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The biological theory of gene duplication, concerning how new structures and new behaviors are 
created in living things, is brought to bear on the problem of automated architecture discovery in 
genetic programming.  Using architecture-altering operations patterned after naturally-occurring 
gene duplication, genetic programming is used to evolve a computer program to classify a given 
protein segment as being a transmembrane domain or non-transmembrane area of the protein.  The 
out-of-sample error rate for the best genetically-evolved program achieved was slightly better than 
that of previously-reported human-written algorithms for this problem.  This is an instance of an 
automated machine learning algorithm rivaling a human-written algorithm for a problem.   

8.1  Introduction and Overview 

The goal of automatic programming is to create, in an automated way, a computer 
program that enables a computer to solve a problem.   

Ideally, an automatic programming system should require that the user pre-specify as 
little as possible about the problem environment.  In particular, it is desirable that the user 
not be required to specify the architecture of the ultimate solution to his problem before 
he can begin to apply the technique to his problem.  The requirement that the human user 
prespecify the size and shape of the ultimate solution to his problem has been a vexatious 
aspect of automated machine learning from the earliest times [Samuel 1959].  The size 
and shape of the solution should be part of the answer provided by an automated 
machine learning technique, rather than part of the question supplied by the human user.  

John Holland's pioneering Adaptation in Natural and Artificial Systems [1975] 
described how an analog of the naturally-occurring evolutionary process can be applied 
to solving artificial problems using what is now called the genetic algorithm.  The book  
Genetic Programming: On the Programming of Computers by Means of Natural 
Selection [Koza 1992] describes an extension of Holland's genetic algorithm in which the 
genetic population consists of computer programs (that is, compositions of primitive 
functions, terminals, and possibly automatically defined functions).  See also Koza and 
Rice [1992].  Genetic programming has been demonstrated to be capable of evolving 
computer programs that solve, or approximately solve, a variety of problems from 
various fields, including many problems that have been used over the years as benchmark 
problems in machine learning and artificial intelligence.  A run of genetic programming 
in its most basic form automatically creates the size and shape of a single-part main 
program as well as the sequence of work-performing steps in the main program.   



No approach to automated programming is likely to be successful on non-trivial 
problems unless it provides some hierarchical mechanism to exploit – by reuse and 
parameterization – the regularities, symmetries, homogeneities, similarities, patterns, and 
modularities inherent in problem environments.  Subroutines provide this mechanism in 
ordinary computer programs.  Genetic Programming II: Automatic Discovery of 
Reusable Programs [Koza 1994a, 1994b] deals with multi-part programs consisting of a 
main program and one or more reusable, parameterized, hierarchically-callable 
subprograms.   

An automatically defined function is a function (i.e., subroutine, procedure, DEFUN, 
module) that is dynamically evolved during a run of genetic programming in association 
with a particular individual program in the population and which may be invoked by a 
calling program (e.g., a main program) that is concurrently being evolved.   

Figure 8.1 shows a hypothetical overall program consisting of a result-producing main 
branch (RPB) in the right half of the figure and one function-defining branch in the left 
part of the figure.  The function-defining branch defines a two-argument automatically 
defined function (called ADF0).  The main program (RPB) invokes the subroutine 
(ADF0) from two different places (the points labeled 481 and 487 in the figure) using 
different pairs of arguments for the two calls.  The two arguments for the first call of 
ADF0 are the terminal D1 at 482 and the terminal D2 at 483.  The arguments for the 
second call of ADF0 are the terminal D3 at 488 and the sub-expression (NOR D4 D0) 
rooted at 489.  The function-defining branch (ADF0) has an argument list at 412 
consisting of two dummy arguments (formal parameters), ARG0 and ARG1, and a five-
point work-performing body starting at OR 420.  The dummy arguments, ARG0 and 
ARG1, appear in the body of the function-defining branch; however, when the subroutine 
ADF0 is called by the main result-producing branch, these dummy arguments are 
instantiated with particular values (e.g., D3 and (NOR D4 D0) for the call to ADF0 at 
487).   

Various other formulations for subroutine creation in genetic programming have been 
created and analyzed by Angeline [1994], Angeline and Pollack [1994], Kinnear [1994], 
Rosca and Ballard [1994a, 1994b], and Spector [1996, in chapter 7 of this volume].   

When programs with automatically defined functions are being evolved in a run of 
genetic programming, it becomes necessary to determine the architecture of the overall 
to-be-evolved program.  The specification of the architecture consists of (1) the number 
of function-defining branches in the overall program, (2) the number of arguments (if 
any) possessed by each function-defining branch, and (3) if there is more than one 
function-defining branch, the nature of the hierarchical references (if any) allowed 
between each function-defining branch and the other branches of the overall program.  



The question of how to automatically create the architecture of the overall program in 
an evolutionary approach to automatic programming, such as genetic programming, has a 
parallel in the biological world: how new structures and behaviors are created in living 
things.  Most structures and behaviors in living things are the consequence of the action 
and interactions of proteins.  Proteins are manufactured in accordance with instructions 
contained in the chromosomal DNA of the organism.  Simple bacteria sustain life with as 
few as 1,800 different proteins while humans have an estimated 100,000 proteins.   

Thus, the question of how new structures and behaviors are created in living things 
corresponds to the question of how new DNA that encodes for a new protein is created.  
Ordinary recombination and mutation do not provide the answer.  In nature, sexual 
recombination ordinarily recombines part of an existing chromosome of one parent with 
a corresponding (homologous) part of an existing chromosome from a second parent.  
Ordinary mutation occasionally alters isolated alleles belonging to a chromosome.   

In his provocative 1970 book Evolution by Gene Duplication, Susumu Ohno points out 
that simple point mutation and crossover are insufficient to explain major evolutionary 
changes.   

"...while allelic changes at already existing gene loci suffice for racial 
differentiation within species as well as for adaptive radiation from an 
immediate ancestor, they cannot account for large changes in evolution, 
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Figure 8.1 
Program consisting of one two-argument function-defining branch (ADF0) and one result-producing branch. 



because large changes are made possible by the acquisition of new gene loci 
with previously non-existent functions."  (Emphasis added).  

So what is the origin of "new gene loci with previously non-existent functions"? 
A gene duplication is a rare illegitimate recombination event that results in the 

duplication of a lengthy subsequence of a chromosome.  Ohno's 1970 book proposed the 
provocative thesis that the creation of new proteins (and hence new structures and 
behaviors in living things) begins with a gene duplication and that gene duplication is 
"the major force of evolution." 

This chapter shows how the naturally-occurring mechanism of gene duplication (and 
the complementary mechanism of gene deletion) motivated the addition of six new 
architecture-altering operations to genetic programming.  The six architecture-altering 
operations of branch duplication, branch creation, branch deletion, argument duplication, 
argument creation, and argument deletion enable genetic programming to evolve the 
architecture of a multi-part program containing automatically defined functions during a 
run of genetic programming.  The six architecture-altering operations enable genetic 
programming to implement what Ohno called "the acquisition of new gene loci with 
previously non-existent functions."   

The potential usefulness of the architecture-altering operations (and the additional 
computational effort required by these operations) has been previously discussed in the 
context of simple problems, such as learning the Boolean parity functions [Koza 1994c, 
1995a, 1995b, and 1995c].  In this chapter, genetic programming with the architecture-
altering operations is applied to one of the more difficult problems in Genetic 
Programming II, namely the problem of evolving a computer program to classify a given 
protein segment as being a transmembrane domain or non-transmembrane area of the 
protein (without using biochemical knowledge, such as the hydrophobicity values, used 
in human-written algorithms for this task).  The best genetically-evolved program 
achieves an out-of-sample error rate that is slightly better than that reported for other 
previously reported human-written algorithms.  This is an instance of an automated 
machine learning algorithm rivaling human performance on a non-trivial problem.   

8.2  Architecture-Altering Operations 

The six architecture-altering genetic operations provide a way of evolving the 
architecture of a multi-part program during a run of genetic programming.  These 
operations are performed, sparingly, during each generation of a run of genetic 
programming along with the usual operations of Darwinian reproduction, crossover, and 
mutation.   



8.2.1  Branch Duplication 
The operation of branch duplication duplicates one of the branches of a program in the 
following way: 
1. Select a program from the population.   
2. Pick one of the function-defining branches of the selected program as the branch-to-
be-duplicated.   
3. Add a uniquely-named new function-defining branch to the selected program, thus 
increasing, by one, the number of function-defining branches in the selected program.  
The new function-defining branch has the same argument list and the same body as the 
branch-to-be-duplicated.   
4. For each occurrence of an invocation of the branch-to-be-duplicated anywhere in the 
selected program (e.g., a result-producing branch or any other branch that invokes the 
branch-to-be-duplicated), randomly choose either to leave that invocation unchanged or 
to replace that invocation with an invocation of the newly created function-defining 
branch.   

The step of selecting a program for all the operations described herein is performed 
probabilistically on the basis of fitness, so that a program that is more fit has a greater 
probability of being selected to participate in the operation than a less fit program.   

The operation of branch duplication as defined above (and all the other architecture-
altering operations to be described herein) always produce a syntactically valid program 
(assuming that the function and terminal set originally satisfied the closure property).   

Figure 8.2 shows the program resulting after applying the operation of branch 
duplication to the program of figure 8.1.  Specifically, the function-defining branch 410 
of figure 8.1 defining ADF0 (also shown as 510 of figure 8.2) is duplicated and a new 
function-defining branch (defining ADF1) appears at 540 in figure 8.2.  There are two 
invocations of the branch-to-be-duplicated, ADF0, in the result-producing branch of the 
selected program, namely ADF0 at 481 and 487 of figure 8.1.  For each occurrence, a 
random choice is made to either leave the occurrence of ADF0 unchanged or to replace it 
with a reference to the newly created ADF1.  For the first invocation of ADF0 at 481 of 
figure 8.1, the choice is randomly made to replace ADF0 481 with ADF1 581 in figure 
8.2.  The arguments for the invocation of ADF1 581 are D1 582 and D2 583 in figure 8.2 
(i.e., they are identical to the arguments D1 482 and D2 483 for the invocation of ADF0 
at 481 in figure 8.1).  For the second invocation of ADF0 at 487 of figure 8.1, ADF0 is 
left unchanged.   

The new branch is identical to the previously existing branch (except for the name 
ADF1 at 541 in figure 8.2).  Moreover, ADF1 at 581 is invoked with the same arguments 
as ADF0 at 481.  Therefore, this operation does not affect the value returned by the 
overall program.  



The operation of branch duplication can be interpreted as a case splitting.  After the 
branch duplication, the result-producing branch invokes ADF0 at 587 but ADF1 at 581.  
ADF0 and ADF1 can be viewed as separate procedures for handling the two subproblems 
(cases).  Subsequent genetic operations may alter one or both of these two presently-
identical function-defining branches and these subsequent changes lead to a divergence 
in structure and behavior.  This subsequent divergence may be interpreted as a 
specialization or refinement.  That is, once ADF0 and ADF1 diverge, ADF0 can be 
viewed as a specialization for handling for subproblem associated with its invocation at 
587 and ADF1 at 581 can be viewed as a specialization for handling its subproblem.  

Details of this operation (and the other architecture-altering operations below) are 
found elsewhere [Koza 1994c, 1995a, 1995b, and 1995c].  

8.2.2  Argument Duplication 
The operation of argument duplication  duplicates one of the dummy arguments in one 
of the automatically defined functions of a program in the following way: 
1. Select a program from the population.   
2. Pick one of its function-defining branches.   
3. Choose one of the arguments of the picked function-defining branch as the argument-
to-be-duplicated.   
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Figure 8.2 
Program consisting of two two-argument function-defining branches (ADF0 and ADF1) and one result-
producing branch.  



4. Add a uniquely-named new argument to the argument list of the picked function-
defining branch of the selected program, thus increasing, by one, the number of 
arguments in its argument list.   
5. For each occurrence of the argument-to-be-duplicated in the body of picked function-
defining branch of the selected program, randomly choose either to leave that occurrence 
unchanged or to replace it with the new argument.   
6. For each occurrence of an invocation of the picked function-defining branch anywhere 
in the selected program, identify the argument subtree corresponding to the argument-to-
be-duplicated and duplicate that argument subtree in that invocation, thereby increasing, 
by one, the number of arguments in the invocation.   

Because the function-defining branch containing the duplicated argument is invoked 
with an identical copy of the previously existing argument, this operation leaves 
unchanged the value returned by the overall program.   

The operation of argument duplication can also be interpreted as a case-splitting.   

8.2.3  Branch Creation 
The branch creation operation creates a new automatically defined function within an 
overall program by picking a point in the body of one of the function-defining branches 
or result-producing branches of the selected program.  This picked point becomes the 
top-most point of the body of the branch-to-be-created.   

This operation generalizes the idea of branch duplication in that any point (not just the 
root) of any branch may be picked and in that the picked point may even be in the result-
producing branch.   

This operation of branch creation is similar to, but different from, the compression 
(module acquisition) operation described in Angeline [1994] and Angeline and Pollack 
[1994].  First, Angeline and Pollack place each new function (module) into a Genetic 
Library so that the new function is not specifically associated with the selected program 
that gave rise to it (i.e., is public, rather than private).  In contrast, in the branch creation 
operation, the new function may be invoked only by the selected program in which it was 
originally created and of which it is a part.  A second difference is that the body of the 
new branch created by the branch creation operation continues to be subject to the effects 
of other operations (such as crossover and mutation) in successive generations and is 
susceptible to continued change (i.e., the new branch is not encapsulated and protected).  
A third difference is that the branch creation operation may be applied to any branch 
(and, in particular, to function-defining branches themselves).   

8.2.4  Argument Creation  
The argument creation operation creates a new dummy argument within a function-
defining branch of a program.  



8.2.5  Branch Deletion 
The operation of branch deletion deletes one of the automatically defined functions.   

When a function-defining branch is to be deleted, the question arises as to how the 
surviving branches of the overall problem are to handle existing references to the branch-
to-be-deleted.  The alternative used herein (called branch deletion with random 
regeneration) randomly generates new subtrees composed of the available functions and 
terminals (in the same manner as the mutation operation) in lieu of the invocation of the 
deleted branch.  This approach is, of course, not semantics-preserving.   

8.2.6  Argument Deletion 
The operation of argument deletion deletes one of the arguments to one of the 
automatically defined functions of a program.  When an argument is deleted, references 
to the argument-to-be-deleted may be handled by argument deletion with random 
regeneration.   

8.2.7  Structure-Preserving Crossover 
When the architecture-altering operations are used, the initial population is created in 
accordance with a particular constrained syntactic structure.  As soon as the architecture-
altering operations start being used, the population quickly becomes architecturally 
diverse.  Structure-preserving crossover with point typing [Koza 1994a] permits robust 
recombination while simultaneously guaranteeing that any pair of architecturally 
different parents will produce syntactically valid offspring.   

8.3  Transmembrane Domains in Proteins 

Proteins are polypeptide molecules composed of sequences of amino acids.  There are 20 
amino acids residues (often just called residues) in the alphabet of proteins (denoted by 
the letters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y) [Stryer 1995].  
For example, A stands for the residue alanine.  

Membranes play many important roles in living things.  A transmembrane protein 
[Yeagle 1993] is embedded in a membrane (such as a cell membrane) in such a way that 
part of the protein is located on one side of the membrane, part is within the membrane, 
and part is on the opposite side of the membrane.  Transmembrane proteins often cross 
back and forth through the membrane several times and have short loops immersed in the 
different milieu on each side of the membrane.  Transmembrane proteins perform 
functions such as transporting particles across the membrane and such as sensing the 
presence of certain particles or stimuli on one side of the membrane and communicating 
that information to the other side of the membrane.   



Understanding the behavior of transmembrane proteins requires identification of the 
portion(s) of the protein sequence that are actually embedded within the membrane, such 
portion(s) being called the transmembrane domain(s) of the protein.  The lengths of the 
transmembrane domains of a protein are usually different from one another; the lengths 
of the non-transmembrane areas are also usually different from one another.  Biological 
membranes are of oily hydrophobic (water-hating) composition.  The amino acid 
residues of the transmembrane domain of a protein that are exposed to the membrane 
therefore have a tendency (but not an overwhelming tendency) to be hydrophobic.   

The problem is to create a computer program to correctly classify a particular protein 
segment (i.e., a subsequence of amino acid residues extracted from the entire protein 
sequence) such as  

FYITGFFQILAGLCVMSAAAIYTV 

or 

TTDLWQNCTTSALGAVQHCYSSSVSEW 

as a transmembrane domain or a non-transmembrane area of the protein.   
The first segment consisting of 24 residues above comes from positions 96 and 119 of 

the mouse peripheral myelin protein 22 and is the third (of four) transmembrane domains 
in that protein.  The second segment (27 residues) comes from positions 35 and 61 of the 
same protein and is a non-transmembrane area of the protein.   

Success in this problem involves integrating information over the entire protein 
segment.  Both transmembrane domains and non-transmembrane areas of proteins 
contain some residues that are hydrophobic, neutral, and hydrophilic (water-loving).  A 
correct classification cannot be made by merely examining particular position in the 
given protein segment, by merely testing for the presence or absence of any one 
particular amino acid residue, or by merely analyzing any small combination of positions 
within the segment.   

8.4  Classifying Protein Segments as Transmembrane Domains 

Automated methods of machine learning may prove to be useful in discovering 
biologically meaningful information hidden in the rapidly growing databases of DNA 
sequences and protein sequences.   

We now consider the problem of deciding whether a given protein segment is a 
transmembrane domain or a non-transmembrane area of the protein.   

Algorithms written by biologists for the problem of classifying transmembrane 
domains in protein sequences are based on biochemical knowledge about hydrophobicity 



and other properties of membrane-spanning proteins [Kyte and Doolittle 1982; von 
Heijne 1992; Engelman, Steitz, and Goldman 1986].  Weiss, Cohen, and Indurkhya 
[1993] proposed an algorithm for this version of the transmembrane problem using a 
combination of human ingenuity and machine learning.   

This problem provides an opportunity to illustrate several different techniques of 
genetic programming, including the evolution of the architecture of a multi-part 
computer program using the new architecture-altering operations, the automatic 
discovery of reusable feature detectors, the use of iteration, and the use of state (memory) 
in genetically evolved computer programs.  

 Genetic programming has previously been demonstrated its ability to evolve a 
classifying program to perform this same task without using any biochemical knowledge 
in two different ways [chapter 18 of Koza 1994a].  In both instances, the architecture of 
the evolved program consisted of three zero-argument function-defining branches 
consisting of an unspecified sequence of work-performing steps, one iteration-
performing branch consisting of an unspecified sequence of work-performing steps that 
could access the as-yet-undiscovered function-defining branches, and one result-
producing branch consisting of an unspecified sequence of work-performing steps that 
could access the results of the as-yet-undiscovered iteration-performing branch.   

The question arises as to whether it is possible to solve the same problem in a run 
starting with a population of programs with no automatically defined functions at all and 
in which genetic programming employs the architecture-altering operations to 
dynamically determine an architecture that is capable of producing a satisfactory solution 
to the problem (i.e., perhaps three zero-argument automatically defined functions, but 
perhaps some other architecture).   

8.4.1  Preparatory Steps 
The premise behind the architecture-altering operations is that the competitive 
evolutionary process should be allowed to select the best architecture for the problem.  
We use the "minimalist" approach in which each program in the initial random 
population (generation 0) has no automatically defined functions.  

Figure 8.3 shows the common "minimalist" structure for generation 0 in which each 
program in the population consists of an iteration-performing branch, IPB, and a result-
producing branch, RPB, but no automatically defined functions (ADFs).   

When a given program is executed, its iteration-performing branch is executed first.  
Then, its result-producing branch is executed.  The result-producing branch 
communicates with the iteration-performing branch through memory (state) variables.  
The result-producing branch may call one or more of the automatically defined functions 
that may have been created by the architecture-altering operations.   
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Figure 8.3   
Common structure of all programs for generation 0 consisting of one iteration-
performing branch, IPB, and one result-producing branch, RPB.   

A wrapper (output interface) is used to convert the floating-point value produced by 
the result-producing branch into a binary outcome.  If the result-producing branch returns 
a positive numerical value, the segment will be classified as a transmembrane domain, 
but otherwise the segment will be classified as a non-transmembrane area of the protein.   

There are a total of 38 functions and terminals in the function set and the terminal set 
of this problem, including 7 initial functions, 23 initial terminals, 4 potential functions, 
and 4 potential terminals.   

8.4.1.1 Function Set 
When the architecture-altering operations are used, both functions and terminals can 
migrate from one part of the overall program to another (both because of the action of the 
architecture-altering operations and because of the action of crossover using point 
typing).  Consequently, we distinguish between  
• the initial function set, Finitial,  

• the initial terminal set, Tinitial,  

• the set of additional potential functions, Fpotential, and 

• the set of additional potential terminals, Tpotential. 
For this problem, the initial function set, Finitial, is common to both the result-

producing branch and the iteration-performing branch of each program; however, there is 
a specialized terminal set, Trpb-initial, for the result-producing branch, RPB, and a 
specialized terminal set, Tipb-initial, for the iteration-performing branch, IPB.   

For purposes of creating the initial random population of individuals, the function set, 
Finitial, for the result-producing branch, RPB, and the iteration-performing branch, IPB, 
of each individual program is 

Finitial = {+, -, *, %, IFGTZ, ORN, SETM0} 

taking 2, 2, 2, 2, 3, 2, and 1 arguments, respectively.   
Here +, -, and * are the usual two-argument arithmetic functions and % is the usual 

protected two-argument division function.   



The three-argument conditional branching operator IFGTZ ("If Greater Than Zero") 
evaluates and returns its second argument if its first argument is greater than or equal to 
zero, but otherwise evaluates and returns its third argument.   

The one-argument setting function, SETM0, sets the settable memory variable, M0, to a 
particular value (and returns that value).  This setting function operating on a specific 
settable variable [Koza 1992, 1994a] is the simplest kind of memory used in genetic 
programming.  Teller's indexed memory [1994] and Andre's memory maps [1994] 
illustrate more complex ways of incorporating state and memory into genetic 
programming.   
ORN is implemented as a two-argument numerically valued disjunctive function 

returning +1 if either or both of its arguments are positive, but returning –1 otherwise.  
ORN represents a short-circuiting (optimized) disjunction in the sense that if its first 
argument is positive, its second argument will not be evaluated (and any side-effecting 
function, such as SETM0, contained therein will remain unexecuted).   

Note that the automatically defined functions (ADF0, ADF1, ...) and their dummy 
arguments (ARG0, ARG1, ...) do not appear in generation 0.  However, once the 
architecture altering operations begin to be performed, ADF0, ADF1, ... and ARG0, 
ARG1, ... begin to appear in the population.  For practical reasons, a maximum of four 
automatically defined functions, each possessing between zero and four dummy 
arguments, was established.  Thus, the set of potential additional terminals, Tpotential, 
for this problem consists of  

Tpotential = {ARG0, ARG1, ARG2, ARG3}.  

The set of potential additional functions, Fpotential, consists of  

Fpotential = {ADF0, ADF1, ADF2, ADF3},  

each taking an as-yet-unknown number of arguments (between zero and four).  

8.4.1.2  Terminal Set 
For purposes of creating the initial random population of individuals, the terminal set, 
Tipb-initial, for the iteration-performing branch, IPB, is,  

Tipb-initial = {←, M0, LEN, (A?), (C?), ... , (Y?)}.  



← represents floating-point random constants between –10.000 and +10.000 chosen 
using a uniform probability distribution [Koza 1992].  Since we want to  encode each 
point (function or terminal) of each program tree in the population into one byte of 
memory in the computer, the number of different floating-point random constants is the 
difference between 256 and the total number of functions and terminals (initial and 
potential).  These two hundred or so initial random constants are adequate for this 
problem because the various arithmetic functions frequently recombine them during the 
run to produce new constants.   
M0 is a settable memory variable.  It is zero when execution of a given overall program 

begins for a particular fitness case.   
LEN represents the number of amino acid residues in the protein segment currently 

under consideration (i.e., the current fitness case).   
(A?) represents the zero-argument residue-detecting function returning a numerical 

+1 if the current residue is alanine (A) but otherwise returning a numerical –1.  A similar 
residue-detecting function (from (C?) to  (Y?)) is defined for each of the 19 other 
amino acids.  Each time iterative work is performed by the body of the iteration-
performing branch, the current residue of the protein is advanced to the next residue of 
the protein segment until the end of the entire protein segment is encountered.  If a 
residue-detecting function is directly called from an iteration-performing branch, IPB (or 
indirectly called by virtue of being within a yet-to-be-created automatically defined 
function that is called by the iteration-performing branch), the residue-detecting function 
is evaluated for the current residue of the iteration.   

For purposes of creating the initial random population of individuals, the terminal set, 
Trpb-initial, for the result-producing branch, RPB, is,  

Trpb-initial = {←, M0, LEN}.  

Note that a residue-detecting function may migrate into the body of a yet-to-be-created 
automatically defined function which may, in turn, become referenced by some yet-to-
be-created call from a result-producing branch.  We deal with this possibility by 
specifying that when a residue-detecting function is executed inside a result-producing 
branch (or called indirectly by virtue of being inside a yet-to-be-created automatically 
defined function that is referenced by a yet-to-be-created call from a result-producing 
branch), the residue-detecting function is evaluated for the leftover value of the iterative 
index (i.e., the last residue of the protein segment).  This treatment protects the overall 
program from stopping or misbehaving due to an undefined variable; it mirrors what 



happens when a programmer carelessly references an array using a leftover index from a 
consummated loop.   

Because we use numerically valued logic (i.e., the ORN function), numerically valued 
residue-detecting functions, and other numerically valued functions, the set of functions 
and terminals is closed in the sense that any composition of functions and terminals can 
be successfully evaluated.  This remains the case even after automatically defined 
functions (with varying numbers of arguments) begin to be created.   

8.4.1.3  Fitness Measure 
Fitness measures how well a particular genetically-evolved classifying program predicts 
whether a given segment is, or is not, transmembrane domain.  The fitness cases for this 
problem consist of protein segments.  The classifications made by a genetically-evolved 
program for each protein segment in the in-sample set of fitness cases (the training set) 
were compared to the correct classification for the segment.  Raw fitness for this problem 
is based on the value of the correlation, C.  Standardized  ("zero is best") fitness for this 

problem is 
1 −C

2
.   

The same proteins as used in chapter 18 of Koza 1994a were used here.  One of the 
transmembrane domains of each of these 123 proteins was selected at random as a 
positive fitness case for this in-sample set.  One segment that was of the same length as 
the chosen transmembrane segment and that was not contained in any of the protein's 
transmembrane domains was selected from each protein as a negative fitness case.  Thus, 
there are 123 positive and 123 negative fitness cases in the in-sample set of fitness cases.  
In addition, 250 out-of-sample fitness cases (125 positive and 125 negative) were created 
from the remaining 125 proteins in a similar manner in order to measure how well a 
genetically-evolved program generalizes to other, previously unseen fitness cases from 
the same problem environment (i.e., the out-of-sample data or testing set).   

8.4.1.4  Parameters Controlling the Run 
The architecture-altering operations are intended to be used sparingly on each generation.  
For our transmembrane problem, the percentage of operations on each generation after 
generation 4 was 86% crossovers; 10% reproductions; 0% mutations; 1% branch 
duplications; 1% argument duplications; 0.3% branch deletions; 0.3% argument 
deletions; 1% branch creations; and 0% argument creations.  Since we do not want to 
waste large amounts of computer time in early generations where only a few programs 
have any automatically functions at all, we decided to get the run off to a fast start by 



setting the percentage of branch creation operations for generations 1 through 4 to 30% 
(with 60% crossovers and 10% reproductions).   

A maximum size of 200 points was established for each result-producing branch, each 
iteration-performing branch, and each yet-to-be-created automatically defined function.   

The other parameters for controlling the runs of genetic programming were the same 
default values used in Koza [1994a].   

8.4.1.5  Implementation on Parallel Computer 
The problem (coded in ANSI C) was run on a parallel Parystec computer system 
consisting of 64 Power PC 601 processors arranged in a toroidal mesh with a host PC 
Pentium type computer (running Windows).  The Power PC processors communicate by 
means of an INMOS transputer that is associated with each Power PC processor.  The so-
called distributed genetic algorithm or island model for parallelization [Goldberg l989] 
was used.  That is, subpopulations (called demes after Sewell Wright 1943] were situated 
at the processing nodes of the system.  Population size was Q =  2,000 at each of the D = 
64 demes for a total population size of M = 128,000.  The initial random subpopulations 
were created locally at each processing node.  Generations were run asynchronously on 
each node.  The time-consuming fitness evaluation of the subpopulation of the node and 
the genetic operations were performed locally on each node.  Then, four boatloads, each 
consisting of B = 5% (the migration rate) of the subpopulation of the node, were selected 
on the basis of fitness and dispatched to each of the four toroidally adjacent nodes.  
Details of the parallel implementation of genetic programming can be found in Andre 
and Koza [1996, as chapter 18 of this volume].  

8.4.2  Results 
A program that is slightly superior to that written by knowledgeable human investigators 
was created by our first run.  Several subsequent runs produced equally good results and 
all subsequent runs produced results that were nearly as good.  

Focusing on our first run for purposes of discussion, the best-of-generation program 
for generation 0 has an in-sample correlation of 0.3604.  The initial random population of 
a run of genetic programming is a blind random search of the search space defined by the 
chosen representation and provides a baseline for the progress of evolution during the 
run.   

The best-of-generation program for generation 4 (with an in-sample correlation of 
0.7150) has two automatically defined functions (and an argument map of {2 2}), each 
possessing two arguments.  Since automatically defined functions did not exist in 
generation 0, the automatically defined functions found in this program are the 



consequence of the architecture-altering operations.  This particular program is 
interesting because it illustrates the emergence of a hierarchy (e.g., ADF0 refers to ADF1) 
that frequently occurs with the architecture-altering operations.   

The second-best program of generation 6 (with in-sample correlation of 0.7212) has 
four automatically defined functions (possessing 0, 3, 2, and 1 arguments, respectively).  
This program (with an argument map of {0 3 2 1}) contains a complex hierarchy 
involving ADF0, ADF1, ADF2, and ADF3.   

One of the pace-setting programs (i.e., a best-of-generation program reported from one 
of the 64 processors that is better than any previously reported program) from generation 
7 does not have any automatically defined functions at all.  As one would expect, this 
program (with in-sample correlation of 0.7315) is rather large.  This program  is 
noteworthy because it is the last program in this run without automatically defined 
functions that shows up as a pace-setting program.  Thereafter, all programs without 
automatically defined functions consistently run behind the pack in the competitive race 
to accrue fitness.  This observation (which also applies to every other run of this 
particular problem) is consistent with the proposition that automatically defined functions 
usually accelerate the solution of problems by genetic programming.   

As this run progressed, many different architectures appeared among the pace-setting 
individuals, including programs with argument maps of {1},{2}, {0 0 2 2}, {3}, {0}, {2 
1 2 2}, {1 3}, {3 2}, {0 1}, {0 0}, {0 0 0}, {0 0 0 0}, and {0 0 0 1}.   

The out-of-sample correlation generally increases in tandem with the in-sample 
correlation until generation 28 of this run.  The best program of generation 28 scores an 
in-sample correlation of 0.9596, an out-of-sample correlation of 0.9681.  The error rate 
is the number of fitness cases for which the classifying program is incorrect divided by 
the total number of fitness cases.  The in-sample error rate is 3% for this individual; its 
out-of-sample error rate is 1.6%.   

After generation 28, the in-sample correlation continues to rise while its out-of-sample 
counterpart begins to drop off.  Similarly, after generation 28, the in-sample error rate 
continues to drop while its out-of-sample counterpart begins to rise.  This kind of 
divergence is usually interpreted as the onset of overfitting.  Accordingly, we designated 
the best-of-generation program from generation 28 as the best-of-run program for this 
run.   

Figure 8.4 shows the architecture of the best-of-run program from generation 28 with 
208 points (i.e., functions and terminals in the work-performing parts of its branches).  
This program has one zero-argument automatically defined function, ADF0; one 
iteration-performing branch, IPB; and one result-producing branch, RPB.   



After genetic programming 
evolves a satisfactory program for 
a problem, it is frequently very 
difficult to understand the 
behavior of the evolved program.  
A fortunate combination of 
circumstances permits the analysis 
of the otherwise incomprehensible 
208-point program evolved on 
this particular run.  First, even 
though a reference to ADF0 
migrated into the 169-point result-
producing branch, ADF0 
fortuitously played no role 
whatsoever in the result produced 
by the result-producing branch.  
Second, none of the 20 residue-
detecting functions appeared in 
the result-producing branch.  
Thus, the value returned by this 
particular result-producing branch 
depends only on the value of the 

settable variable M0 (communicated from the iteration-performing branch to the result-
producing branch) and the length, LEN, of the current protein segment.  That is, RPB was 
a function of only two variables, LEN and M0.  The range of values of LEN represented 
by the fitness cases was, of course, known; LEN ranged between 15 and 45.  We were 
then able to compute a maximum range of values that could be attained by the settable 
variable M0 for this particular program.  We embedded the evolved program (along with 
its wrapper) into a computer program that looped over the known range for LEN and the 
inferable maximum range for M0.   

Figure 8.5 shows a graph of the behavior of the seemingly incomprehensible 169-point 
result-producing branch from the best-of-run 208-point program from generation 28.  
The wrapperized output of this result-producing branch classifies a protein segment as a 
transmembrane domain for the shaded region (labeled "YES") and classifies the segment 
as a non-transmembrane area of the protein for the non-shaded region (labeled "NO").  
The heavy black frame highlights the area where LEN lies in its known range and where 
M0 lies in its inferable maximum range.  
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Architecture of best-of-
run program from 
generation 28 containing 
one zero-argument 
automatically defined 
function, ADF0; one 
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branch, IPB0; and one 
result-producing branch, 
RPB.  

 
Figure 8.5  
Two-part classification produced by the result-producing branch 
from the best-of-run program from generation 28 as a function of 
the length, LEN, of the protein segment and the value of M0.   



A value of M0 as high as 168 can only be attained if a protein segment consisted of 42 
consecutive electrically charged residues of glutamic acid (E).  In fact, glutamic acid is 
only one of 20 amino acid residues and no actual protein has this bizarre composition.  
For actual protein segments, only values of M0 that are less than 50 are encountered.   

Figure 8.6 is a cutaway portion of figure 8.5 that shows the behavior of the result-
producing branch only for values of LEN between 15 and 42 and for values of M0 in the 
new, constrained range between 0 and 50 (highlighted with a new, smaller heavy black 
frame).  The area inside the new, smaller frame is neatly partitioned into two parts.   

We then perform a linear regression on the boundary that partitions figure 8.6 into two 
parts and find that 

M0 = 3.1544 + 0.9357 LEN.  
These observations permit the operation of the evolved program for classifying a 

protein segment as a transmembrane domain or a non-transmembrane area of the protein 
to be stated as follows:   
1. Create a sum, SUM, by adding in 4 for each E in the segment and 2 for each C, D, G, 
H, K, N, P, Q, R, S , T, W, or Y (i.e., the 13 residues other than E, A, M, V, I, F or L).   
2. If the quantity 

 



 SUM – 3.1544

0.9357    <  LEN,  

then classify the protein segment as a transmembrane domain; otherwise, classify it as a 
non-transmembrane area of the protein.   

Note that glutamic acid (E) is an electrically charged and hydrophilic amino acid 
residue.  Note also that A (alanine), M (methionine), V (valine), I (isoleucine), F 
(phenylalanine) and L(leucine) constitute six of the seven most hydrophobic residues on 
the often-used Kyte-Dolittle hydrophobicity scale [Kyte and Dolittle 1982].   

8.4.3  Comparison of Seven Methods 
Table 8.1 shows the out-of-sample error rate for the four algorithms for classifying 
transmembrane domains described in Weiss, Cohen, and Indurkhya [1993] as well as for 
three approaches using genetic programming, namely the set-creating version [sections 
18.5 through 18.9 of Koza 1994a], the arithmetic-performing version [sections 18.10 and 
18.11 of Koza 1994a], and the version reported herein.   
Table 8.1  
Comparison of seven methods.   

Method Error rate 
von Heijne 1992 2.8% 
Engelman, Steitz, and Goldman 1986 2.7% 



Kyte and Doolittle 1982 2.5% 
Weiss, Cohen, and Indurkhya 1993 2.5% 
GP + Set-creating ADFs 1.6% 
GP + Arithmetic-performing ADFs   1.6% 
GP + ADFs + Architecture-altering operations 1.6% 
The error rate of all three versions using genetic programming are identical; all three 

are better than the error rates of the other four methods.  Genetic programming with the 
architecture-altering operations was able to evolve a successful classifying program for 
transmembrane domains starting from a population that initially contained no 
automatically defined functions.  All three versions using genetic programming (none of 
which employs any foreknowledge of the biochemical concept of hydrophobicity) are 
instances of an algorithm discovered by an automated learning paradigm whose 
performance is slightly superior to that of algorithms written by knowledgeable human 
investigators.   
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Figure 8.6  

Cutaway portion of figure 8.5 showing the behavior of the result-producing branch for 
the area of interest.   

8.5  Conclusion 

The biological theory of gene duplication motivated six architecture-altering operations 
that enable genetic programming to evolve the architecture of a computer program during 
a run.  Genetic programming with the architecture-altering operations was then applied to 
the problem of evolving a computer program to classify a given protein segment as being 
a transmembrane domain or non-transmembrane area of a protein (without biochemical 
knowledge, such as the hydrophobicity values used in human-written algorithms for this 
task).  The out-of-sample error rate for the best genetically-evolved program achieved 
was slightly better than that of previously-reported human-written algorithms for this 
problem.  This is an instance of an automated machine learning algorithm rivaling human 
performance on a problem.   



The effect of the architecture-altering operations is to make the architecture of a 
satisfactory solution an emergent property of the genetic programming run (rather than a 
human choice made in advance of the run).   
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