHODS

The teleo-reactive tree structures described in the
previous section proved easy to implement using the
strongly-typed version of lil-gp made available by
Sean Luke.2 This section explains the setup for the
genetic programming experiments. The standard ge-
netic programming tableau appears in Table 1.

Objective: Find a teleo-reactive program for
stacking a specified tower from an ar-
bitrary configuration of blocks.

Terminal set: Action type: anil, mt, mb, mu; Percep-
tion type: pnil, bc, nnc, nn, tbn, tbb,
tcb.

Function set: Action type: if; Perception type: and,
eq, neq.

Fitness cases: A random sample of block stacking
worlds and target towers.

Raw fitness: The total number of blocks that were
correctly stacked into the target tow-
ers.

Standardized
fitness:

The sum of all the target tower sizes in
the fitness cases minus the raw fitness.

Hits: The number of target towers that were
stacked correctly.

Wrapper: None.
Parameters: Population size M = 50, 000
Success predi-
cate:

An S-expression representing a teleo-
reactive program that correctly stacks
the blocks in all of the fitness cases
(standardized fitness = 0).

Table 1: Genetic programming tableau for teleo-
reactive block stacking problem.

Before discussing the functions and terminals, it is im-
portant to understand the state that the indexical ter-
minals describe. Each blocks-world problem specifies
a target tower and an initial configuration of blocks.
The target tower is simply the target that the agent
wishes to build, which is a strict ordering of a subset of
the blocks. The initial configuration is the state of the
world which is initially presented to the agent. The
state contains n blocks arranged as a set of columns.
An example of an initial state is shown in Figure 2.

3.1 FUNCTIONS AND TERMINALS

As mentioned earlier, the teleo-reactive structures use
two types in the strongly-typed genetic programming
system. The first type is the perception type. The per-
ception type includes the following terminals that cor-

2Sean Luke’s strongly-typed kernel is based on the
lil-gp Genetic Programming System from Michigan
State University. The source is freely available here:
http://www.cs.umd.edu/∼seanl/gp/patched-gp.

1
0

2

target tower

3
4

initial configuration

0
1

2

3
4

Figure 2: An example of an initial state.

respond to sensors dynamically tracked by the agent:
pnil, bc, nnc, nn, tbn, tbb, tcb.

• The sensor pnil is always nil.

• The sensor bc (“Best Column”) dynamically spec-
ifies the column whose bottom block is the same
as the bottom block of the target tower. If the
bottom block of the target tower does not appear
as the bottom block of any of the columns, the
sensor returns nil.

• The sensor nnc (“Next Needed Column”) dynam-
ically specifies the column that contains the next
needed block, nn. If nn is nil, then nnc is also
nil.

• The sensor nn (“Next Needed Block”) dynami-
cally specifies the next needed block to build the
target tower. If the target tower has been built
successfully, nn is nil.

• The sensor tbn (“Top Block of Next Needed Col-
umn”) dynamically specifies the top block of the
column referenced by nnc. If nnc is nil then tbn

is also nil.

• The sensor tbb (“Top Block of the Best Column”)
dynamically specifies the top block of the best col-
umn, bc. If bc is nil then tbb is also nil.

• The sensor tcb (“Top Correct Block”) dynami-
cally specifies the topmost block in the best col-
umn where that block and every block underneath
it is in the ordering specified in the target tower.
If bc is nil then tcb is also nil.



Internally, perception types evaluate to integers, cor-
responding to the integers identifying the blocks and
columns in the state. The terminal pnil is given the
internal representation of −1. Of course, the actual
values of the indexicals are not externally visible and
do not appear in the generated trees.

The perception functions are the following: and, eq,
and neq. These functions take two arguments that are
perceptions and return a perception.

• The function and returns T if both of its argu-
ments are T. Note that the expression (and (eq

nn pnil) tcb) will always evaluate to nil since
tcb cannot, of course, be T.

• The function eq returns T if its arguments are
equal. Otherwise, it returns nil.

• The function neq returns T if its arguments are
not equal. Otherwise, it returns nil.

The action type has four terminals corresponding to
actions to be taken by the agent.

• The action anil is the “empty action” that has
no effect on the environment.

• The action mt (“Move to Table”) moves the top
block of the next needed column, i.e. tbn, to the
table. This creates a new column consisting of
this single block. If tbn is nil, then no action is
taken.

• The action mb (“Move to Best”) moves the top
block of the next needed column, i.e. tbn, to the
top of the best column, i.e. bc. If tbn or bc is
nil, then there is no effect on the environment.

• The action mu (“Move Unstack”) moves the top
block of the best column, i.e. tbb, to the table.
This creates a new column consisting of this single
block. If tbb is nil, then there is no effect on the
environment.

The action type has one function, which is the three-
argument if function. The first argument is a percep-
tion type, and the last two arguments are action types.
Before evaluating the last two arguments, the first ar-
gument is evaluated. If the first argument evaluates to
T, then the second argument is evaluated. Otherwise,
the third argument is evaluated.

Notice that if the agent ever takes an action that has
no effect on the environment, all future actions will
be the same and, hence, will have no effect on the

environment. The same action will be taken in the
teleo-reactive tree because only the agent may change
the environment. Therefore, an experiment may ter-
minate as soon as the agent takes an action that has
no effect on the environment.

3.2 SAMPLE TREES

The following is a (human-produced) teleo-reactive
program that solves the block-stacking problem.

(eq nn pnil) → anil

(and (eq nn tbn) (eq tbb tcb)) → mb

(eq tbb tcb) → mt

(eq nn tbn) → mu

In words, if the next needed block is nil, meaning that
the target tower has been stacked correctly, then the
agent stops. If the next needed block is the top block
of its column and the top block of the best column is
the top correct block, then the agent moves the next
needed block to the best column. Otherwise, if the
top block of the best column is the top correct block,
then the agent moves the top block of the next needed
column to the table. Otherwise, the agent moves the
top block of the best column to the table. This teleo-
reactive program may be converted to the following
S-expression:

(if (eq nn pnil) anil

(if (and (eq nn tbn) (eq tbb tcb)) mb

(if (eq tbb tcb) mt

(if (eq nn tbn) mu anil))))

3.3 EVALUATION OF FITNESS

The most natural way to measure fitness is simply to
count the number of blocks that were stacked correctly
by the agent by the time the agent decides to stop or
within a certain number of operations. Evaluating a
teleo-reactive stacking program on a single test case
is unlikely to produce a solution to the general block-
stacking problem. Therefore, it is best to evaluate the
fitness of a particular teleo-reactive program on a col-
lection of test cases, with a variety of target towers and
initial configurations with varying numbers of blocks.

The number of initial configurations for a given num-
ber of blocks may be extremely large. The number of
possible configurations is given by the “sets of lists”
sequence, which counts the number of partitions of
{1, . . . , n} into any number of lists (Motzkin, 1971).
Starting with n = 2, the sequence proceeds: 3, 13, 73,
501, 4051, 37633, 394353, 4596553, . . . , according to



the recursive formula:

a(n) = (2n − 1)a(n − 1) − (n − 1)(n − 2)a(n − 2)

The number of configurations grows extremely quickly.
For 18 blocks, there are 588,633,468,315,403,843 pos-
sible arrangements.

We rely on random samples of this space for our test
cases. To generate a test case with n blocks, we start
with a list (0, . . . , n− 1) and then randomize the posi-
tions of the elements. We then randomly partition the
list into some number of smaller lists. Each list defines
the contents of a column in the initial configuration.
We then select a random number r from 1 to n and
then create the target tower (1, . . . , r).

Once a collection of test cases is generated, we begin
by evaluating the teleo-reactive program on each test-
case. The agent is allocated a certain number of steps
to solve each problem or to give up. The raw fitness is
the sum of the number of blocks stacked correctly in
all the test cases. The standardized fitness is simply
the sum of all the target tower sizes minus the raw
fitness. We also define the number of hits to be the
number of problems that were solved by the agent.

3.4 PARAMETERS

Our experiments involve population sizes of 5,000 and
50,000, and the maximum number of generations is
set to 50. The “grow” method of generating the ini-
tial random population was used with a depth ramp
ranging from 5 to 9.

There are four breeding phases. The first breed-
ing phase is function-point crossover (70%), any-point
crossover (20%), reproduction (9%), and mutation
(1%). These parameters approximately follow the
sample parameters that come with Sean Luke’s ver-
sion of lil-gp, with the addition of mutation. The
maximum depth for evolved trees was set to 17.

Many different collections of fitness cases were used to
evaluate fitness. Trials were done with the number of
blocks ranging from 3 to 100 blocks with up to 100
samples for each block size. The number of steps al-
located for solving each problem varied but was kept
sufficiently high so that it would not limit the agent in
finding a solution. For problems with n < 8, the max-
imum number of steps per problem was set to 250.

4 RESULTS AND DISCUSSION

The experiments were run on a single-processor Pen-
tium III 800MHz workstation, and runtime varied be-
tween minutes and hours depending on the collection

of fitness cases used. In most cases, completely fit in-
dividuals were evolved.

Our first experiment was done with a collection of 10
random block-stacking problems with exactly 3 blocks.
An initial population size of 5,000 was used, and an
individual that could solve all 10 problems was evolved
by generation 21. The individual scored 10 hits and
had a raw fitness of 20. The individual is shown below.

(if (and (neq pnil tcb)

(eq nn tbn)) mb mt)

This individual is certainly not a solution to the gen-
eral block-stacking problem; in fact, it does not even
correctly stack all possible 3-block problems. For ex-
ample, consider the initial configuration shown on the
left side of Figure 3 and suppose that the target tower
is all 3 blocks stacked numerically. The individual will
choose the action mb since tcb 6= nil and nn = tbn.
So, the agent will move the next needed block, i.e.
block 1, to the top of of the best column, as shown
in Figure 3. The next action taken is again mb, which
has no effect on the state of the blocks which effec-
tively terminates the teleo-reactive program with an
incorrect tower with a raw fitness of 1.

10
2

0

1
2

t = 0 t = 1

Figure 3: An example of a completely fit individual
that cannot solve the general block stacking problem.

Since the fitness cases that were randomly selected for
the evaluation of the previous individual were not suc-
cessful in guiding the evolution of a completely general
solution, experiments were done with a wider selection
of fitness cases over the space of possible 3-block prob-
lems. Instead of 10 samples, 20 samples were selected
randomly from the space of 6 × 13 = 78 problems.
A completely fit individual was not found within 50
generations with an initial population size of 5,000.
The raw fitness of the best individual during this run
seemed to be stuck at 39 correctly stacked blocks out
of a possible 40. However, with a population size of
50,000, a completely fit individual was found in only 3



generations. The individual is shown below.

(if (neq tcb tbb)

(if nn mu mu)

(if (and (eq tcb pnil)

(neq tbb nnc)) mt mb))

This individual is quite a bit more complex than the
completely fit individual in the previous experiment
with only ten fitness cases. However, this individual
is not a general solution for stacking n blocks. Notice
that the individual makes the rather odd comparison
(neq tbb nnc) between a block and a column. Since
the indexicals tbb and nnc are represented as inte-
gers, the comparison is allowed even though the actual
number assigned to each column was intended to be
abstracted away.

The results of some initial experiments involving be-
tween 3 and 5 blocks is summarized in Table 2. It is
important to note that each row in the table represents
only a single run, and that the maximum number of
generations was set to 50.

What we see in Table 2 is that genetic programming
with an initial population of 50,000 individuals eas-
ily evolved completely fit individuals in relatively few
generations. It was considerably more difficult for the
population size of 5,000 to evolve completely fit indi-
viduals within 50 generations.

Genetic programming was able to find a solution to
the general block stacking problem. The run that pro-
duced this solution had an initial population size of
50,000 and was evaluated on 575 fitness cases where
the number of blocks ranged from 3 to 25. The solu-
tion had a raw fitness of 4,193, and the individual is
shown below.

(if (eq tcb tbb)

(if (neq (neq tbb tbb) tcb) mb mt) mu)

Since (neq tbb tbb) always evaluates to nil, we may
simplify the expression to the following:

(if (eq tcb tbb)

(if (neq pnil tcb) mb mt) mu)

Observe that the program above contains the “sub-
program” (if (neq pnil tcb) mb mt), which moves
the top block of the next needed column to the
top of the best column until tcb becomes nil

or when the condition that triggered the pro-
gram becomes nil. The S-expression above is
equivalent to the following teleo-reactive program:

(neq tcb tbb) → mu

(eq tcb pnil) → mt

(neq tcb pnil) → mb

This completely general solution begins by unstacking
the tower containing the first block in the target tower.
It then moves the top block from the top of the column
containing the next needed block to the top of the best
column. If this block is not the next needed block, then
it is then moved to the table.

This evolved program is simpler than the human-
programmed solution discussed earlier. However, this
teleo-reactive program does not necessarily stack a tar-
get tower in the minimum number of moves. Instead
of moving a block that is not the next needed block
from the next needed column immediately to the ta-
ble, the individual moves the block to the top of the
best column and then to the table. This minor loss in
efficiency is illustrated in Figure 4

3
1
0 3

t = 0 t = 1

2
4 1

0

2
4

3
1
0

3

t = 2 t = 3

2

4
1
0

2

4

3

t = 4

1
0

2

4

Figure 4: An example of inefficiency in an evolved
general solution.

Since there was no selective pressure to evolve an opti-
mal solution, it is not surprising that the first evolved
solution is suboptimal. To encourage optimality, the
number of steps allocated to finding a solution was re-
duced to twice the number of blocks, since in the worst
case the optimal program would have to unstack all the
blocks to the table and then move them individually to
the best column. A suboptimal, but correct program
would simply run out of time before stacking all of the
blocks. Of course, this method to assign fitness values
could assign a completely correct, but suboptimal in-
dividual the same fitness value as an individual that
cannot solve arbitrary stacking problems.

The time constrained evaluation function described



3 blocks Population size: 5,000 Population size: 50,000
Num cases Generation Hits Fitness Solved Generation Hits Fitness Solved

10 21 10 20 Yes 1 10 20 Yes
20 36 19 39 No 3 20 40 Yes
30 7 25 52 No 5 30 60 Yes
40 7 34 77 No 1 40 86 Yes
50 2 50 105 Yes 2 50 105 Yes

4 blocks Population size: 5,000 Population size: 50,000
Num cases Generation Hits Fitness Solved Generation Hits Fitness Solved

10 13 14 22 No 4 10 25 Yes
20 24 17 45 No 2 20 50 Yes
30 5 30 81 Yes 1 30 81 Yes
40 2 40 105 Yes 5 40 105 Yes
50 4 11 121 Yes 2 50 121 Yes

5 blocks Population size: 5,000 Population size: 50,000
Num cases Generation Hits Fitness Solved Generation Hits Fitness Solved

10 2 10 28 Yes 1 10 28 Yes
20 49 18 59 No 4 20 63 Yes
30 21 27 84 No 2 30 91 Yes
40 18 35 112 No 3 40 123 Yes
50 7 50 156 Yes 1 50 156 Yes

Table 2: Results from experiments with 3, 4, and 5 blocks. The maximum number of generations is 50.

above was used on a population of 10,000 randomly
generated individuals. To encourage simpler trees,
the initial population was grown with a depth rang-
ing from 1 to 5, and the maximum depth was set to
5. The first run produced a correct and optimal teleo-
reactive program by generation 8. The individual is
shown below.

(if (neq tbb tcb) mu

(if (and (neq pnil bc)

(eq tbn nn))

(if nnc mu mb) mt))

Since nnc always evaluates to nil, we may simplify
the expression to the following.

(if (neq tbb tcb) mu

(if (and (neq bc pnil) (eq tbn nn))

mb mt))

The expression above is equivalent to the following
teleo-reactive program:

(neq tbb tcb) → mu

(and (neq bc pnil) (eq tbn nn)) → mb

T → mt

Even without the simplification, the evolved solu-
tion consists of only 18 points, which is remarkable
since the human-programmed solution consisted of 25
points.

5 CONCLUSIONS

This paper has demonstrated how genetic program-
ming can be used to evolve teleo-reactive programs.
Teleo-reactive programs may be represented as S-
expressions that are then reproduced according to fit-
ness and recombined through the standard strongly-
typed genetic programming procedures. We have seen
specifically how genetic programming is capable of
evolving block-stacking teleo-reactive programs with
indexical terminals.

The standard genetic programming techniques evolved
a completely general and optimal solution to the block-
stacking problem for an arbitrary number of blocks
with any initial configuration. The evolved program is
simpler (in number of points) than the one produced
by a human programmer. This paper shows that it is
important to have a wide selection of fitness cases with
varying numbers of blocks along a sufficiently large
population. If optimality is a concern, then evolution-
ary pressure may be applied by imposing a time con-
straint.

It is remarkable how a few hundred fitness cases se-
lected randomly from the extremely vast state space
can guide genetic programming to evolve an optimal
and general plan for stacking blocks. Of course, much
of its success depended upon the availability of the
appropriate indexicals. Baum and Durdanovic (2000)
tried solving a related block-stacking problem with-
out the use of genetic programming or indexicals and
found that only about 4 block instances could be



solved. The preliminary results presented in this pa-
per indicate that genetic programming is well suited
for learning teleo-reactive programs.

6 FURTHER WORK

Further work will be done using genetic programming
to evolve teleo-reactive programs. Certainly, it would
be interesting to see if genetic programming can evolve
teleo-reactive programs for use in other, more complex
domains. However, there is still much to be done with
evolving teleo-reactive programs for block stacking.

Indexicals are partially responsible for the success in
evolving general solutions to the block-stacking prob-
lem. It would be interesting to investigate how to
evolve general solutions without the use of indexicals.
The teleo-reactive program that is included in Nils-
son’s paper (2001) does not use indexicals, but uses
recursion. Further research is necessary to examine
how to allow genetic programming to handle this sort
of recursion gracefully. It would be fascinating to see
whether genetic programming can evolve higher-order
perceptions and actions automatically through the use
of ADFs.

Acknowledgments

I would like to thank Nils Nilsson and John Koza for
their suggestions and encouragement.

References

E. Baum and I. Durdanovic (2000). Evolu-
tion of Cooperative Problem-Solving in an Ar-
tificial Economy. Submitted, available from
http://www.neci.nec.com/homepages/eric.

S. Benson (1996). Learning Action Models for Reac-
tive Autonomous Agents. Ph.D. Thesis, Department
of Computer Science, Stanford University.

J. R. Koza (1992). Genetic Programming: On the Pro-

gramming of Computers by Means of Natural Selec-

tion. Cambridge, Massachusetts: MIT Press.

T. S. Motzkin (1971). Sorting numbers for cylinders
and other classification numbers. In Combinatorics,

Proceedings of Symposia in Pure Mathematics, vol. 19,
167–176. The American Mathematical Society.

N. Nilsson (1992). Toward Agent Programs with Cir-
cuit Semantics. Technical Report STAN-CS-92-1412,
Department of Computer Science, Stanford University.

N. Nilsson (1994). Teleo-Reactive Programs for Agent
Control. Journal of Artificial Intelligence Research

1:139–158.

N. Nilsson (2000). Learning Strategies for Mid-Level
Robot Control: Some Preliminary Considerations and
Results. Unpublished memo, Department of Com-
puter Science, Stanford University, May 11, 2000.

N. Nilsson (2001). Teleo-Reactive Programs and the
Triple-Tower Architecture. Electronic Transactions on

Artificial Intelligence 5:99–110.

N. Nilsson (2002). Genetic Programming and Teleo-
Reactive Programs: Rough Notes. Unpublished
memo, Department of Computer Science, Stanford
University, April 22, 2002.

J. Perry (1996). Indexicals. In The Encyclopedia of

Philosophy, Supplement. New York: Simon and Schus-
ter Macmillan, 257–258.


