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ABSTRACT 
This paper describes how the biological theory of gene duplication 

described in Susumu Ohno's provocative book, Evolution by Means of Gene 
Duplication, was brought to bear on a vexatious problem from the domain of 
automated machine learning, namely the problem of architecture discovery.  
Six new architecture-altering operations for genetic programming were 
motivated by the way that new biological structures, functions, and behaviors 
arise in nature using gene duplication.  Genetic programming with the new 
architecture-altering operations was then applied to the transmembrane 
protein segment identification problem.  The out-of-sample error rate for the 
best genetically-evolved program achieved was slightly better than that of 
previously-reported human-written algorithms for this problem.  
1.  Introduction and Overview 
The goal of automatic programming is to create, in an automated way, a computer 
program that enables a computer to solve a problem.  Ideally, an automatic 
programming system should require that the user pre-specify as little as possible 
about the problem environment.  In particular, it is desirable that the user not be 
required to prespecify the architecture of the ultimate solution to his problem 
before he can apply the technique to his problem. 

In nature, sexual recombination (crossover) exchanges alleles (gene values) at 
particular locations (loci) along the chromosome (a molecule of DNA).  John 
Holland's pioneering Adaptation in Natural and Artificial Systems (1975) described 
how an analog of the naturally-occurring evolutionary process using analogs of 
crossover and mutation can be applied to solving artificial problems using what is 
now called the genetic algorithm.   

In both natural evolution and the artificial evolutionary process implemented by 
the genetic algorithm, crossover merely exchanges alleles (gene values) at 
particular locations along an already-existing fixed-size chromosome.  These 



exchanges do not explain how new structures, new functions, and new behaviors 
arise in nature.  Indeed, in nature, there is not only short-term optimization of 
alleles in their fixed locations within a fixed-size chromosome, but long-term 
emergence of new proteins (which, in turn, create new structures, functions, and 
behaviors).  The emergence of new proteins alters the architecture of the 
chromosome.  Indeed, genome lengths in nature have generally increased with the 
emergence of new and more complex organisms (Dyson and Sherratt 1985).   

Returning to genetic algorithms, a change in the architecture of a chromosome 
corresponds to a dynamic alteration, during a run of the algorithm, of the user-
created mapping (the encoding and decoding) between points from the search space 
of the problem and instances of the artificial chromosome.   

The book  Genetic Programming: On the Programming of Computers by Means 
of Natural Selection (Koza 1992) describes an extension of Holland's genetic 
algorithm in which the genetic population consists of computer programs (that is, 
compositions of primitive functions, terminals, and possibly automatically defined 
functions).  See Kinnear 1994 and Koza and Rice 1992.  A run of genetic 
programming, in its most basic form, automatically creates the size and shape of a 
single-part main program as well as the sequence of work-performing steps in that 
main program.     

Genetic Programming II: Automatic Discovery of Reusable Programs (Koza 
1994a, 1994b) describes how to evolve multi-part programs consisting of a main 
program and one or more reusable, parameterized, hierarchically-callable 
subprograms.  An automatically defined function is a function (i.e., subroutine, 
procedure, DEFUN, module) that is dynamically evolved during a run of genetic 
programming in association with a particular individual program in the population 
and which may be invoked by a calling program (e.g., a main program) that is 
concurrently being evolved.   

Figure 1 shows an overall computer program (presented as a parse tree) 
consisting of a result-producing main branch (RPB) on the right and one function-
defining branch on the left.  The function-defining branch defines a two-argument 
automatically defined function (called ADF0).  The result-producing branch 
invokes the subroutine (ADF0) from two different places (at 481 and 487) using 
different pairs of arguments for the two calls.  In particular, the terminals D1 and 
D2 are used for the first call at 481 and the terminal D3 at 488 and the sub-
expression (NOR D4 D0) at 489 are used for the second call.  The function-
defining branch has an argument list at 412 consisting of two dummy arguments 
(formal parameters), ARG0 and ARG1.  The dummy arguments appear in the body 
of the function-defining branch; however, when the subroutine ADF0 is called by 
the result-producing branch, these dummy arguments are instantiated with 
(generally) different values.    

When automatically defined functions are being evolved in a run of genetic 
programming, it becomes necessary to determine the architecture of the overall to-
be-evolved program.  The specification of the architecture consists of (1) the 
number of function-defining branches in the overall program, (2) the number of 



arguments (if any) possessed by each function-defining branch, and (3) if there is 
more than one function-defining branch, the nature of the hierarchical references (if 
any) allowed between each function-defining branch and the other branches 
(function-defining and result-producing) of the overall program.   
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Figure 1  Program consisting of one two-argument function-defining branch 
(ADF0) and one result-producing branch. 

This paper explores the issue of whether it is possible to determine the 
architecture of a multi-part program dynamically during a run of genetic 
programming (rather than require that the user predetermine that architecture 
before the run starts).  

In genetic programming (with or without automatically defined functions), 
crossover is analogous to the exchanging of alleles (gene values) in a chromosome.  
In the case of genetic programming, sub-trees (containing a composition of the 
primitive functions and terminals of the problem) are exchanged by the crossover 
operation.  The analog of a genome change corresponds to a dynamic alteration, 
during a run of genetic programming, of the architecture of a computer program.   

The question of how to automatically create the architecture of the overall 
program in an evolutionary approach to automatic programming, such as genetic 
programming, has a parallel in the biological world: how new structures and 
behaviors are created in living things.   

Thus, the question of how new structures and behaviors are created in living 
things corresponds to the question of how new DNA that encodes for a new protein 
is created.  Ordinary recombination and mutation do not provide the answer.  In 
nature, sexual recombination ordinarily recombines part of an existing chromosome 
of one parent with a corresponding (homologous) part of an existing chromosome 
from a second parent.  Ordinary mutation occasionally merely alters isolated alleles 
belonging to an existing chromosome with an existing architecture.   

In his seminal 1970 book Evolution by Gene Duplication, Susumu Ohno points 
out that simple point mutation and crossover are insufficient to explain major 
evolutionary changes.   



"...while allelic changes at already existing gene loci suffice for racial 
differentiation within species as well as for adaptive radiation from an 
immediate ancestor, they cannot account for large changes in evolution, 
because large changes are made possible by the acquisition of new gene loci 
with previously non-existent functions."  (Emphasis added).  

So what is the origin of "new gene loci with previously non-existent functions"? 
In certain very rare and unpredictable instances, recombination does not occur in 

the usual way and, instead, a gene duplication occurs.  A gene duplication is a rate 
and illegitimate recombination event that results in the duplication of a 
subsequence of a chromosome.  

Ohno's 1970 book proposed the provocative thesis that the creation of new 
proteins (and hence new structures, functions, and behaviors in living things) 
begins with a gene duplication and that gene duplication is "the major force of 
evolution."   

This paper shows how the naturally-occurring mechanism of gene duplication 
(and the complementary mechanism of gene deletion) motivated the addition of six 
new architecture-altering operations to genetic programming.  The six architecture-
altering operations of branch duplication, branch creation, branch deletion, 
argument duplication, argument creation, and argument deletion enable genetic 
programming evolve the architecture of a multi-part program containing 
automatically defined functions during a run of genetic programming.    

The potential usefulness of the architecture-altering operations has been 
previously demonstrated using simple problems such as Boolean parity problems 
(Koza 1995).  In this paper, genetic programming with the architecture-altering 
operations is applied to one of the more difficult problems in Genetic Programming 
II, namely the problem of evolving a computer program to classify a given protein 
segment as being a transmembrane domain or non-transmembrane area of the 
protein (without using biochemical knowledge, such as the hydrophobicity values, 
used in human-written algorithms for this task).   
2. Gene Duplication and Deletion in Nature 
Ohno's Evolution by Gene Duplication (1970) corrects the mistaken notion that 
natural selection is a mechanism for promoting change.  Instead, Ohno emphasizes 
the essentially conservative role of natural selection in the evolutionary process: 

"...the true character of natural selection ... is not so much an advocator or 
mediator of heritable changes, but rather it is an extremely efficient policeman 
which conserves the vital base sequence of each gene contained in the genome.  
As long as one vital function is assigned to a single gene locus within the 
genome, natural selection effectively forbids the perpetuation of mutation 
affecting the active sites of a molecule."  (Emphasis in original).  

Ohno continues, 
"Only by the accumulation of forbidden mutations at the active sites can the 
gene locus change its basic character and become a new gene locus.  An 
escape from the ruthless pressure of natural selection is provided by the 
mechanism of gene duplication.  By duplication, a redundant copy of a locus is 



created.  Natural selection often ignores such a redundant copy, and, while 
being ignored, it accumulates formerly forbidden mutations and is reborn as a 
new gene locus with a hitherto non-existent function."  (Emphasis in original). 

Ohno concludes, 
"Thus, gene duplication emerges as the major force of evolution." 

Natural selection exerts considerable force in favor of maintaining a gene that 
encodes for the manufacture of a protein that is important for the successful 
performance and survival of the organism.  But, after a gene duplication has 
occurred, there is no disadvantage associated with the loss of the second way of 
manufacturing the original protein.  Consequently, natural selection usually exerts 
little or no pressure to maintain a second way of manufacturing the same protein.  
Over a period of time, the second gene may accumulate additional changes and 
diverge more and more from the original gene.  Eventually the changed gene may 
lead to the manufacture of a distinctly new and different protein that actually does 
affect the structure and behavior of the living thing in some advantageous or 
disadvantageous way.  When a changed gene leads to the manufacture of a viable 
and advantageous new protein, natural selection then preserves the new gene. 

Ohno's provocative thesis is supported by the discovery of pairs of proteins with 
similar sequences of DNA and similar sequences of amino acids, but different 
functions.  Examples include trypsin and chymotrypsin; the protein of microtubules 
and actin of the skeletal muscle; myoglobin and the monomeric hemoglobin of 
hagfish and lamprey; myoglobin used for storing oxygen in muscle cells and the 
subunits of hemoglobin in red blood cells of vertebrates; = and the light and heavy 
immunoglobin chains (Dyson and Sherratt 1985, Hood and Hunkapiller  1991).  
For the Escherichia coli bacteria, more than 30% of its proteins are the result of 
gene duplications (Riley 1993).  These proteins include its DNA polymerases, 
dehydrogenases, ferredoxins, carbamoyl-phosphate synthetases, F-type ATPases, 
DNA topoisomerases.  More complex organisms have a general tendency to have 
more different kinds of structures, to have more complex structures, to perform 
more different functions, to have more different kinds of behaviors, to have more 
expressed proteins, and to have longer genomes (Dyson and Sherratt 1985).   

Gene deletion also occurs in nature.  In gene deletion, there is a deletion of a 
portion of the string of nucleiotide bases that would otherwise be translated and 
manufactured into work-performing proteins in the living cell.  After a gene 
deletion occurs, some particular protein that was formerly manufactured will no 
longer be manufactured.  The absence of the protein may then affect the structure 
and behavior of the living thing in some advantageous or disadvantageous way.  If 
the deletion is advantageous, natural selection will tend to perpetuate the change, 
but if the deletion is disadvantageous, natural selection will tend to lead to the 
extinction of the change.  
3.  Architecture-Altering Operations 
The six architecture-altering genetic operations provide a way of evolving the 
architecture of a multi-part program during a run of genetic programming.  During 
each generation of the evolutionary process, a certain percentage of the individuals 



in the population participate in the architecture-altering operations.  Meanwhile, 
Darwinian selection causes differential selection in favor of more fit individuals.  
And, during each generation, individuals in the population are modified by the 
operations of crossover and mutation.  The result is that the evolutionary process 
will select against individuals in the population with architectures that are less 
suitable for solving the problem.  Individuals with unsuitable architectures will 
tend to become extinct over a period of generations. Similarly, individuals with 
architectures that facilitate solving the problem will tend to prosper.   
3.1.  Branch Duplication 
The operation of branch duplication duplicates one of the branches of a program.  
First, a program is selected from the population to participate in this operation.  
This step is performed probabilistically on the basis of fitness for this operation 
(and all the other architecture-altering operations described herein).  Second, one of 
the function-defining branches of the selected program is picked as the branch-to-
be-duplicated.  Third, a uniquely-named new function-defining branch is added to 
the selected program, thus increasing the number of function-defining branches in 
the selected program.  The new function-defining branch has the same argument 
list and the same body as the branch-to-be-duplicated.  Fourth, for each occurrence 
of an invocation of the branch-to-be-duplicated anywhere in the selected program 
(e.g., the result-producing branch or any other branch that invokes the branch-to-
be-duplicated), a random choice is made either to leave that invocation unchanged 
or to replace that invocation with an invocation of the new branch. The operation of 
branch duplication (and all the other architecture-altering operations described 
herein) always produces a syntactically valid program. 

The step of selecting a program for all the operations described herein is 
performed probabilistically on the basis of fitness, so that a program that is more fit 
has a greater probability of being selected to participate in the operation than a less 
fit program.   

The operation of branch duplication as defined above (and all the other 
architecture-altering operations described herein) always produce a syntactically 
valid program (given closure).   

Figure 2 shows the program resulting after applying the operation of branch 
duplication to figure 1.  Specifically, the function-defining branch 410 of figure 1 
defining ADF0 (also shown as 510 of figure 2) is duplicated and a new function-
defining branch (defining ADF1) appears at 540 in figure 2.  There are two 
occurrences of invocations of the branch-to-be-duplicated, ADF0, in the result-
producing branch of the selected program, namely ADF0 at 481 and 487 of figure 
1.  For each occurrence, a random choice is made to either leave the occurrence of 
ADF0 unchanged or to replace it with a reference to the newly created ADF1.  For 
the first invocation of ADF0 at 481 of figure 1, the choice is randomly made to 
replace ADF0 481 with ADF1 581 in figure 2.  The arguments for the invocation of 
ADF1 581 are D1 582 and D2 583 in figure 2 (i.e., they are identical to the 
arguments D1 482 and D2 483 for the invocation of ADF0 at 481 in figure 1).  For 
the second invocation of ADF0 at 487 of figure 1, ADF0 is left unchanged.   



The new branch is identical to the previously existing branch (except for the 
name ADF1 at 541 in figure 2).  Moreover, ADF1 at 581 is invoked with the same 
arguments as ADF0 at 481.  Therefore, this operation does not affect the value 
returned by the overall program.  

The operation of branch duplication can be interpreted as a case splitting.  After 
the branch duplication, the result-producing branch invokes ADF0 at 587 but ADF1 
at 581.  ADF0 and ADF1 can be viewed as separate procedures for handling the 
two subproblems (cases).  Subsequent genetic operations may alter one or both of 
these two presently-identical function-defining branches and these subsequent 
changes to lead to a divergence in structure and behavior.  This subsequent 
divergence may be interpreted as a specialization or refinement.  That is, once 
ADF0 and ADF1 diverge, ADF0 can be viewed as a specialization for handling for 
subproblem associated with its invocation at 587 and ADF1 at 581 can be viewed 
as a specialization for handling its subproblem.  Details of this operation (and the 
other architecture-altering operations below) are found in Koza 1995.   
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Figure 2  Program consisting of two two-argument function-defining branches 
(ADF0 and ADF1) and one result-producing branch.  
3.2.  Argument Duplication 
In the operation of argument duplication, a uniquely-named new argument is added 
to the argument list of the picked function-defining branch of the selected program, 
thus increasing, by one, the number of arguments in its argument list.  Then, for 
each occurrence of the argument-to-be-duplicated anywhere in the body of picked 
function-defining branch of the selected program, a random choice is made either 
to leave that occurrence unchanged or to replace that occurrence with the new 
argument.   

For each occurrence of an invocation of the picked function-defining branch 
anywhere in the selected program, the argument subtree corresponding to the 
argument-to-be-duplicated is identified and duplicated in that argument subtree in 



that invocation, thereby increasing the number of arguments in the invocation.  The 
effect of this operation is to leave unchanged the value returned by the overall 
program.   

The operation of argument duplication can also be interpreted as a case-splitting.   
3.3.  Branch Creation 
The branch creation operation creates a new automatically defined function within 
an overall program by picking a point in the body of one of the function-defining 
branches or result-producing branches of the selected program.  This picked point 
becomes the top-most point of the body of the branch-to-be-created.   

This operation generalizes branch duplication in that any point of any branch may 
be picked and in that the picked point may even be in the result-producing branch.   
3.4.  Argument Creation  
The argument creation operation creates a new dummy argument within a 
function-defining branch of a program.  
3.5.  Branch Deletion 
The operation of branch deletion deletes an automatically defined function.  The 
operation of branch deletion can be interpreted as a generalization because it 
causes a common treatment to be given to two cases that previously received 
differentiated (specialized) treatment.  This approach is, of course, not semantics-
preserving.   
3.6.  Argument Deletion 
The operation of argument deletion deletes one of the arguments to one of the 
automatically defined functions of a program.   
3.7.  Structure-Preserving Crossover 
When the architecture-altering operations are used, the initial population is created 
in accordance with a constrained syntactic structure that supports the structure 
shown in figure 1.  As soon as the architecture-altering operations start being used, 
the population quickly becomes architecturally diverse.  Structure-preserving 
crossover with point typing (Koza 1994a) permits robust recombination while 
simultaneously guaranteeing that any pair of architecturally different parents will 
produce syntactically valid offspring.   
4.  Classifying Protein Segments as Transmembrane Domains 
Algorithms written by biologists for the problem of classifying transmembrane 
domains in protein sequences are based on biochemical knowledge about 
hydrophobicity and other properties of membrane-spanning proteins (Kyte-
Doolittle 1982; von Heijne 1992; Engelman, Steitz, and Goldman 1986).  Weiss, 
Cohen, and Indurkhya (1993) proposed an algorithm for this version of the 
transmembrane problem using a combination of human ingenuity and machine 
learning.   

Genetic programming has previously been demonstrated its ability to evolve a 
classifying program to perform this same task without using any biochemical 
knowledge in two different ways (chapter 18 of Koza 1994a, 1994c).  In these 
previous instances, the architecture of the evolved program consisted of three zero-



argument function-defining branches consisting of an unspecified sequence of 
work-performing steps, one iteration-performing branch consisting of an 
unspecified sequence of work-performing steps that could access the as-yet-
undiscovered function-defining branches, and one result-producing branch 
consisting of an unspecified sequence of work-performing steps that could access 
the results of the as-yet-undiscovered iteration-performing branch.   

The question arises as to whether it is possible to solve the same problem in a run 
starting with a population of programs with no automatically defined functions at 
all and in which genetic programming employs the architecture-altering operations 
to evolve an architecture that is capable of producing a satisfactory solution.   
4.1.  Transmembrane Domains in Proteins 
A transmembrane protein is embedded in a membrane (such as a cell membrane) in 
such a way that part of the protein is located on one side of the membrane, part is 
within the membrane, and part is on the opposite side of the membrane.  
Understanding the behavior of transmembrane proteins requires identification of 
the portion(s) of the protein sequence that are actually embedded within the 
membrane, such portion(s) being called the transmembrane domain(s) of the 
protein.  Biological membranes are of oily hydrophobic (water-hating) 
composition.  The amino acid residues of the transmembrane domain of a protein 
that are exposed to the membrane therefore have a tendency to be hydrophobic.  
Success in this problem involves integrating information over the entire protein 
segment.  
4.2.  Preparatory Steps 
The premise behind the architecture-altering operations is that the competitive 
evolutionary process should be allowed to select the best architecture.  Thus, each 
program in the initial random population (generation 0) begins a result-producing 
branch and an iteration-performing branch, but no automatically defined functions.   

When a given program is executed, its iteration-performing branch is executed 
first.  Then, its result-producing branch is executed.  The result-producing branch 
communicates with the iteration-performing branch through memory (state) 
variables.  The result-producing branch may call one or more of the automatically 
defined functions that may have been created by the architecture-altering 
operations.  A wrapper (output interface) is used to convert the floating-point value 
produced by the result-producing branch into a binary outcome.  If the result-
producing branch returns a positive value, the segment will be classified as a 
transmembrane domain, but otherwise the segment will be classified as a non-
transmembrane area.   

Details about the function set, the terminal set, the parameters for controlling 
runs, and the implementation of the runs on a parallel computer system are found in 
Koza and Andre 1996a, 1996b. 

For purposes of creating the initial random population of individuals, the function 
set, Finitial, for the result-producing branch, RPB, and the iteration-performing 
branch, IPB, of each individual program is 



Finitial = {+, -, *, %, IFGTZ, ORN, SETM0}. 
IFGTZ  ("If Greater Than Zero") is a three-argument conditional branching 

operator that evaluates and returns its second argument if its first argument is 
greater than or equal zero, but otherwise evaluates and returns its third argument.  
ORN is a two-argument numerically valued disjunctive function.  The one-argument 
setting function, SETM0, sets the settable memory variable, M0, to a particular 
value.   
Note that the automatically defined functions (ADF0, ADF1, ...) and their dummy 
arguments (ARG0, ARG1, ...) do not appear in generation 0; however, once the 
architecture altering operations begin to be performed, they begin to appear. 

For purposes of creating the initial random population of individuals, the terminal 
set, Tipb-initial, for the iteration-performing branch, IPB, is,  
Tipb-initial = {←, M0, LEN, (A?), (C?), ... , (Y?)}.  
← represents floating-point random constants between –10.000 and +10.000.  M0 

is a settable memory variable.  It is zero when execution of a program begins for a 
particular fitness case.  LEN represents the length of the current protein segment.   
(A?) represents the zero-argument residue-detecting function returning a 

numerical +1 if the current residue is alanine (A) but otherwise returning a 
numerical –1.  A similar residue-detecting function (from (C?) to  (Y?)) is 
defined for each of the 19 other amino acids.  Each time the body of the iteration-
performing branch is executed, the current residue of the protein is advanced to the 
next residue of the protein segment until the end of the entire protein segment is 
encountered.  If a residue-detecting function is directly called from an iteration-
performing branch, IPB (or indirectly called by virtue of being within a yet-to-be-
created automatically defined function that is called by the iteration-performing 
branch), the residue-detecting function is evaluated for the current residue of the 
iteration.   

For purposes of creating the initial random population of individuals, the terminal 
set, Trpb-initial, for the result-producing branch, RPB, is,  
Trpb-initial = {←, M0, LEN}.  

Because we use numerically valued logic (i.e., the ORN function), numerically 
valued residue-detecting functions (e.g., (A?)), and other numerically valued 
functions (such as the arithmetic functions), the set of functions and terminals is 
closed in the sense that any composition of functions and terminals can be 
successfully evaluated.   

The fitness of a particular genetically-evolved classifying program is measured 
by the correlation between the wrapperized output of its result-producing branch 
and the correct classification, over an in-sample set of fitness cases (the training 
set) consisting of protein segments.   The error rate is the number of fitness cases 
for which the classifying program is incorrect divided by the total number of fitness 
cases.  The same proteins as used in chapter 18 of Koza 1994a were used here.   



4.3.  Results 
A program that is superior to that written by knowledgeable human investigators 
was created by our first run (and subsequent runs).  

As the first run progressed, many different architectures appear among the best-
of-generation individuals from various generations.   

The out-of-sample correlation generally increases in tandem with the in-sample 
correlation until generation 28 of this run.  The best program of generation 28 
scores an in-sample correlation of 0.9596, an out-of-sample correlation of 0.9681, 
an in-sample error rate of 3%, and an out-of-sample error rate of 1.6%.  After 
generation 28, the in-sample correlation continues to rise while its out-of-sample 
counterpart begins to drop off (and the in-sample error rate continues to drop while 
its out-of-sample counterpart begins to rise).  This kind of divergence is usually 
interpreted as the onset of overfitting.  Accordingly, we designated the best-of-
generation program from generation 28 as the best-of-run program for this run.   

The evolved best-of-run program for classifying a protein segment as a 
transmembrane domain or a non-transmembrane area can be restated as follows: 

(1) Create a sum, SUM, by adding in 4 for each E in the protein segment and 2 for 
each C, D, G, H, K, N, P, Q, R, S , T, W, or Y (i.e., the 13 residues other than E, A, 
M, V, I, F or L).   

(2) If 



 SUM – 3.1544

0.9357    < LEN,  

then classify the protein segment as a transmembrane domain; otherwise, classify it 
as a non-transmembrane area of the protein.   

Note that glutamic acid (E) is an electrically charged and hydrophilic amino acid 
and also that A (alanine), M (methionine), V (valine), I (isoleucine), F 
(phenylalanine) and L(leucine) constitute six of the seven the most hydrophobic 
residues on the Kyte-Dolittle hydrophobicity scale (Kyte and Dolittle 1982).   
4.4.  Comparison of Seven Methods 
Table 1 shows the out-of-sample error rate for the four algorithms for classifying 
transmembrane domains described in Weiss, Cohen, and Indurkhya 1993 as well as 
for three approaches using genetic programming, namely the set-creating version 
(sections 18.5 through 18.9 of Koza 1994a), the arithmetic-performing version 
(sections 18.10 and 18.11 of Koza 1994a), and the version using the architecture-
altering operations as reported herein.   
Table 1  Comparison of seven methods.   

Method Error rate 
von Heijne 1992 2.8% 
Engelman, Steitz, and Goldman 1986 2.7% 
Kyte-Doolittle 1982 2.5% 
Weiss, Cohen, and Indurkhya 1993 2.5% 
GP + Set-creating ADFs 1.6% 



GP + Arithmetic-performing ADFs   1.6% 
GP + ADFs + Architecture-altering operations 1.6% 

As can be seen from the table, the error rate of all three versions using genetic 
programming are identical; all three are better than the error rates of the other four 
methods.  Genetic programming with the architecture-altering operations was able 
to evolve a successful classifying program for transmembrane domains starting 
from a population that initially contained no automatically defined functions.  All 
three versions using genetic programming (none of which employs any 
foreknowledge of the biochemical concept of hydrophobicity) are instances of an 
algorithm discovered by an automated learning paradigm whose performance is 
slightly superior to that of algorithms written by knowledgeable human 
investigators.   
5.  Conclusion 
The biological theory of gene duplication was used to motivate six architecture-
altering operations that enable genetic programming to evolve the architecture of a 
computer program during a run.  Genetic programming with the architecture-
altering operations was then applied to the problem of evolving a computer 
program to classify a given protein segment as being a transmembrane domain or 
non-transmembrane area of the protein (without biochemical knowledge, such as 
the hydrophobicity values used in human-written algorithms for this task).  The 
best genetically-evolved program achieved an out-of-sample error rate that is 
slightly better than that reported for other previously reported human-written 
algorithms.  This is an instance of an automated machine learning algorithm 
rivaling human performance on a non-trivial problem.   
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