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Abstract:  This paper describes an automated process for designing analog 

electrical circuits based on the principles of natural selection, sexual recombination, and 
developmental biology.  The design process starts with the random creation of a large 
population of program trees composed of circuit-constructing functions.  Each program 
tree specifies the steps by which a fully developed circuit is to be progressively 
developed from a common embryonic circuit appropriate for the type of circuit that the 
user wishes to design.  Each fully developed circuit is translated into a netlist, simulated 
using a modified version of SPICE,  and evaluated as to how well it satisfies the user's 
design requirements.  The fitness measure is a user-written computer program that may 
incorporate any calculable characteristic or combination of characteristics of the circuit, 
including the circuit's behavior in the time domain, its behavior in the frequency domain, 
its power consumption, the number of components, cost of components, or surface area 
occupied by its components.  The population of program trees is genetically bred over a 
series of many generations using genetic programming.  Genetic programming is driven 
by a fitness measure and employs genetic operations such as Darwinian reproduction, 
sexual recombination (crossover), and occasional mutation to create offspring.  This 
automated evolutionary process produces both the topology of the circuit and the 
numerical values for each component.  This paper describes how genetic programming 
can evolve the circuit for a difficult-to-design low-pass filter.   

1.  The Problem of Circuit Design 
The design of an electrical circuit with specified operating characteristics is a complex 
task.  Electrical circuits consist of a wide variety of different types of components, 
including wires, resistors, capacitors, inductors, diodes, transistors, transformers, and 
energy sources.  The individual components are arranged in a particular topology to 
form a closed circuit.  In addition, each component is further specified (sized) by a set of 
component values.  Circuits typically receive input signals from one or more input 
sources and produce output signals at one or more output ports.  A complete 
specification of an electrical circuit includes both its topology and the sizing of all of its 
components.   

Considerable progress has been made in automating the design of certain categories 
of purely digital circuits; however, the design of analog circuits and mixed analog-
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digital circuits has not proved to be as amenable to automation (Rutenbar 1993).  In 
discussing "the analog dilemma," Aaserud and Nielsen (1995) observe,  

"Analog designers are few and far between.  In contrast to digital 
design, most of the analog circuits are still handcrafted by the experts or 
so-called 'zahs' of analog design.  The design process is characterized by a 
combination of experience and intuition and requires a thorough 
knowledge of the process characteristics and the detailed specifications of 
the actual product.  

"Analog circuit design is known to be a knowledge-intensive, 
multiphase, iterative task, which usually stretches over a significant period 
of time and is performed by designers with a large portfolio of skills.  It is 
therefore considered by many to be a form of art rather than a science. "  

2. Previous Work 
Numerous efforts have been made to automate the design process for analog and 

mixed analog-digital circuits.  In an interactive design tool called IDAC for analog 
integrated circuits (Degrauwe 1987), the user selects various possible topologies for the 
circuit; IDAC determines the values of the components in each circuit (in relation to the 
desired behavioral characteristics); and, the user chooses the best sized circuit.   

In OASYS (Harjani, Rutenbar, and Carley 1989) and OPASYN (Koh, Sequin, and 
Gray 1990), a topology is chosen beforehand based on heuristic rules and the synthesis 
tool attempts to size the circuit.  If the synthesis tool cannot size the chosen topology 
correctly, the tool creates a new topology using other heuristic rules and the process 
continues.  The success of these systems depends on the effectiveness of the knowledge 
base of heuristic rules.  

In SEAS (Ning, Kole, Mouthaan, and Wallings 1992), evolution is used to modify 
the topology and simulated annealing is used to size the circuit.  Maulik, Carley, and 
Rutenbar (1992) attempt to handle topology selection and circuit sizing simultaneously 
using expert design knowledge.  Higuchi et al. (1993) have employed genetic methods 
to the design of digital circuits using a hardware description language (HDL).   

In DARWIN (Kruiskamp and Leenaerts 1995), opamp circuits are designed using 
the genetic algorithm (Holland 1975).  In creating the initial population in DARWIN, 
the topology of each opamp in the population is picked randomly from a preestablished 
hand-designed set of 24 topologies in order to ensure that each circuit behaves as an 
opamp.  In addition, a set of problem-specific constraints are solved to ensure that all 
transistors operate in their proper range and that all transistor sizes are between maximal 
and minimal values.  The behavior of each opamp is evaluated using a small signal 
equivalent circuit and analytical calculations specialized to opamp circuits.  The fitness 
of each opamp is computed using a combination of factors, including the deviation 
between the actual behavior of the circuit and the desired behavior and the power 
dissipation of the circuit.  A crossover operation and mutation operation for the 
chromosome strings describing the opamps is used to create offspring chromosomes. 

3. Background of Genetic Programming 
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John Holland's pioneering Adaptation in Natural and Artificial Systems (1975) described 
how an analog of the naturally-occurring evolutionary process can be applied to solving 
scientific and engineering problems using what is now called the genetic algorithm    

The problem of automatic programming is one of the central questions in computer 
science.  Paraphrasing Arthur Samuel (1959), the question is 

How can computers learn to solve problems without being explicitly 
programmed?  In other words, how can computers be made to do what 
needs to be done, without being told exactly how to do it?   

Genetic programming is automatic programming. 
The book Genetic Programming: On the Programming of Computers by Means of 

Natural Selection (Koza 1992) describes an extension of the genetic algorithm in which 
the genetic population consists of computer programs (that is, compositions of primitive 
functions and terminals).  Genetic programming starts with a primordial ooze of 
randomly generated computer programs composed of the available programmatic 
ingredients and then applies the principles of animal husbandry to breed a new (and 
often improved) population of programs.  The breeding is done in a domain-independent 
way using the Darwinian principle of survival of the fittest, an analog of the naturally-
occurring genetic operation of crossover (sexual recombination), and occasional 
mutation.  The crossover operation is designed to create syntactically valid offspring 
programs (given closure amongst the set of ingredients).  Genetic programming 
combines the expressive high-level symbolic representations of computer programs with 
the near-optimal efficiency of learning of Holland's genetic algorithm.  A computer 
program that solves (or approximately solves) a given problem often emerges from this 
process.   

Genetic programming breeds computer programs to solve problems by executing 
the following three steps: 

(1) Generate an initial population of random compositions of the functions and 
terminals of the problem (i.e., computer programs). 
(2) Iteratively perform the following substeps until the termination criterion has 
been satisfied: 

(A) Execute each program in the population and assign it a fitness value using 
the fitness measure. 
(B) Create a new population of computer programs by applying the following 
operations.  The operations are applied to computer program(s) chosen from the 
population with a probability based on fitness.   

(i) Darwinian Reproduction: Reproduce an existing program by copying it 
into the new population. 
(ii) Crossover: Create two new computer programs from two existing 
programs by genetically recombining randomly chosen parts of two existing 
programs using the crossover operation (described below) applied at a 
randomly chosen crossover point within each program.   
(iii) Mutation: Create one new computer program from one existing 
program by mutating a randomly chosen part of the program.   

(3) The program that is identified by the method of result designation (e.g., the best-
so-far individual) is designated as the result of the genetic algorithm for the run.  This 
result may be a solution (or an approximate solution) to the problem.   
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The genetic crossover operation operates on two parental computer programs 
selected with a probability based on fitness and produces two new offspring programs 
consisting of parts of each parent.  Because entire sub-trees are swapped, the crossover 
operation always produces syntactically and semantically valid programs as offspring 
regardless of the choice of the two crossover points (assuming closure among the 
functions and terminals involved).  Because programs are selected to participate in the 
crossover operation with a probability based on fitness, crossover allocates future trials 
to regions of the search space whose programs contain parts from promising programs.    

The genetic mutation operation operates on one parental computer program selected 
with a probability based on fitness and produces one new offspring program.  A point is 
randomly chosen in the parental program; the subtree rooted at that point is deleted from 
the program; and a new subtree is randomly grown at that point using the available 
functions and terminals (usually in the same manner as trees are grown in creating the 
initial random population).  Mutation is used sparingly in genetic programming.   

Genetic Programming II: Automatic Discovery of Reusable Programs (Koza 1994) 
demonstrates that genetic programming can evolve multi-part programs consisting of a 
main program and one or more reusable, parameterized, hierarchically-called 
subprograms (called automatically defined functions or ADFs).   

4. Background on Cellular Encoding of Neural Networks 
A feedforward neural network is a complex structure that can be represented by line-
labeled, point-labeled, directed graph.  The points of the graph are either neural 
processing units within the network, input points, or output points.  The lines are labeled 
with weights to represent the weighted connections between two points.  The neural 
processing units are labeled with numbers indicating both the threshold and the bias of 
the processing unit.   

In his seminal Cellular Encoding of Genetic Neural Networks, Frederic Gruau 
(1992) described an innovative and clever technique, called cellular encoding, in which 
genetic programming is used to concurrently evolve the architecture of a neural network, 
along with all weights, thresholds, and biases.  In cellular encoding, each individual 
program tree in the population is a specification for developing a complete neural 
network from a very simple embryonic neural network (consisting of a single neuron).  
Genetic programming is applied to populations of these network-constructing program 
trees in order to evolve a neural network capable of solving the problem at hand.  See 
also Gruau 1994.   

Each program tree is a composition of network-constructing, neuron-creating, and 
neuron-adjusting functions and terminals.  The program tree is the genotype and the 
neural network constructed in accordance with the tree's instructions is the phenotype.  
The fitness of an individual program tree in the population is measured by how well the 
neural network that is constructed in accordance with the instructions contained in the 
program tree performs the desired task.  Genetic programming then breeds the 
population of program trees in the usual manner using Darwinian reproduction, 
crossover, and mutation.   

5. Background on SPICE 
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SPICE (an acronym for Simulation Program with Integrated Circuit Emphasis) is a 
massive family of programs written over several decades at the University of California 
at Berkeley for the simulation of analog, digital, and mixed analog/digital electrical 
circuits (Quarles et al. 1994).  The input to a SPICE simulation consists of a netlist 
describing the circuit to be analyzed and certain commands that instruct SPICE as to the 
type of analysis to be performed and the nature of the output to be produced.  

6. The Mapping between Circuits and Program Trees 
Genetic programming breeds a population of rooted, point-labeled trees (i.e., graphs 
without cycles) with ordered branches.   

There is a considerable difference between the kind of trees bred in the world of 
genetic programming and the special kind of labeled graphs employed in the world of 
circuits.   

Genetic programming can be applied to circuits if a mapping is established between 
the kind of point-labeled trees found in the world of genetic programming and the line-
labeled (often doubly labeled) cyclic graphs employed in the world of circuits.  In our 
case, developmental biology provides the motivation for this mapping.  The growth 
process used herein begins with a very simple embryonic electrical circuit.  The circuit is 
developed as the functions in the program tree are progressively executed.  The result is 
both the topology of the circuit and the sizing of all of its components.   

Each program tree contains (1) circuit-constructing functions and terminals that 
create the topology of circuit from the embryonic circuit, (2) component-setting 
functions that convert wires (and other components) within the circuit into specified 
components, and (3) arithmetic-performing functions and numerical terminals that 
together specify the numerical value (sizing) for each component of the circuit.   

Program trees conform to a constrained syntactic structure.  Component-setting 
functions have arithmetic-performing argument subtrees and construction-continuing 
argument subtrees, while the circuit-constructing functions that manipulate the topology 
of the circuit have one or more construction-continuing argument subtrees.  The left 
argument subtree of each component-setting function consists of a composition of 
arithmetic functions and numerical constant terminals that together yield the numerical 
value for the component.  The right argument subtree of each component-setting 
function specifies how the construction of the circuit is to be continued.  Both the 
random program trees in the initial population (generation 0) and any random subtrees 
created by the mutation operation in later generations are created so as to conform to this 
constrained syntactic structure.  This constrained syntactic structure is preserved by the 
crossover operation using structure-preserving crossover with point typing.   

7. The Embryonic Circuit 
An electrical circuit is created by executing the program tree.  Each program tree in the 
population creates one electrical circuit from the common embryonic circuit.   

The embryonic circuit used on a particular problem depends on the number of input 
signals and the number of output signals (probe points).  It may also contain certain 
fixed components that are required or desired for the circuit being designed.   
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The embryonic circuit used herein contains one input signal, one probe point, two 
modifiable wires, a fixed source resistor, and a fixed load resistor.  In the embryonic 
circuit, the two modifiable wires each initially possess a writing head (i.e., are 
highlighted with a circle).  A circuit is developed by modifying the component to which 
a writing head is pointing in accordance with the circuit-constructing functions in the 
program tree.  Each circuit-constructing function in the program tree changes its 
associated highlighted component in the developing circuit in a particular way and 
specifies the future disposition of successor writing head(s), if any.   

C FLIP

LIST1

2 3

-

 
Figure 1  One-input, one-output embryonic electrical circuit.  

The bottom three quarters of figure 1 shows the embryonic circuit used for a one-
input, one-output circuit.  The energy source is a 2 volt sinusoidal voltage source 
VSOURCE whose negative (–) end is connected to node 0 (ground) and whose positive 
(+) end is connected to node 1.  There is a fixed 1000-Ohm source resistor RSOURCE 
between nodes 1 and 2.  There is a modifiable wire (i.e., a wire with a writing head) Z1 
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between nodes 2 and 3 and another modifiable wire Z0 between nodes 3 and 4.  There 
are circles around modifiable wires Z0 and Z1 to indicate that the two writing heads 
(thick lines) point to them.  There is a fixed isolating wire ZOUT between nodes 3 and 
5, a voltage probe labeled VOUT at node 5, and a fixed 1000-Ohm load resistor 
RLOAD between nodes 5 and 0 (ground).  There is an isolating wire ZGND between 
nodes 4 and 0 (ground).  All of the above elements of this embryonic circuit (except Z0 
and Z1) are fixed forever; they are not subject to modification during the process of 
developing the circuit. All subsequent development of the circuit originates from writing 
heads.   

A circuit is developed by modifying the component to which a writing head is 
pointing in accordance with the associated circuit-constructing function in the program 
tree.  The figure shows L and FLIP functions just below the LIST and the two writing 
heads pointing to modifiable wires Z0 and Z1.  The L and FLIP functions will cause 
Z0 to be changed into a capacitor and the polarity of modifiable wire Z1 to be reversed.  

The embryonic circuit is designed so that the number of lines impinging at any one 
node in the circuit is either two or three.  This condition is maintained by all of the 
circuit-constructing functions.   The isolating wire ZOUT protects the probe point 
VOUT from modification during the developmental process and the isolating wire 
ZGND protects the negative terminal of VSOURCE.    

Note that little domain knowledge went into this embryonic circuit.  Specifically, (1) 
the embryonic circuit is a circuit, (2) the embryonic circuit has one input and one output, 
and (3)  there are modifable connections between the output and both source and 
ground.   This embryonic circuit is applicable to any one-input, one-output circuit.  It is 
the fitness measure that directs the evolutionary search process to the desired circuit.   

8. Circuit-Constructing Functions 
Each circuit-constructing function operates on a single component.   

8.1. THE C AND L COMPONENT-SETTING FUNCTIONS 
Components are introduced into a circuit by the component-setting functions.   

The rightmost argument subtree of each component-setting function is a 
construction-continuing subtree that points to a successor function or terminal in the 
program tree.  Upon completion, one writing head points to the new component.   

The left argument subtree of the component-setting functions is an arithmetic-
performing subtree that contains a composition of arithmetic functions (addition and 
subtraction) and random constants (in the range –1.000 to +1.000).  The arithmetic-
performing subtree returns a floating-point value which is, in turn, interpreted as the 
value of the component using a logarithmic scale in the following way:  If the return 
value is between –5.0 and +5.0, U is equated to the value returned by the argument 
subtree  .  If the return value is less than –100 or greater than +100, U is set to zero.  If 
the return value is between –100.0 and –5.0, U is found from the straight line connecting 
the points (–100,0) and (–5, -5).  If the return value is between +5.0 and +100, U is 
found from the straight line connecting (5,5) and (100, 0).  The value of the component 

is 10U in a unit that is appropriate for the type of component.  This mapping gives the 
component a value within a range of 11 orders of magnitude centered on a certain value.  
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This mapping gives the component a value within a range of 11 orders of magnitude that 
is centered on an appropriate value and that uses an appropriate unit of measurement that 
was settled upon after examining a large number of practical circuits in contemporary 
books.    

If a component (e.g., a diode) has no numerical values, there is no left argument 
subtree.   

The two-argument C ("capacitor") function causes the highlighted component to be 
changed into a capacitor.  The value of the capacitor is the antilogarithm (base 10) of the 
intermediate value U computed as above in nano-Farads (nF).  This mapping gives the 
capacitor a value within a range of plus or minus 5 orders of magnitude centered on 1nF.   

The two-argument L ("inductor") function causes the highlighted component to be 
changed into an inductor.   The value of the inductor is the antilogarithm (base 10) of the 
intermediate value U in micro-Henrys (mH).   

8.2. THE FLIP FUNCTION 
All electrical components in SPICE have a designated positive (+) end and a designated 
negative (–) end.  Polarity clearly matters for components such as diodes and transistors 
and it affects the course of the developmental process for all components.  The one-
argument FLIP function attaches the positive end of the highlighted component to the 
node to which its negative end is currently attached and vice versa.  Upon completion, 
one writing head points to the now-flipped original component.   

 
Figure 2  A circuit containing a resistor R1.  

8.3. SERIES DIVISION 
The three-argument SERIES ("series division") function operates on one highlighted 
component and creates a series composition consisting of the highlighted component, a 
copy of the highlighted component, one new modifable wire, and two new nodes.  After 
execution of the SERIES function, there are three writing heads pointing to the original 
component, the new modifiable wire, and the copy of the original component.  

Figure 2 shows a resistor R1 connecting nodes 1 and 2 of a partial circuit 
containing various capacitors.  R1 is assumed to possess a writing head (i.e., is 
highlighted).  

Figure 3 illustrates the result of applying the SERIES division function to resistor 
R1 from figure 2.  First, the SERIES function creates two new nodes, 3 and 4.  Second, 
SERIES relabels the positive (+) end of R1 (currently labeled 2) as the first new node, 
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3.  Third, SERIES creates a new wire Z6 between the first new node, 3, and the second 
new node, 4.  Fourth, SERIES inserts a duplicate (called R7) of the original component 
(including all its component values) between new node 4 and original node 2.   

Note our convention of globally numbering components consecutively (rather than 
maintaining a different series of consecutive numbers for each type of component).  
Also, note that wires (such as Z6) are used only during the developmental process;  all 
wires are edited out prior to the final creation of netlist for SPICE.  Also, note that the 
SERIES function may be applied to a wire; in that event, the result is a series 
composition of three wires (each with its own writing head).   

 
Figure 3 Result after applying the series division function SERIES to resistor R1.  

8.4. PARALLEL DIVISION FUNCTIONS 
The two four-argument parallel division functions (PSS and PSL) each operate on one 
highlighted component to create a parallel composition consisting of the original 
highlighted component, a duplicate of the highlighted component, two new wires, and 
two new nodes.  After execution of a parallel division, there are four writing heads.  
They point to the original component, the two new modifiable wires, and the copy of the 
original component.  We describe (and use) only PSS herein.   

  
Figure 4  Result after applying PSS to resistor R1.  

First, the parallel division function PSS creates two new nodes, 3 and 4.  Second, 
the parallel division function inserts a duplicate of the highlighted component (including 
all of its component values) between the new nodes 3 and 4 with the negative end of the 
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duplicate connected to node 4 and the positive end of the duplicate connected to node 3.  
Third, the parallel division function creates a first new wire Z6 between the positive (+) 
end of R1 (which is at original node 2) and first new node, 3.  Fourth, the parallel 
division function creates a second new wire Z8 between the negative (-) end of R1 
(which is at original node 1) to second new node, 4.   

The second character (i.e., the first S or L) of the name of the particular parallel 
division function indicates whether the positive end of the new component is connected 
to the smaller (S) or larger (L) numbered component of the two components that were 
originally connected to the positive end of the highlighted component.  The third 
character (i.e., the second S or L) of the name of the particular parallel division function 
indicates whether the negative end of the new component is connected to the smaller (S) 
or larger (L) numbered component of the two components that were originally 
connected to the negative end of the highlighted component.   

Figure 4 shows the results of applying the PSS function to resistor R1 from figure 
2.  Since C4 bears a smaller number than C5, new node 3 and new wire Z6 are located 
between original node 2 and C4.  Since C2 bears a smaller number than C3, new node 
4 and new wire Z8 are located between original node 1 and C2. 

8.5. THE VIA AND GND FUNCTIONS 
Eight two-argument functions (called VIA0, ..., VIA7) and the two-argument GND 
("ground") function enable distant parts of a circuit to be connected together.   

The eight two-argument VIA0, ..., VIA7 functions create a series composition 
consisting of two wires that each possesses a successor writing head and a numbered 
port (called a via) that possesses no writing head.  The port is connected to a designated 
one of eight imaginary layers (numbered from 0 to 7) in the wafer on which the circuit 
resides.  If one or more other parts of the circuit connects to a particular layer, all such 
parts become electrically connected as if wires were running between them.  If no other 
part of the circuit connects to a particular layer, then the one port connecting to the layer 
is useless (and this port is deleted when the netlist for the circuit is eventually created).    

The two-argument GND ("ground") function is a special "via" function that connects 
directly to the electrical ground of the circuit.  This direct connection to ground is made 
even if there is only one GND function calling for a connection to ground in the circuit.   

After execution of these functions, writing heads point to the two new wires.   

8.6. THE NOP FUNCTION 
The one-argument NOP function has no effect on the highlighted component; however, 
it delays activity on the developmental path on which it appears in relation to other 
developmental paths in the overall program tree – thereby (possibly) affecting the 
overall result produced by the construction process.  After execution of NOP, one 
writing head points to the original highlighted component.   

8.7. THE END FUNCTION 
The zero-argument END function causes the highlighted component to lose its writing 
head – thereby ending that particular developmental path.  

9. The Problem of Designing a Lowpass LC Filter 
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Consider a circuit design problem in which the goal is to design a filter using inductors 
and capacitors with an AC input signal with 2 volt amplitude.  The filter is have a 
passband below 1,000 Hertz with voltage values between 970 millivolts and 1 volt and 
to have a stopband above 2,000 Hz with voltage values between 0 volts and 1 millivolts.  
This corresponds to a pass band ripple of at most 0.3 decibels and a stop band 
attenuation of at least 60 decibels.  The circuit is to be driven from a source with an 
internal (source) resistance of 1,000 Ohms and terminated in a load of 1,000 Ohms.   

A practising engineer would regard finding a circuit satisying the requirements as a 
non-trivial design problem.  Using the terminology of Zverev (1967), these requirements 
can be satisfied by a Chebyshev-Cauer filter of complexity 5, with a relection coefficient 
of 20%, and modular angle of 30 degrees.   

10. Preparatory Steps for Solving the Problem of Designing a 
Lowpass LC Filter 
Before applying genetic programming to a circuit design problem, the user must perform 
seven major preparatory steps, namely (1) identifying the terminals of the to-be-evolved 
programs, (2) identifying the primitive functions contained in the to-be-evolved 
programs, (3) creating the fitness measure for evaluating how well a given program does 
at solving the problem at hand, (4) choosing certain control parameters (notably 
population size and the maximum number of generations to be run), (5) determining the 
termination criterion and method of result designation (typically the best-so-far 
individual from the populations produced during the run), (6) determining the 
architecture of the overall program, and (7) identifying the embryonic circuit that is 
suitable for the problem.   

Since the problem of designing the lowpass LC filter calls for a one-input, one-
output circuit with a source resistor and a load resistor, we use the embryonic circuit of 
figure 2 for this problem.  Since the embryonic circuit starts with two writing heads, 
each program tree has two result-producing branches joined by a LIST function.  There 
are no automatically defined functions.  The terminal set and function set for both result-
producing branches are the same.  Each result-producing branch is created in accordance 
with the constrained syntactic structure that uses the leftmost (first) argument(s) of each 
component-creating function to specify the numerical value of the component.  The 
numerical value is created by a composition of arithmetic functions and random 
constants in this arithmetic-performing subtree.  Since the components involved in this 
problem (i.e., inductors and capacitors) each take exactly one component value, there is 
only one arithmetic-performing subtree.  The rightmost (second) argument of each 
component-creating function is then used to continue the program tree.   

In particular, the function set, Faps for the arithmetic-performing subtree 
associated with each component-creating function contains the two-argument functions 
of addition and subtraction.  That is, 
Faps = {+, -}. 

The terminal set, Taps, for the arithmetic-performing subtree consists of 

Taps = {←}, 
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where ← represents floating-point random constants between –1.000 and +1.000.   
The function set, Fccs, for the construction-continuing subtree of each component-

creating function is 
Fccs = {C, L, SERIES, PSS, FLIP, NOP,  GND, VIA0,  VIA1,  VIA2,  

VIA3,  VIA4,  VIA5,  VIA6,  VIA7}, 
taking 2, 2, 3, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, and 2 arguments, respectively.  The terminal 
set, Tccs, for the construction-continuing subtree consists of 

Tccs = {END}.   
The user provides a computer program to compute the fitness measure.  The fitness 

measure drives the evolutionary process.  For this problem, the voltage VOUT is probed 
at node 5 and the circuit is viewed in the frequency domain.   

Note that the above is applicable to any one-input, one-output LC circuit.  It is the 
fitness measure that directs the evolutionary process to the desired circuit.   

Each circuit that is developed from the embryonic circuit is simulated using a 
modified version of the 217,000-line SPICE simulator that we modified to run as a 
submodule of our genetic programming system.  The SPICE simulator is requested to 
perform an AC small signal analysis and to report the circuit's behavior for each of 101 
frequency values chosen from the range between 101 frequency values chosen over five 
decades of frequency (from 1 Hz to 100,000 Hz).  Each decade is divided into 20 parts 
(using a logarithmic scale).  

Fitness is measured in terms of the sum, over these 101 fitness cases, of the absolute 
weighted deviation between the actual value of the voltage in the frequency domain) that 
is produced by the circuit at the probe point VOUT at node 5 and the target value for 
voltage.  The smaller the value of fitness, the better.  A fitness of zero is ideal.   

The fitness measure does not penalize ideal values; it slightly penalizes every 
acceptable deviation; and it heavily penalizes every unacceptable deviation.   

The procedure for each of the 61 points in the 3-decade interval from 1 Hz to 1,000 
Hz is as follows: If the voltage equals the ideal value of 1.0 volts in this interval, the 
deviation is 0.0.  If the voltage is between 970 millivolts and 1,000 millivolts, the 
absolute value of the deviation from 1,000 millivolts is weighted by a factor of 1.0.  If 
the voltage is less than 970 millivolts, the absolute value of the deviation from 1,000 
millivolts is weighted by a factor of 10.0.  This arrangement reflects the fact that the 
ideal voltage in the passband is 1.0 volt, the fact that a 30 millivolt shortfall is 
acceptable, and the fact that a voltage below 970 millivolts in the passband is not 
acceptable.  It is not possible for the voltage to exceed 1.0 volts in an LC circuit of this 
kind, but if the voltage were to exceed the ideal, the deviation would be still be 
considered to be zero and there would still be no penalty for a filter design problem.   

The procedure for each of the 35 points in the interval from 2,000 Hz to 100,000 Hz 
is as follows:  If the voltage is between 0 millivolts and 1 millivolt, the absolute value of 
the deviation from 0 millivolts is weighted by a factor of 1.0.  If if the voltage is more 
than 1 millvolt, the absolute value of the deviation from 0 millivolts is weighted by a 
factor of 10.0.  This arrangement reflects the fact that the ideal voltage in the stopband is 
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0.0 volt, the fact that a 1 millivolt ripple above 0 millvolts is acceptable, and the fact that 
a voltage above 1 millivolt in the stopband is not acceptable.   

We considered the number of fitness cases (61 and 35) in these two main bands to 
be sufficiently close that we did not attempt to equalize the weight given to the differing 
numbers of fitness cases in these two main bands.   

The deviation is considered to be zero for each of the 5 points in the interval above 
1,000 Hz and below 2,000 Hz (i.e., the "don't care" band).   

Hits are defined as the number of fitness cases for which the voltage is acceptable or 
ideal or which lie in the "don't care" band.  Thus, the number of hits ranges from a low 
of 5 to a high of 101 for this problem.   

Some of the bizarre circuits that are randomly created for the initial random 
population and that are created by the crossover operation and the mutation operation in 
later generations cannot be simulated by SPICE.  Circuits that cannot be simulated by 

SPICE are assigned a high penalty value of fitness (108).  These circuits become the 
worst-of-generation circuits for each generation.  The practical effect of this high 
penalty value of fitness is that these individuals are rarely selected to participate in 
genetic operations and that they quickly disappear from the population.   

The population size, M, is 320,000.  Since this problem runs slowly, we set the 
maximum number of generations, G, to a large number and awaited developments.  The 
percentage of genetic operations on each generation was 89% crossovers, 10% 
reproductions, and 1% mutations.  A maximum size of 200 points was established for 
each of the two result-producing branches in each overall program.  The other 
parameters for controlling the runs of genetic programming were the default values 
specified in Koza 1994 ( appendix D).   

This problem was run on a medium-grained parallel Parystec computer system 
consisting of 64 Power PC 601 80 MHz processors arranged in a toroidal mesh with a 
host PC Pentium type computer.  The so-called distributed genetic algorithm  for 
parallelization was used with a population size ofQ =  10,000 at each of the D = 64 
demes.  On each generation, four boatloads of emigrants, each consisting of B = 2% (the 
migration rate) of the node's subpopulation (selected on the basis of fitness) were 
dispatched to the four toroidally adjacent processing nodes.  See Andre and Koza 1996.  

11. Results for the Problem of Designing a Lowpass LC Filter 
We present the results of three different runs of genetic programming on the problem of 
designing the lowpass LC filter.   

11.1. FIRST RUN 
A run of genetic programming for this problem starts with the random creation of an 
initial population of 320,000 program trees (each consisting of two result-producing 
branches) composed of the functions and terminals identified above and in accordance 
with the syntactic constraints described above.   

For each of the 320,000 program trees in the population, the sequence of circuit-
constructing functions in the program tree is applied to the common embryonic circuit 
for this problem (figure 1) in order to create a circuit.  The netlist for the resulting circuit 
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is then determined.  This netlist is wrapped inside an appropriate set of SPICE 
commands and the circuit is then simulated using our modified version of SPICE.   

The initial random population of a run of genetic programming is a blind random 
search of the search space of the problem.  As such, it provides a baseline for comparing 
the results of subsequent generations.   

The best circuit of the 320,000 circuits from generation 0 had a fitness of 58.71 (on 
the scale of weighted volts described earlier) and scored 51 hits.  The first result-
producing branch of this program tree has 25 points (i.e., functions and terminals) and is 
shown below:  

(C (– 0.963 (– (– -0.875 -0.113) 0.880)) (series (flip 
end) (series  (flip end) (L  -0.277 end) end) (L (– -0.640 
0.749) (L -0.123 end)))) 

The second result-producing branch has 5 points and is shown below:  
(flip (nop (L -0.657 end)))) 
Figure 5 presents this best-of-generation program tree as a rooted, point-labeled tree 

with ordered branches.  The first result-producing branch is rooted at the C function 
(labeled 2) and the second result-producing branch is rooted at the FLIP function 
(labeled 3).   

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749-0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8
7

9 10 11 12

13 14 15 17 1816 19 20 21

22

23 24 25 26 27 28 29 30 31
Figure 5  Program tree for best circuit of generation 0.   

In executing the program tree, the connective LIST function (labeled 1) at the root 
of the tree is ignored.  Most of the remainder of the tree is executed in a breadth-first 
order; however, arithmetic-performing subtrees (such as the 7-point subtree rooted at the 
point labeled 4) are executed in their entirety in a depth-first order immediately when its 
circuit-constructing function is first encountered.  Thus, the C (capacitor) function 
(labeled 2) in figure 5 is executed first.  Then, the 7-point arithmetic-performing subtree 
(labeled 4) is immediately executed in its entirety in a depth-first way so as to deliver the 
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numerical component value needed by the capacitor function C.  Then, the breadth-first 
order is resumed and the FLIP function (labeled 3) is executed.   

Figure 6 shows the best circuit of generation 0 upon completion of the 
developmental process.   

In the frequency domain, the voltages produced by this circuit in the interval 
between 1 Hz and 100 Hz are very close to the required 1 volt (accounting for most of 
the 51 hits scored by this individual).  However, the voltages produced between 100 Hz 
and 1,000 Hz deviate considerably below the minimum of 970 millivolts required by the 
design specification (in fact, by hundreds of millivolts as one approaches 1,000 Hz).  
Moreover, the voltages produced above 2,000 Hz are, for the most part, considerably 
above the minimum of 1 millivolt required by the design specification (by hundreds of 
millivolts in most cases).   

Generation 1 (and each subsequent generation of the run) is created from the 
population at the preceding generation by performing 142,400 crossover operations 
(producing 284,800 offspring or 89% of 320,000), 32,000 reproduction operations (10% 
of 320,000), and 3,200 mutation operations (1% of 320,000).   
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Figure 6  Best circuit of generation 0.   

As the run proceeds from generation to generation, the fitness of the best-of-
generation individual tends to improve.  Figure 7 shows the standardized fitness and 
number of hits for the best-of-generation program of each generation of this run.   

SPICE cannot simulate many of the bizarre circuits created by genetic 
programming.  About two-thirds (65.3%) of the 320,000 programs of generation 0 for 
this problem produce circuits that cannot be simulated by SPICE.  However, the 
percentage of unsimulatable circuits changes rapidly as new offspring are created by 
genetic programming using Darwinian selection, crossover, and mutation.  The 
percentage of unsimulatable programs drops to 33% by generation 10, and 0.3% by 
generation 30.  Figure 8 shows, by generation, the percentage of unsimulatable programs 
in this run.   

In the genetic algorithm, the entire population generally improves from generation 
to generation.  The hits histogram is a useful monitoring tool for visualizing the 
progressive learning of the population as a whole during a run.  The horizontal axis of 
the hits histogram represents the number of hits (0 to 101 here) while the vertical axis 
represents the percentage of individuals in the population scoring that number of hits.   
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Figure 7  Fitness and hits for one run.  

Figure 9 shows the hits histograms for generations 0, 20 and 40 of a typical 
run of this problem.  The horizontal axis represents the number of hits 
(0 to 101 here) while the vertical axis represents the percentage of individuals in the 
population scoring that number of hits.  Note the left-to-right undulating movement of 
both the high point and the center of mass of these histograms over the generations.   
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Figure 8  Percentage of unsimulatable programs 

The improvement, from generation to generation, in the fitness of the population as 
a whole can also be seen by examining the average fitness of the population by 
generation.  Figure 10 shows, by generation, the average fitness of the portion of the 
population that can be analyzed by SPICE (that is, after excluding individuals receiving 
the penalty value of fitness).  As can be seen, the average fitness of the population as a 
whole is 1,054 for generation 0, 443 for generation 2, 213 for generation 5, 58.2 for 
generation 10, 38.0 for generation 20, and 16.5 by generation 30.  
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Figure 9  Hits histogram for generations 0, 20 and 40 of a run of this problem.   

The best individual program tree of generation 32 has 306 points, has a fitness of 
0.00781 and scores 101 hits.  That is, by generation 32, all 101 sample points are in 
compliance with the design requirements for this problem.   
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Figure 10  Average fitness of the simulatable circuits in the population.   

Figure 11 shows the best-of-run circuit from generation 32.  This circuit is a seven-
rung ladder consisting of repeated values of various inductors and capacitors.   
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Figure 11  Best-of-run "seven-rung ladder" circuit from generation 32.   

Figure 12 shows the behavior in the frequency domain of the best-of-run circuit 
from generation 32.  As can be seen, the circuit delivers a voltage of virtually 1 volt in 
the entire passband from 1 Hz to 1,000 Hz and delivers a voltage of virtually 0 volts in 
the entire stopband starting at 2,000 Hz.   

The best individual from generation 76 has a fitness (0.000995) that is about an 
order of magnitude better than that of the fully compliant individual of generation 32.   

 
Figure 12  Frequency domain behavior of "seven-rung ladder" from generation 32.   

11.2. A "BRIDGED T" CIRCUIT FROM ANOTHER RUN  
Different runs of genetic programming produce different results.  Moreover, when we 
continue the run of genetic programming after the emergence of the first 100%-
compliant individual, additional 100%-compliant individuals often emerge.  Figure 13 
shows a fully compliant best-of-run circuit from generation 64 of another run.  In this 
circuit (which has a fitness of 0.04224), inductor L14 forms a "bridged T" subcircuit in 
conjunction with capacitors C3 and C15 and inductor L11.  Of course, the parallel 
capacitors (the pair C18 and C33 as well as the triplet C24, C21, and C12) could be 
combined.  This "bridged T" circuit is distinctly different in structure from the "ladder" 
circuit.  
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Figure 13  "Bridged T" circuit from generation 64.   

12. Subsequent Work and Future Work 

We have also used this technique to design an 
asymmetric bandpass filter and a crossover 
(woofer and tweeter) filter.  The later requires a 
one-input, two-output embryonic circuit.  We are currently 

working on circuits with active elements.  
13. Conclusions 

We have described an automated design process for designing analog electrical circuits 
based on the principles of natural selection, sexual recombination, and developmental 
biology.  The design process starts with the random creation of a large population of 
program trees composed of circuit-constructing functions.  Each program tree specifies 
the steps by which a fully developed circuit is to be progressively developed from a 
common embryonic circuit appropriate for the type of problem that the user wishes to 
solve.  The population of program trees is genetically bred over a series of many 
generations using genetic programming that is driven by the fitness measure.  Genetic 
programming employs genetic operations such as Darwinian reproduction, sexual 
recombination (crossover), and occasional mutation to create offspring.  The paper 
described how genetic programming technique evolved the design of a low-pass filter.   
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