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ABSTRACT 
This paper provides an introduction to genetic 
algorithms and genetic programming and lists sources 
of  additional information, including books and 
conferences as well as e-mail lists and software that is 
available over the Internet.  

1. GENETIC ALGORITHMS 
John Holland's pioneering book Adaptation in Natural and 
Artificial Systems (1975, 1992) showed how the evolutionary 
process can be applied to solve a wide variety of problems using 
a highly parallel technique that is now called the genetic 
algorithm.   

The genetic algorithm (GA) transforms a population (set) of 
individual objects, each with an associated fitness value, into a 
new generation of the population using the Darwinian principle 
of reproduction and survival of the fittest and analogs of 
naturally occurring genetic operations such as crossover (sexual 
recombination) and mutation.   

Each individual in the population represents a possible 
solution to a given problem.  The genetic algorithm attempts to 
find a very good (or best) solution to the problem by genetically 
breeding the population of individuals over a series of 
generations.     

Before applying the genetic algorithm to the problem, the 
user designs an artificial chromosome of a certain fixed size and 
then defines a mapping (encoding) between the points in the 
search space of the problem and instances of the artificial 
chromosome.  For example, in applying the genetic algorithm to 
a multidimensional optimization problem (where the goal is to 
find the global optimum of an unknown multidimensional 
function), the artificial chromosome may be a linear character 
string (modeled directly after the linear string of information 
found in DNA).  A specific location (a gene) along this artificial 
chromosome is associated with each of the variables of the 
problem.  Character(s) appearing at a particular location along 
the chromosome denote the value of a particular variable (i.e., 
the gene value or allele).  Each individual in the population has a 
fitness value (which, for a multidimensional optimization 
problem, is the value of the unknown function).  The genetic 
algorithm then manipulates a population of such artificial 
chromosomes (usually starting from a randomly-created initial 
population of strings) using the operations of reproduction, 
crossover, and mutation.  Individuals are probabilistically 
selected to participate in these genetic operations based on their 
fitness.  The goal of the genetic algorithm in a multidimensional 
optimization problem is to find an artificial chromosome which, 
when decoded and mapped back into the search space of the 

problem, corresponds to a globally optimum (or near-optimum) 
point in the original search space of the problem.   

In preparing to use the conventional genetic algorithm 
operating on fixed-length character strings to solve a problem, 
the user must 

(1) determine the representation scheme, 
(2) determine the fitness measure, 
(3) determine the parameters and variables for controlling 
the algorithm, and 
(4) determine a way of designating the result and a criterion 
for terminating a run.  
In the conventional genetic algorithm, the individuals in the 

population are usually fixed-length character strings patterned 
after chromosome strings.  Thus, specification of the 
representation scheme in the conventional genetic algorithm 
starts with a selection of the string length L and the alphabet size 
K.  Often the alphabet is binary, so K equals 2.  The most 
important part of the representation scheme is the mapping that 
expresses each possible point in the search space of the problem 
as a fixed-length character string (i.e., as a chromosome) and 
each chromosome as a point in the search space of the problem.  
Selecting a representation scheme that facilitates solution of the 
problem by the genetic algorithm often requires considerable 
insight into the problem and good judgment.   

The evolutionary process is driven by the fitness measure.  
The fitness measure assigns a fitness value to each possible 
fixed-length character string in the population.   

The primary parameters for controlling the genetic algorithm 
are the population size, M, and the maximum number of 
generations to be run, G.  Populations can consist of hundreds, 
thousands, tens of thousands or more individuals.  There can be 
dozens, hundreds, thousands, or more generations in a run of the 
genetic algorithm.   

Each run of the genetic algorithm requires specification of a 
termination criterion for deciding when to terminate a run and a 
method of result designation.  One frequently used method of 
result designation for a run of the genetic algorithm is to 
designate the best individual obtained in any generation of the 
population during the run (i.e., the best-so-far individual) as the 
result of the run.   

Once the four preparatory steps for setting up the genetic 
algorithm have been completed, the genetic algorithm can be 
run.  

The evolutionary process described above indicates how a 
globally optimum combination of alleles (gene values) within a 
fixed-size chromosome can be evolved.   

The three steps in executing the genetic algorithm operating 
on fixed-length character strings are as follows: 



 (1) Randomly create an initial population of individual fixed-
length character strings. 
(2) Iteratively perform the following substeps on the 
population of strings until the termination criterion has been 
satisfied: 
(A) Assign a fitness value to each individual in the 

population using the fitness measure. 
(C) Create a new population of strings by applying the 

following three genetic operations.  The genetic 
operations are applied to individual string(s) in the 
population chosen with a probability based on fitness. 
(i) Reproduce an existing individual string by copying 

it into the new population. 
(ii) Create two new strings from two existing strings by 

genetically recombining substrings using the 
crossover operation (described below) at a 
randomly chosen crossover point.   

(iii) Create a new string from an existing string by 
randomly mutating the character at one randomly 
chosen position in the string. 

(3) The string that is identified by the method of result 
designation (e.g., the best-so-far individual) is designated as 
the result of the genetic algorithm for the run.  This result 
may represent a solution (or an approximate solution) to the 
problem.  
The genetic operation of reproduction is based on the 

Darwinian principle of reproduction and survival of the fittest.  
In the reproduction operation, an individual is probabilistically 
selected from the population based on its fitness (with 
reselection allowed) and then the individual is copied, without 
change, into the next generation of the population.  The selection 
is done in such a way that the better an individual's fitness, the 
more likely it is to be selected.  An important aspect of this 
probabilistic selection is that every individual, however poor its 
fitness, has some probability of selection.   

The genetic operation of crossover (sexual recombination) 
allows new individuals (i.e., new points in the search space) to 
be created and tested.  The operation of crossover starts with two 
parents independently selected probabilistically from the 
population based on their fitness (with reselection allowed).  As 
before, the selection is done in such a way that the better an 
individual's fitness, the more likely it is to be selected.  The 
crossover operation produces two offspring.  Each offspring 
contains some genetic material from each of its parents.   

Suppose that the crossover operation is to be applied to the 
two parental strings 10110 and 01101 of length L = 5 over an 
alphabet of size K = 2.  The crossover operation begins by 
randomly selecting a number between 1 and L–1 using a 
uniform probability distribution.  Suppose that the third 
interstitial location is selected. This location becomes the 
crossover point.  Each parent is then split at this crossover point 
into a crossover fragment and a remainder.  The crossover 
operation then recombines remainder 1 (i.e., – – – 1 0) with 
crossover fragment 2 (i.e., 011 – –) to create offspring 2 (i.e., 
01110).  The crossover operation similarly recombines 
remainder 2 (i.e., – – – 01) with crossover fragment 1 (i.e., 101 – 
–) to create offspring 1 (i.e., 10101).    

The operation of mutation allows new individuals to be 
created.  It begins by selecting an individual from the population 
based on its fitness (with reselection allowed).  A point along the 
string is selected at random and the character at that point is 

randomly changed.  The altered individual is then copied into 
the next generation of the population.  Mutation is used very 
sparingly in genetic algorithm work. 

The genetic algorithm works in a domain-independent way 
on the fixed-length character strings in the population.  The 
genetic algorithm searches the space of possible character 
strings in an attempt to find high-fitness strings.  The fitness 
landscape may be very rugged and nonlinear.  To guide this 
search, the genetic algorithm uses only the numerical fitness 
values associated with the explicitly tested strings in the 
population.   Regardless of the particular problem domain, the 
genetic algorithm carries out its search by performing the same 
disarmingly simple operations of copying, recombining, and 
occasionally randomly mutating the strings.   

In practice, the genetic algorithm is surprisingly rapid in 
effectively searching complex, highly nonlinear, 
multidimensional search spaces.  This is all the more surprising 
because the genetic algorithm does not know anything about the 
problem domain or the internal workings of the fitness measure 
being used.   
1.1 Sources of Additional Information 
David Goldberg's Genetic Algorithms in Search, Optimization, 
and Machine Learning (1989) is the leading textbook and best 
single source of additional information about the field of genetic 
algorithms. 

Additional information on genetic algorithms can be found 
in Davis (1987, 1991), Michalewicz (1992), and Buckles and 
Petry (1992).  The proceedings of the International Conference 
on Genetic Algorithms provide an overview of research activity 
in the genetic algorithms field.  See Eshelman (1995), Forrest 
(1993), Belew and Booker (1991), Schaffer (1989),  and 
Grefenstette (1985, 1987).    

Also see the proceedings of the IEEE International 
Conference on Evolutionary Computation {IEEE 1994, 1995).  
The proceedings of the Foundations of Genetic Algorithms 
workshops cover theoretical aspects of the field.  See Whitley 
and Vose (1995), Whitley (1992), and Rawlins (1991).   

Fogel and Atmar (1992, 1993), Sebald and Fogel (1994), and 
Sebald and Fogel (1995) emphasizes recent work on 
evolutionary programming (EP).   

The proceedings of the Parallel Problem Solving from 
Nature conferences emphasize work on evolution strategies 
(ES). See  Schwefel and Maenner (1991), Maenner and 
Manderick (1992), and Davidor, Schwefel, and Maenner (1994).   

Stender (1993) describes parallelization of genetic 
algorithms.  Also see Koza and Andre 1995.  Davidor (1992) 
describes application of genetic algorithms to robotics.  Schaffer 
and Whitley (1992) and Albrecht, Reeves, and Steele (1993) 
describe work on combinations of genetic algorithms and neural 
networks.  Forrest (1991) describes application of genetic 
classifier systems to semantic nets.   

Additional information about genetic algorithms may be 
obtained from the GA-LIST electronic mailing list to which you 
may subscribe, at no charge, by sending a subscription request to 
GA-List-Request@AIC.NRL.NAVY.MIL.  Issues of the 
GA-LIST provide instructions for accessing the genetic 
algorithms archive, which contains software that may be 
obtained over the Internet.  The archive may be accessed over 
the World Wide Web at 
http://www.aic.nrl.navy.mil/galist/ or through 
anonymous ftp at ftp.aic.nrl.navy.mil (192.26.18.68) 
in /pub/galist. 



 
2. GENETIC PROGRAMMING 
Genetic programming is an attempt to deal with one of the 
central questions in computer science (posed by Arthur Samuel 
in 1959), namely  

How can computers learn to solve problems without 
being explicitly programmed?   In other words, how can 
computers be made to do what needs to be done, without 
being told exactly how to do it? 
All computer programs – whether they are written in 

FORTRAN, PASCAL, C, assembly code, or any other 
programming language – can be viewed as a sequence of 
applications of functions (operations) to arguments (values).  
Compilers use this fact by first internally translating a given 
program into a parse tree and then converting the parse tree into 
the more elementary assembly code instructions that actually run 
on the computer.  However this important commonality 
underlying all computer programs is usually obscured by the 
large variety of different types of statements, operations, 
instructions, syntactic constructions, and grammatical 
restrictions found in most popular programming languages.   

Any computer program can be graphically depicted as a 
rooted point-labeled tree with ordered branches.  

Genetic programming is an extension of the conventional 
genetic algorithm in which each individual in the population is a 
computer program.   

The search space in genetic programming is the space of all 
possible computer programs composed of functions and 
terminals appropriate to the problem domain.  The functions 
may be standard arithmetic operations, standard programming 
operations, standard mathematical functions, logical functions, 
or domain-specific functions.   

The book Genetic Programming: On the Programming of 
Computers by Means of Natural Selection (Koza 1992) 
demonstrated a result that many found surprising and 
counterintuitive, namely that an automatic, domain-independent 
method can genetically breed computer programs capable of 
solving, or approximately solving, a wide variety of problems 
from a wide variety of fields.   

In applying genetic programming to a problem, there are five 
major preparatory steps.  These five steps involve determining  

(1) the set of terminals, 
(2) the set of primitive functions,  
(3) the fitness measure, 
(4) the parameters for controlling the run, and 
(5) the method for designating a result and the criterion for 
terminating a run. 
The first major step in preparing to use genetic programming 

is to identify the set of terminals.  The terminals can be viewed 
as the inputs to the as-yet-undiscovered computer program.  The 
set of terminals (along with the set of functions) are the 
ingredients from which genetic programming attempts to 
construct a computer program to solve, or approximately solve, 
the problem.   

The second major step in preparing to use genetic 
programming is to identify the set of functions that are to be 
used to generate the mathematical expression that attempts to fit 
the given finite sample of data.   

Each computer program (i.e., mathematical expression, LISP 
S-expression, parse tree) is a composition of functions from the 
function set F and terminals from the terminal set T.   

Each of the functions in the function set should be able to 
accept, as its arguments, any value and data type that may 
possibly be returned by any function in the function set and any 
value and data type that may possibly be assumed by any 
terminal in the terminal set.  That is, the function set and 
terminal set selected should have the closure property.   

These first two major steps correspond to the step of 
specifying the representation scheme for the conventional 
genetic algorithm.  The remaining three major steps for genetic 
programming correspond to the last three major preparatory 
steps for the conventional genetic algorithm. 

In genetic programming, populations of hundreds, 
thousands, or millions of computer programs are genetically 
bred.  This breeding is done using the Darwinian principle of 
survival and reproduction of the fittest along with a genetic 
crossover operation appropriate for mating computer programs.  
A computer program that solves (or approximately solves) a 
given problem often emerges from this combination of 
Darwinian natural selection and genetic operations. 

Genetic programming starts with an initial population 
(generation 0) of randomly generated computer programs 
composed of functions and terminals appropriate to the problem 
domain.  The creation of this initial random population is, in 
effect, a blind random search of the search space of the problem 
represented as computer programs. 

Each individual computer program in the population is 
measured in terms of how well it performs in the particular 
problem environment.  This measure is called the fitness 
measure.  The nature of the fitness measure varies with the 
problem.   

For many problems, fitness is naturally measured by the 
error produced by the computer program.  The closer this error 
is to zero, the better the computer program.  In a problem of 
optimal control, the fitness of a computer program may be the 
amount of time (or fuel, or money, etc.) it takes to bring the 
system to a desired target state.  The smaller the amount of time 
(or fuel, or money, etc.), the better.  If one is trying to recognize 
patterns or classify examples, the fitness of a particular program 
may be measured by some combination of the number of 
instances handled correctly (i.e., true positive and true 
negatives) and the number of instances handled incorrectly (i.e., 
false positives and false negatives).  Correlation is often used as 
a fitness measure.  On the other hand, if one is trying to find a 
good randomizer, the fitness of a given computer program might 
be measured by means of entropy, satisfaction of the gap test, 
satisfaction of the run test, or some combination of these factors.  
For electronic circuit design problems, the fitness measure may 
involve a convolution.  For some problems, it may be 
appropriate to use a multiobjective fitness measure incorporating 
a combination of factors such as correctness, parsimony 
(smallness of the evolved program), or efficiency (of execution).     

Typically, each computer program in the population is run 
over a number of different fitness cases so that its fitness is 
measured as a sum or an average over a variety of representative 
different situations.  These fitness cases sometimes represent a 
sampling of different values of an independent variable or a 
sampling of different initial conditions of a system.  For 
example, the fitness of an individual computer program in the 
population may be measured in terms of the sum of the absolute 
value of the differences between the output produced by the 
program and the correct answer to the problem (i.e., the 
Minkowski distance)  or the square root of the sum of the 



 squares (i.e., Euclidean distance).  These sums are taken over a 
sampling of different inputs (fitness cases) to the program.  The 
fitness cases may be chosen at random or may be chosen in 
some structured way (e.g., at regular intervals or over a regular 
grid).  It is also common for fitness cases to represent initial 
conditions of a system (as in a control problem).  In economic 
forecasting problems, the fitness cases may be the daily closing 
price of some financial instrument.   

The computer programs in generation 0 of a run of genetic 
programming will almost always have exceedingly poor fitness.  
Nonetheless, some individuals in the population will turn out to 
be somewhat more fit than others.  These differences in 
performance are then exploited. 

The Darwinian principle of reproduction and survival of the 
fittest and the genetic operation of crossover are used to create a 
new offspring population of individual computer programs from 
the current population of programs.   

The reproduction operation involves selecting a computer 
program from the current population of programs based on fit-
ness (i.e., the better the fitness, the more likely the individual is 
to be selected) and allowing it to survive by copying it into the 
new population.   

The crossover operation is used to create new offspring 
computer programs from two parental programs selected based 
on fitness.  The parental programs in genetic programming are 
typically of different sizes and shapes.  The offspring programs 
are composed of subexpressions (subtrees, subprograms, 
subroutines, building blocks) from their parents.  These 
offspring programs are typically of different sizes and shapes 
than their parents. 

The mutation operation may also be used in genetic 
programming.   

After the genetic operations are performed on the current 
population, the population of offspring (i.e., the new generation) 
replaces the old population (i.e., the old generation).   Each 
individual in the new population of programs is then measured 
for fitness, and the process is repeated over many generations. 

At each stage of this highly parallel, locally controlled, 
decentralized process, the state of the process will consist only 
of the current population of individuals.   

The force driving this process consists only of the observed 
fitness of the individuals in the current population in grappling 
with the problem environment.  

As will be seen, this algorithm will produce populations of 
programs which, over many generations, tend to exhibit 
increasing average fitness in dealing with their environment.  In 
addition, these populations  of computer programs can rapidly 
and effectively adapt to changes in the environment.   

The best individual appearing in any generation of a run (i.e., 
the best-so-far individual) is typically designated as the result 
produced by the run of genetic programming.   

The hierarchical character of the computer programs that are 
produced is an important feature of genetic programming.  The 
results of genetic programming are inherently hierarchical.  In 
many cases the results produced by genetic programming are 
default hierarchies, prioritized hierarchies of tasks, or 
hierarchies in which one behavior subsumes or suppresses 
another. 

The dynamic variability of the computer programs that are 
developed along the way to a solution is also an important 
feature of genetic programming.  It is often difficult and 

unnatural to try to specify or restrict the size and shape of the 
eventual solution in advance.  Moreover, advance specification 
or restriction of the size and shape of the solution to a problem 
narrows the window by which the system views the world and 
might well preclude finding the solution to the problem at all. 

Another important feature of genetic programming is the 
absence or relatively minor role of preprocessing of inputs and 
postprocessing of outputs.  The inputs, intermediate results, and 
outputs are typically expressed directly in terms of the natural 
terminology of the problem domain.  The programs produced by 
genetic programming consist of functions that are natural for the 
problem domain.  The postprocessing of the output of a 
program, if any, is done by a wrapper (output interface).    

Finally, another important feature of genetic programming is 
that the structures undergoing adaptation in genetic 
programming are active.  They are not passive encodings (i.e., 
chromosomes) of the solution to the problem.  Instead, given a 
computer on which to run, the structures in genetic 
programming are active structures that are capable of being 
executed in their current form. 

The genetic crossover (sexual recombination) operation 
operates on two parental computer programs selected with a 
probability based on fitness and produces two new offspring 
programs consisting of parts of each parent.   

For example, consider the following computer program 
(presented here as a LISP S-expression):  
(+ (* 0.234 Z) (- X 0.789)), 
which we would ordinarily write as 

0.234 Z + X – 0.789. 
This program takes two inputs (X and Z) and produces a floating 
point output.   

Also, consider a second program: 
(* (* Z Y) (+ Y (* 0.314 Z))). 

Suppose that the crossover points are the * in the first parent 
and the + in the second parent.  These two crossover fragments 
correspond to the underlined sub-programs (sub-lists) in the two 
parental computer programs. 

The two offspring resulting from crossover are as follows: 
(+ (+ Y (* 0.314 Z)) (- X 0.789)) 
(* (* Z Y) (* 0.234 Z)). 

Thus, crossover creates new computer programs using parts 
of existing parental programs.  Because entire sub-trees are 
swapped, the crossover operation always produces syntactically 
and semantically valid programs as offspring regardless of the 
choice of the two crossover points.  Because programs are 
selected to participate in the crossover operation with a 
probability based on fitness, crossover allocates future trials to 
regions of the search space whose programs contains parts from 
promising programs.   

The videotape Genetic Programming: The Movie (Koza and 
Rice 1992) provides a visualization of the genetic programming 
process and of solutions to various problems. 
2.2 Automatically Defined Functions 
I believe that no approach to automated programming is likely to 
be successful on non-trivial problems unless it provides some 
hierarchical mechanism to exploit, by reuse and 
parameterization, the regularities, symmetries, homogeneities, 
similarities, patterns, and modularities inherent in problem 
environments.  Subroutines do this in ordinary computer 
programs.   



 Accordingly, Genetic Programming II: Automatic Discovery 
of Reusable Programs (Koza 1994) describes how to evolve 
multi-part programs consisting of a main program and one or 
more reusable, parameterized, hierarchically-called subprograms 
(called automatically defined functions or ADFs).  A 
visualization of the solution to numerous example problems 
using automatically defined functions  can be found in the 
videotape Genetic Programming II Videotape: The Next 
Generation  (Koza 1994).   

Automatically defined functions can be implemented within 
the context of genetic programming by establishing a 
constrained syntactic structure for the individual programs in the 
population.  Each multi-part program in the population contains 
one (or more) function-defining branches and one (or more) 
main result-producing branches.  The result-producing branch 
usually has the ability to call one or more of the automatically 
defined functions.  A function-defining branch may have the 
ability to refer hierarchically to other already-defined 
automatically defined functions.  

Genetic programming evolves a population of programs, 
each consisting of an automatically defined function in the 
function-defining branch and a result-producing branch.  The 
structures of both the function-defining branches and the result-
producing branch are determined by the combined effect, over 
many generations, of the selective pressure exerted by the fitness 
measure and by the effects of the operations of Darwinian 
fitness-based reproduction and crossover.  The function defined 
by the function-defining branch is available for use by the result-
producing branch.  Whether or not the defined function will be 
actually called is not predetermined, but instead, determined by 
the evolutionary process.   

Since each individual program in the population of this 
example consists of function-defining branch(es) and result-
producing branch(es), the initial random generation must be 
created so that every individual program in the population has 
this particular constrained syntactic structure.  Since a 
constrained syntactic structure is involved, crossover must be 
performed so as to preserve this syntactic structure in all 
offspring.   

Genetic programming with automatically defined functions 
has been shown to be capable of solving numerous problems 
(Koza 1994a).  More importantly, the evidence so far indicates 
that, for many problems, genetic programming requires less 
computational effort (i.e., fewer fitness evaluations to yield a 
solution with, say, a 99% probability) with automatically 
defined functions than without them (provided the difficulty of 
the problem is above a certain relatively low break-even point).   

Also, genetic programming usually yields solutions with 
smaller average overall size with automatically defined 
functions than without them (provided, again, that the problem 
is not too simple).  That is, both learning efficiency and 
parsimony appear to be properties of genetic programming with 
automatically defined functions.   

Moreover, there is evidence that genetic programming with 
automatically defined functions is scalable.  For several 
problems for which a progression of scaled-up versions was 
studied, the computational effort increases as a function of 
problem size at a slower rate with automatically defined 
functions than without them.  Also, the average size of solutions 
similarly increases as a function of problem size at a slower rate 
with automatically defined functions than without them.  This 
observed scalability results from the profitable reuse of 

hierarchically-callable, parameterized subprograms within the 
overall program.  

When single-part programs are involved, genetic 
programming automatically determines the size and shape of the 
solution (i.e., the size and shape of the program tree) as well as 
the sequence of work-performing primitive functions that can 
solve the problem.   However, when multi-part programs and 
automatically defined functions are being used, the question 
arises as to how to determine the architecture of the programs 
that are being evolved.  The architecture of a multi-part program 
consists of the number of function-defining branches 
(automatically defined functions) and the number of arguments 
(if any) possessed by each function-defining branch.    
2.3 Evolutionary Selection of Architecture 
One technique for creating the architecture of the overall 
program for solving a problem during the course of a run of 
genetic programming is to evolutionarily select the architecture 
dynamically during a run of genetic programming.  This 
technique is described in chapters 21 – 25 of Genetic 
Programming II : Automatic Discovery of Reusable Programs 
(Koza 1994a).  The technique of evolutionary selection starts 
with an architecturally diverse initial random population.  As the 
evolutionary process proceeds, individuals with certain 
architectures may prove to be more fit than others at solving the 
problem.  The more fit architectures will tend to prosper, while 
the less fit architectures will tend to wither away.  

The architecturally diverse populations used with the 
technique of evolutionary selection require a modification of 
both the method of creating the initial random population and 
the two-offspring subtree-swapping crossover operation 
previously used in genetic programming.  Specifically, the 
architecturally diverse population is created at generation 0 so as 
to contain randomly-created representatives of a broad range of 
different architectures.  Structure-preserving crossover with 
point typing is a one-offspring crossover operation that permits 
robust recombination while guaranteeing that any pair of 
architecturally different parents will produce syntactically and 
semantically valid offspring.   
2.4 Architecture-Altering Operations 

A second technique  for creating the architecture of the 
overall program for solving a problem during the course of a run 
of genetic programming is to evolve the architecture using 
architecture-altering (Koza 1995).   
2.8 Sources of Additional Information 
In addition to the author's books (Koza 1992, 1994) and 
accompanying videotapes (Koza and Rice 1992, Koza 1994), the 
first Advances in Genetic Programming book (Kinnear 1994) 
and the upcoming second book in this series (Angeline and 
Kinnear 1996) contain about two dozen articles each on various 
applications and aspects of genetic programming.   

In addition to the conferences mentioned in the earlier 
section on genetic algorithms, the conferences of artificial life 
{Brooks and Maes 1994) and simulation of adaptive behavior 
(Cliff et al. 1994) and  have articles on genetic programming.   

Additional information about genetic programming may be 
obtained from the GP-LIST electronic mailing list to which you 
may subscribe, at no charge, by sending a subscription request to 
genetic-programming-request@cs.stanford.edu.   

Information about obtaining software in C, C++, LISP, and 
other programming languages for genetic programming, 
information about upcoming conferences, and links to various 



 researchers in the genetic programming field may be accessed 
over the World Wide Web at http://www-cs-
faculty.stanford.edu/~koza/.  There will be a first 

conference on genetic programming at Stanford on July 28-31, 
1996.   
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