
Gene Duplication to Enable Genetic Programming to Concurrently Evolve Both the 
Architecture and Work-Performing Steps of a Computer Program 

 
John R. Koza 

Stanford University 
Computer Science Department 

Stanford, California 94305 U. S. A. 
Koza@Cs.Stanford.Edu 

 

Abstract 
Susumu Ohno's provocative book Evolution by Gene 
Duplication proposed that the creation of new proteins 
in nature (and hence new structures and new behaviors 
in living things) begins with a gene duplication and that 
gene duplication is "the major force of evolution."  This 
paper describes six new architecture-altering operations 
for genetic programming that are patterned after the 
naturally-occurring chromosomal operations of gene 
duplication and gene deletion.  When these new 
operations are included in a run of genetic 
programming, genetic programming can dynamically 
change, during the run, the architecture of a multi-part 
program consisting of a main program and a set of 
hierarchically-called subprograms.  These on-the-fly 
architectural changes occur while genetic programming 
is concurrently evolving the work-performing steps of 
the main program and the hierarchically-called 
subprograms.  The new operations can be interpreted as 
an automated way to change the representation of a 
problem while solving the problem.  Equivalently, 
these operations can be viewed as an automated way to 
decompose a problem into an non-pre-specified number 
of subproblems of non-pre-specified dimensionality; 
solve the subproblems; and assemble the solutions of 
the subproblems into a solution of the overall problem.  
These operations can also be interpreted as providing 
an automated way to specialize and generalize.   

1  Introduction 
The goal of automatic programming is to create, in an 
automated way, a computer program that enables a 
computer to solve a problem.  This goal (attributed to 
Arthur Samuel in the 1950s) can be stated as follows:  

How can computers learn to solve problems without 
being explicitly programmed? 

At IJCAI-89, genetic programming was proposed as a 
domain-independent method for evolving computer 
programs that solve, or approximately solve, problems 
(Koza 1989).  Genetic programming extends the 
biologically motivated genetic algorithm described in John 
Holland's pioneering Adaptation in Natural and Artificial 
Systems (1975).   

Genetic programming starts with a primordial ooze of 
randomly generated computer programs composed of the 
available programmatic ingredients and then applies the 
principles of animal husbandry to breed a new (and often 
improved) population of programs.  The breeding is done in 
a domain-independent way using the Darwinian principle of 
survival of the fittest and an analog of the naturally-
occurring genetic operation of crossover (sexual 
recombination).  The crossover operation is designed to 
create syntactically valid offspring programs (given closure 
amongst the set of ingredients).  Genetic programming 
combines the expressive high-level symbolic 
representations of computer programs with the near-optimal 
efficiency of learning of Holland's genetic algorithm.     

Genetic Programming: On the Programming of 
Computers by Means of Natural Selection (Koza 1992) 
provides evidence that genetic programming can solve, or 
approximately solve, a variety of problems from a variety of 
fields, including many benchmark problems from machine 
learning, artificial intelligence, control, robotics, 
optimization, game playing, symbolic regression, system 
identification, and concept learning.  A videotape (Koza and 
Rice 1992) shows examples.  Recent additional work is 
described in Kinnear 1994.  The sequence of the work-
performing steps of the programs being evolved by genetic 
programming is not specified in advance by the user.  
Instead, both the number and order of the work-performing 
steps are evolved as a result of selective pressure and the 
recombinative role of crossover.  However, this first book 
Genetic Programming has the limitation that the vast 
majority of its evolved programs are single-part (i.e., one 
result-producing main part, but no subroutines).   

1.1 Background on Automatically Defined 
Functions 

I believe that no approach to automated programming is 
likely to be successful on non-trivial problems unless it 
provides some hierarchical mechanism to exploit, by reuse 
and parameterization, the regularities, symmetries, 
homogeneities, similarities, patterns, and modularities 
inherent in problem environments.  Subroutines do this in 
ordinary computer programs.   

Accordingly, Genetic Programming II: Automatic 
Discovery of Reusable Programs (Koza 1994a, 1994b) 



describes how to evolve multi-part programs consisting of a 
main program and one or more reusable, parameterized, 
hierarchically-called subprograms.   

An automatically defined function (ADF) is a function 
(i.e., subroutine, subprogram, defun, procedure, module) 
that is dynamically evolved during a run of genetic 
programming and which may be called by a calling program 
(or subprogram) that is concurrently being evolved.  When 
automatically defined functions are being used, a program 
in the population consists of a hierarchy of one (or more) 
reusable function-defining branches (i.e., automatically 
defined functions) along with a main result-producing 
branch.  Typically, the automatically defined functions 
possess one or more dummy arguments (formal parameters) 
and are reused with different instantiations of these dummy 
arguments.  During a run, genetic programming evolves 
different subprograms in the function-defining branches of 
the overall program, different main programs in the result-
producing branch, different instantiations of the dummy 
arguments of the automatically defined functions in the 
function-defining branches, and different hierarchical 
references between the branches.   

When automatically defined functions are being used in 
genetic programming, the initial random generation of the 
population is created so that every individual program has a 
constrained syntactic structure consisting of a particular 
architectural arrangement of branches.  When crossover is 
to be performed, a type is assigned to each potential 
crossover point in the parental computer programs either on 
a branch-wide basis (called branch typing) or on the basis 
of the actual content of the subtree below the potential 
crossover point (called point typing).  Crossover is then 
performed in a structure-preserving way (given closure) so 
as to ensure the syntactic validity of the offspring (Koza 
1994a).   

Genetic programming with automatically defined 
functions has been shown to be capable of solving 
numerous problems.  More importantly, the evidence so far 
indicates that, for many problems, genetic programming 
requires less computational effort (i.e., fewer fitness 
evaluations to yield a solution with a satisfactorily high 
probability) with automatically defined functions than 
without them (provided the difficulty of the problem is 
above a certain relatively low break-even point).  Also, 
genetic programming is usually yield solutions with smaller 
average overall size with automatically defined functions 
than without them (provided, again, that the problem is not 
too simple).  That is, both learning efficiency and 
parsimony appear to be properties of genetic programming 
with automatically defined functions.   

Moreover, there is also evidence that genetic 
programming with automatically defined functions is 
scalable.  For several problems for which a progression of 
scaled-up versions was studied, the computational effort 
increases as a function of problem size at a slower rate with 
automatically defined functions than without them.  In 
addition, the average size of solutions similarly increases as 
a function of problem size at a slower rate with 
automatically defined functions than without them.  This 

observed scalability results from the profitable reuse of 
hierarchically-callable, parameterized subprograms within 
the overall program.  

Five major preparatory steps required before genetic 
programming can be applied to a problem, namely 
determining (1) the set of terminals (i.e., the actual variables 
of the problem, zero-argument primitive functions, and 
constants, if any) for each branch, (2) the set of functions 
(e.g., primitive functions) for each branch, (3) the fitness 
measure (or other arrangement for implicitly measuring 
fitness), (4) the parameters to control the run, and (5) the 
termination criterion and result designation method.   

1.2 The Problem of Architecture Discovery 
When automatically defined functions are added to genetic 
programming, it is also necessary to determine the 
architecture of the yet-to-be-evolved programs.  The 
specification of the architecture consists of (a) the number 
of function-defining branches in the overall program, (b) the 
number of arguments (if any) possessed by each function-
defining branch, and (c) if there is more than one function-
defining branch, the nature of the hierarchical references (if 
any) allowed between the function-defining branches.   

Sometimes these architectural choices flow directly from 
the nature of the problem.  Sometimes heuristic methods are 
helpful. However, in general, there is no way of knowing a 
priori the optimal (or sufficient) number of automatically 
defined functions that will prove to be useful for a given 
problem, or the optimal (or minimum) number of arguments 
for each automatically defined function, or the optimal (or 
sufficient) arrangement of hierarchical references.   

If the goal is to develop a single, unified, domain-
independent approach to automatic programming that 
requires that the user pre-specify as little direct information 
as possible about the problem, the question arises as to 
whether these architectural choices can be automated.  
Indeed, the requirement that the user predetermine the size 
and shape of the solution to a problem has been a bane of 
automated machine learning from the earliest times (Samuel 
1959).   

One way to automate these architectural choices for 
computer programs in general (called the technique of 
evolutionary selection of architecture) was described in 
chapters 21–25 of Koza 1994a.  This technique starts with 
an architecturally diverse initial population (at generation 0) 
that has randomly-created representatives of a broad range 
of different architectures.  As the evolutionary process 
proceeds, certain individuals with certain architectures will 
prove to be more fit than others at solving the problem.  The 
more fit architectures will tend to prosper, while the less fit 
architectures will tend to wither away.  Eventually a 
program with an appropriate architecture may emerge from 
this competitive and selective process.  However, in this 
technique, no new architectures are ever dynamically 
created during the run.  And, no architectures are ever 
dynamically altered during the run.  There is only selection 
from amongst the architectures created at the beginning of 
the run.   



This paper asks, and affirmatively answers, whether it is 
possible to enable genetic programming to dynamically alter 
the architecture of a multi-part program during a run while 
it is concurrently solving the given problem.   

1.3 Recourse to Nature 
A change in the architecture of a multi-part computer 
program during a run of genetic programming corresponds 
to a change in genome structure in the natural world.  
Therefore, it seems appropriate to consider the different 
ways that a genomic structure may change in nature.  

In nature, sexual recombination ordinarily recombines a 
part of the chromosome of one parent with a homologous 
part of the second parent's chromosome.  However, in 
certain rare and unpredictable occasions, recombination 
does not occur in this normal way.  A gene duplication is an 
illegitimate recombination event that results in the 
duplication of a lengthy subsequence of a chromosome.  
Susumu Ohno's seminal book Evolution by Gene 
Duplication (1970) advanced the thesis that the creation of 
new proteins (and hence new structures and new behaviors 
in living things) begins with a gene duplication.  

The six new architecture-altering operations for genetic 
programming described in this paper are motivated by the 
naturally occurring mechanisms of gene duplication and 
gene deletion in chromosome strings.   

The six new architecture-altering operations can be 
viewed from five perspectives.  First, the new architecture-
altering operations provide a new way to solve the 
potentially vexatious problem of determining the 
architecture of the overall program in the context of genetic 
programming with automatically defined functions. Second, 
the new architecture-altering operations provide an 
automatic implementation of the ability to specialize and 
generalize in the context of automated problem-solving. 
Third, the new architecture-altering operations provide a 
way to automatically and dynamically change the 
representation of the problem while simultaneously solving 
the problem. Fourth, the new architecture-altering 
operations provide a way to automatically and dynamically 
decompose problems into subproblems and then 
automatically solve the overall problem by assembling the 
solutions of the subproblems into a solution of the overall 
problem. Fifth, the new architecture-altering operations 
provide a way to automatically and dynamically discover 
useful subspaces (usually of lower dimensionality than that 
of the overall problem) and then automatically assemble a 
solution of the overall problem from solutions applicable to 
the subspaces.   

1.4 Outline of this Paper 
Section 2 of this paper describes the naturally occurring 
processes of gene duplication and gene deletion.  Section 3 
describes the six new architecture-altering operations.  
Section 4 describes an actual run that solves that the 
problem of symbolic regression of the Boolean even-5-
parity function while the architecture is being 
simultaneously evolved.  Section 5 compares the 

computational effort required for five different ways of 
solving the problem.  It concludes that the cost of automated 
architecture discovery is less than the cost of solving the 
problem without automatically defined functions (but more 
than that required with a fixed, user-supplied architecture 
that is known to be a good choice for this problem).   

2 Gene Duplication in Nature 
Gene duplications are rare and unpredictable events in the 
evolution of genomic sequences.  In gene duplication, there 
is a duplication of a lengthy portion of the linear string of 
nucleiotide bases of the DNA in the living cell.  After a 
sequence of bases that code for a particular protein is 
duplicated in the DNA, there are two identical ways of 
manufacturing the same protein.  Thus, there is no 
immediate change in the proteins that are manufactured as a 
result of a gene duplication.   

Over time, however, some other genetic operation, such 
as mutation or crossover, may change one or the other of the 
two identical genes.  Over short periods of time, the changes 
accumulating in a gene may be of no practical effect or 
value.  As long as one of the two genes remains unchanged, 
the original protein manufactured from the unchanged gene 
continues to be manufactured and the structure and behavior 
of the organism involved may continue as before.  The 
changed gene is simply carried along in the DNA from 
generation to generation.   

Ohno's Evolution by Gene Duplication corrects the 
mistaken notion that natural selection is a mechanism for 
promoting change.  Natural selection exerts a powerful 
force in favor of maintaining a gene that encodes for the 
manufacture of a protein that is important for the survival 
and successful performance of the organism.  However, 
after a gene duplication has occurred, there is no 
disadvantage associated with the loss of the second way of 
manufacturing the original protein.  Consequently, natural 
selection usually exerts little or no pressure to maintain a 
second way of manufacturing a particular protein.  Over 
time, the second gene may accumulate additional changes 
and diverge more and more from the original gene.  
Eventually the changed gene may lead to the manufacture of 
a distinctly new and different protein that actually does 
affect the structure and behavior of the living thing in some 
advantageous or disadvantageous way.  When a changed 
gene leads to the manufacture of a viable and advantageous 
new protein, natural selection again works to preserve that 
new gene.   

Ohno also points out that ordinary point mutation and 
crossover are insufficient to explain major changes.   

"...while allelic changes at already existing gene loci 
suffice for racial differentiation within species as 
well as for adaptive radiation from an immediate 
ancestor, they cannot account for large changes in 
evolution, because large changes are made possible 
by the acquisition of new gene loci with previously 
non-existent functions." 

Ohno continues, 



"Only by the accumulation of forbidden mutations at 
the active sites can the gene locus change its basic 
character and become a new gene locus.  An escape 
from the ruthless pressure of natural selection is 
provided by the mechanism of gene duplication.  By 
duplication, a redundant copy of a locus is created.  
Natural selection often ignores such a redundant 
copy, and, while being ignored, it accumulates 
formerly forbidden mutations and is reborn as a new 
gene locus with a hitherto non-existent function."  
(Emphasis in original).   

Ohno concludes, 
"Thus, gene duplication emerges as the major force 
of evolution."   

Ohno's provocative thesis is supported by the discovery 
of pairs of proteins with similar sequences of DNA and 
similar sequences of amino acids, but distinctly different 
functions.  Examples include trypsin and chymotrypsin; the 
protein of microtubules and actin of the skeletal muscle; 
myoglobin and the monomeric hemoglobin of hagfish and 
lamprey;  myoglobin used for storing oxygen in muscle 
cells and the subunits of hemoglobin in red blood cells of 
vertebrates;  and the light and heavy immunoglobin chains.   

In gene deletion, there is a deletion of a subsequence of 
nucleiotide bases that would otherwise be translated into 
work-performing proteins in the cell.   

Analogs of the naturally occurring operation of gene 
duplication have been previously used with genetic 
algorithms operating on character strings and with other 
evolutionary algorithms.  Holland (1975, page 116) 
suggested that intrachromosomal gene duplication might 
provide a means of adaptively modifying the effective 
mutation rate by making two or more copies of a substring 
of adjacent alleles within an overall string.  Cavicchio 
(1970) used intrachromosomal gene duplication in early 
work on pattern recognition using the genetic algorithm. 
Gene duplication is implicitly used in the messy genetic 
algorithm (Goldberg, Korb, and Deb 1989).  Lindgren 
(1991) analyzed the prisoner's dilemma game using an 
evolutionary algorithm that employed an operation 
analogous to gene duplication applied to strings.  Gruau 
(1994) used genetic programming to develop a clever and 
innovative technique  to evolve the architecture of a neural 
network at the same time as the weights are being evolved.  

3 New Architecture-Altering Operations 
The six new architecture-altering genetic operations provide 
a way of evolving the architecture of a multi-part program 
during a run of genetic programming.  Meanwhile, 

Darwinian selection continues to favor the more fit 
individuals in the population to participate in the operations 
of crossover and mutation.   

3.1 Branch Duplication 
The operation of branch duplication duplicates one of the 
branches of a program in the following way: 

(1) Select a program from the population.   
(2) Pick one of the function-defining branches of the 

selected program as the branch-to-be-duplicated.   
(3) Add a uniquely-named new function-defining branch 

to the selected program, thus increasing, by one, the number 
of function-defining branches in the selected program.  The 
new function-defining branch has the same argument list 
and the same body as the branch-to-be-duplicated.   

(4) For each occurrence of an invocation of the branch-to-
be-duplicated anywhere in the selected program (e.g., the 
result-producing branch or any other branch that invokes 
the branch-to-be-duplicated), randomly choose either to 
leave that invocation unchanged or to replace that 
invocation with an invocation of the newly created 
function-defining branch.   

The step of selecting a program for all the operations 
described herein is performed probabilistically on the basis 
of fitness, so that a program that is more fit has a greater 
probability of being selected to participate in the operation 
than a less fit program.   

Figure 1 shows an overall program consisting of one two-
argument automatically defined function and one result-
producing main branch.  Figure 2 shows the program 
resulting after applying the operation of branch duplication 
to Figure 1.  Specifically, the function-defining branch 410 
of Figure 1 defining ADF0 (also shown as 510 of Figure 2) 
is duplicated and a new function-defining branch (defining 
ADF1) appears at 540 in Figure 2.  There are two 
occurrences of invocations of the branch-to-be-duplicated, 
ADF0, in the result-producing branch of the selected 
program, namely ADF0 at 481 and 487 of Figure 1.  For 
each occurrence, a random choice is made to either leave 
the occurrence of ADF0 unchanged or to replace it with a 
reference to the newly created ADF1.  For the first 
invocation of ADF0 at 481 of Figure 1, the choice is 
randomly made to replace ADF0 481 with ADF1 581 in 
Figure 2.  The arguments for the invocation of ADF1 581 
are D1 582 and D2 583 in Figure 2 (i.e., they are identical to 
the arguments D1 482 and D2 483 for the invocation of 
ADF0 at 481 in Figure 1).  For the second invocation of 
ADF0 at 487 of Figure 1, ADF0 is left unchanged.   



progn
400

defun

ADF0 values

OR

ARG1

ARG0ARG1

AND

LIST

410

411
412 419

ARG1ARG0
413 414 420

421
422

423 424

values

AND

D1 D2 D0

D3

D4 D0

ADF0 NAND

ADF0

NOR

470

481

482 483 486

480

485

487

489

490

488

491  
Figure 1  Program consisting of one two-argument function-defining branch (ADF0) and one result-producing branch. 

The new branch is identical to the previously existing 
branch (except for the name ADF1 at 541 in Figure 2).  
Moreover, ADF1 at 581 is invoked with the same arguments 
as ADF0 at 481.  Therefore, this operation does not affect 
the value returned by the overall program.  

The operation of branch duplication can be interpreted as 
a case splitting.  After the branch duplication, the result-
producing branch invokes ADF0 at 587 but ADF1 at 581.  
ADF0 and ADF1 can be viewed as separate procedures for 
handling the two subproblems (cases).  Subsequent genetic 
operations may alter one or both of these two presently-
identical function-defining branches and these subsequent 
changes to lead to a divergence in structure and behavior.  
This subsequent divergence may be interpreted as a 
specialization or refinement.   That is, once ADF0 and 
ADF1 diverge, ADF0 can be viewed as a specialization for 
handling for subproblem associated with its invocation at 
587 and ADF1 at 581 can be viewed as a specialization for 
handling its subproblem.  

The operation of branch duplication as defined above 
(and all the other new operations described herein) always 
produce a syntactically valid program (given closure).   

3.2 Argument Duplication 
The operation of argument duplication  duplicates one of 
the dummy arguments in one of the automatically defined 
functions of a program in the following way: 

(1) Select a program from the population.   
(2) Pick one of its function-defining branches.   
(3) Choose one of the arguments of the picked function-

defining branch as the argument-to-be-duplicated.   
(4) Add a uniquely-named new argument to the argument 

list of the picked function-defining branch of the selected 
program, thus increasing, by one, the number of arguments 
in its argument list.   

(5) For each occurrence of the argument-to-be-duplicated 
in the body of picked function-defining branch of the 
selected program, randomly choose either to leave that 

occurrence unchanged or to replace it with the new 
argument.   

(6) For each occurrence of an invocation of the picked 
function-defining branch anywhere in the selected program, 
identify the argument subtree corresponding to the 
argument-to-be-duplicated and duplicate that argument 
subtree in that invocation, thereby increasing, by one, the 
number of arguments in the invocation.   

Because the function-defining branch containing the 
duplicated argument is invoked with an identical copy of 
the previously existing argument, this operation leaves 
unchanged the value returned by the overall program.   

The operation of argument duplication can also be 
interpreted as a case-splitting.  The particular instantiations 
of the second and third arguments in the invocations of 
ADF0 provide potentially different ways of handling the 
two separate subproblems (cases).   

3.3 Branch Creation 
The branch creation operation creates a new automatically 
defined function within an overall program by picking a 
point in the body of one of the function-defining branches 
or result-producing branches of the selected program.  This 
picked point becomes the top-most point of the body of the 
branch-to-be-created.  The operation of branch creation is 
similar to, but different than, the compression (module 
acquisition) operation of Angeline and Pollack (1994).    

3.4 Argument Creation  
The argument creation operation creates a new dummy 
argument within a function-defining branch of a program.   
Details of all the new operations are in Koza 1994c.   

3.5 Branch Deletion 
The operations of argument duplication, branch duplication, 
branch creation, and argument creation create larger 
programs.  The operations of argument deletion and branch 
deletion can create smaller programs and thereby balance 



the persistent growth in biomass that would otherwise 
occur.   

The operation of branch deletion deletes one of the 
automatically defined functions.     

 

progn

defun

ADF0 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

541

520

values

AND

D1 D2 D0

D3

D4 D0

ADF1 NAND

ADF0

NOR

defun

ADF1 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

550

549

500

510

511

540 570

581

582 583

588

587

589

590 591

519

543 544

542

 
Figure 2  Program consisting of two two-argument function-defining branches and one result-producing branch.   

When a function-defining branch is deleted, the question 
arises as to how to modify invocations of the branch-to-be-
deleted by the other branches of the overall program.  The 
alternative used herein (called branch deletion with random 
regeneration) randomly generates new subtrees composed 
of the available functions and terminals in lieu of the 
invocation of the deleted branch.   

3.6 Argument Deletion 
The operation of argument deletion deletes one of the 
arguments to one of the automatically defined functions of a 
program.  When an argument is deleted, references to the 
argument-to-be-deleted may be corrected by argument 
deletion with random regeneration.   The operations of 
argument deletion and branch deletion affect the value 
returned by the overall program.  They may be viewed as a 
generalization in that some information that was once 
considered in executing the procedure is now ignored.   

3.7 Creation of the Initial Population 
When the architecture-altering operations are used, the 
initial population of programs may be created in any one of 
three ways.  One possibility (called the minimalist 
approach) is that each multi-part program in the population 
at generation 0 has a uniform architecture with exactly one 
automatically defined function possessing a minimal 
number of arguments appropriate to the problem.  A second 
possibility  (called the big bang) is that each program in the 
population has a uniform architecture with no automatically 
defined functions (i.e., only a result-producing branch).  
This approach relies on branch creation to create multi-part 
programs in such runs.  A third possibility is that the 
population at generation 0 is architecturally diverse (as 
described in Koza 1994a).   

3.8 Structure-Preserving Crossover 
When the architecture-altering operations are used, the 
population quickly becomes architecturally diverse.  
Structure-preserving crossover with point typing (Koza 
1994a) permits robust recombination while simultaneously 
guaranteeing that any pair of architecturally different 
parents will produce syntactically valid offspring.  

4 Example of an Actual Run 
The architecture-altering operations described herein will 
now be illustrated by showing an actual run of the problem 
of symbolic regression of the even-5-parity function.  
Boolean parity functions are often used as benchmarks for 
experiments in machine learning because a change in any 
one input (environmental sensor) toggles the outcome.  The 
problem is to discover a computer program that mimics the 
behavior of the Boolean even-k-parity problem for every 
one of the 2k combinations of its k Boolean inputs.  The 
primitive functions are AND, OR, NAND, and NOR.   

A population size, M, of 96,000 was used.  All runs 
solved well before the targeted maximum number of 
generations, G, of 76.  The run uses the minimalist approach 
in which each program in generation 0 consists of one 
result-producing branch and one two-argument function-
defining branch.  On each generation, there were 74% 
crossovers; 10% reproductions; 0% mutations; 5% branch 
duplications, 5% argument duplications; 0.5% branch 
deletions; 0.5% argument deletions; 5% branch creations; 
and 0% argument creations.  Other minor parameters were 
chosen as in Koza 1994a.  

The problem was run on a home-built medium-grained 
parallel computer system.  In the so-called distributed 
genetic algorithm  or island model for parallelization 



(Tanese 1989), different semi-isolated subpopulations 
(called demes after Wright 1943) are situated at the different 
processing nodes.  The system consisted of a host PC 486 
type computer running Windows and 64 Transtech TRAMs 
(containing one INMOS T805 transputer and 4 megabytes 
of RAM memory) arranged in a toroidal mesh.   There were 
D = 64 demes, a population size of Q =  1,500 per deme, 
and a migration rate of B = 8% (in each of four directions 
on each generation for each deme).  Generations are run 
asynchronously.  Details of the parallel implementation of 
genetic programming on a network of transputers can be 
found in Koza and Andre 1995.   

On generation 13 of one run, a 100%-correct solution to 
the even-5-parity problem emerged in the form of a 
computer program with one three-argument automatically 
defined function and one two-argument automatically 
defined function.   Three-argument ADF0 (which originally 
had only two arguments in generation 0) performs Boolean 
rule 106, a non-parity rule.  Two-argument ADF1 (which 
did not exist at all in generation 0) is equivalent to the odd-
2-parity function.  The result-producing branch of this 
program invokes both ADF0 and ADF1.  

5 Performance of the New Operations 
We now use the Boolean even-5-parity problem to compare, 
over a series of runs, the performance of the architecture-
altering operations for the following five approaches: 

(A) without automatically defined functions 
(corresponding to the style of runs discussed throughout 
most of Genetic Programming), 

(B) with automatically defined functions, evolutionary 
selection of the architecture  (corresponding to the style of 
runs in chapters 21–25 of Genetic Programming II), an 
architecturally diverse initial population, and structure-
preserving crossover with point typing,  

(C) with automatically defined functions, the 
architecture-altering operations described herein, an 
architecturally diverse population (after generation 0), and 
structure-preserving crossover with point typing,   

(D) with automatically defined functions, a fixed user-
supplied architecture that is known to be a good choice for 
this problem (i.e., one three-argument and one two-
argument automatically defined function), and structure-
preserving crossover with point typing, and  

(E) with automatically defined functions, a fixed, user-
supplied, known-good architecture, and structure-preserving 
crossover with branch typing (corresponding to the style of 
runs throughout most of Genetic Programming II).   

The comparisons are made for the following three 
performance characteristics: computational effort, E (with 
99% probability); the wallclock time, W(M,t,z) in 
seconds(with 99% probability); and the average structural 
complexity, S .  These three measures are described in detail 
in Koza 1994a.  

As Table 1 shows, all four approaches employing 
automatically defined functions (B, C, D, or E) require less 
computational effort than not using them (approach A).  
Approach E (which benefits from user-supplied 

architectural information) requires the least computational 
effort.   

Approach C (using the architecture-altering operations) 
requires less computational effort than solving the problem 
without automatically defined functions (approach A), but 
more than with the fixed, user-supplied, known-good 
architecture (approach E).   

Approach D isolates the additional computational effort 
required by point typing (relative to approach E).  Greater 
computational effort is required by approach D than 
approach E.  Since the computational effort for approach C 
is virtually tied with approach D, the cost of architecture-
altering operations for this problem is not much greater than 
the cost of point typing.   

Approach E consumes less wallclock time than approach 
C (using the architecture-altering operations), which, in 
turn, consumes less wallclock time than approach A 
(without automatically defined functions).   

The average structural complexity, S , for all four 
approaches (B, C, D, or E) employing automatically defined 
functions is less than that for approach A (without 
automatically defined functions).  Approach C (using the 
architecture-altering operations) has the lowest value of S  
(i.e., produces the most parsimonious solutions). 

Acknowledgements 
David Andre and Walter Alden Tackett wrote the computer 
program in C to implement the above.  

References 
Angeline, Peter J. and Pollack, Jordan B. 1994.  Coevolving 

high-level representations.  In Langton, Christopher G. 
(editor).  Artificial Life III, SFI Studies in the Sciences of 
Complexity. Volume XVII  Redwood City, CA: Addison-
Wesley.  Pages 55–71.  

Cavicchio, Daniel J.  1970.  Adaptive Search using 
Simulated Evolution.  Ph.D. dissertation. Department of 
Computer and Communications Science, University of 
Michigan. 

Goldberg, David E., Korb, Bradley, and Deb, K.. 1989. 
Messy genetic algorithms: Motivation, analysis, and first 
results. Complex Systems. 3(5): 493–530. 

Gruau, Frederic.  1994. Genetic micro programming of 
neural networks.   In Kinnear, Kenneth E. Jr. (editor). 
Advances in Genetic Programming.  Cambridge, MA: The 
MIT Press.  Pages 495–518.  

Holland, John H.  1975. Adaptation in Natural and 
Artificial Systems: An Introductory Analysis with 
Applications to Biology, Control, and Artificial 
Intelligence.  Ann Arbor, MI: University of Michigan 
Press.  The second edition is currently available from The 
MIT Press 1992. 

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic 
Programming.  Cambridge, MA: The MIT Press.  

Koza, John R. 1989. Hierarchical genetic algorithms 
operating on populations of computer programs. In 
Proceedings of the 11th International Joint Conference on 



Artificial Intelligence. San Mateo, CA: Morgan 
Kaufmann.  Volume I. Pages 768-774. 

Koza, John R. 1992. Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection.  Cambridge, MA: The MIT Press.   

Koza, John R. 1994a. Genetic Programming II: Automatic 
Discovery of Reusable Programs.  Cambridge, MA: The 
MIT Press.  

Koza, John R. 1994b. Genetic Programming II Videotape: 
The Next Generation.  Cambridge, MA: The MIT Press.  

Koza, John R.  1994c.  Architecture-altering operations for 
evolving the architecture of a multi-part program in 
genetic programming. Stanford University Computer 
Science Department technical report STAN-CS-TR-94-
1528. October 21, 1994.  

Koza, John R. and Andre, David. 1995. Parallel Genetic 
Programming on a Network of Transputers.  Stanford 
University Computer Science Department technical report 
STAN-CS-TR-95-1542. January 30, 1995.   

Koza, John R., and Rice, James P. 1992 .Genetic 
Programming: The Movie.  Cambridge, MA: MIT Press.  

Lindgren, Kristian. 1991.  Evolutionary phenomena in 
simple dynamics.  In Langton, Christopher, Taylor, 
Charles, Farmer, J. Doyne, and Rasmussen, Steen 
(editors). Artificial Life II, SFI Studies in the Sciences of 
Complexity. Volume X. Redwood City, CA: Addison-
Wesley. Pages 295-312. 

Ohno, Susumu. 1970. Evolution by Gene Duplication.  New 
York: Springer-Verlag.  

Samuel, Arthur L. 1959. Some studies in machine learning 
using the game of checkers. IBM Journal of Research and 
Development. 3(3): 210–229. 

Tanese, Reiko.  1989. Distributed Genetic Algorithm for 
Function Optimization.  PhD. dissertation. Department of 
Electrical Engineering and Computer Science. University 
of Michigan. 

Wright, Sewall.  1943.  Isolation by distance. Genetics 28.  
Page 114–138.   

Table 1  Comparison of the five approaches.   
Approach Runs Computational 

effort E 
Wallclock 
time W(M,t,z) 

Average Size 
of solution S  

A - No ADFs 14 5,025,000 36,950 469.1 
B - ADFs + Evolutionary Selection of Architecture 14 4,263,000 66,667 180.9 
C - ADFs + Architecture-Altering Operations 25 1,789,500 13,594 88.8 
D - ADFs + Point Typing + Fixed, Known-Good Architecture  25 1,705,500 14,088 130.0 
E - ADFs + Branch Typing + Fixed, Known-Good 
Architecture 

25 1,261,500 6,481 112.2 

 


