
Toward Evolution of Electronic Animals Using Genetic Programming

John R. Koza
Computer Science Dept.

258 Gates Building
Stanford University

Stanford, California 94305
koza@cs.stanford.edu

http://www-cs-
faculty.stanford.edu/~koza/

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
fhb3@slip.net

David Andre
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
andre@flamingo.stanford.ed

u
http://www-

leland.stanford.edu/~phred/

Martin A. Keane
Econometrics Inc.
5733 West Grover
Chicago, IL 60630

makeane@ix.netcom.com

Abstract

This paper describes an automated process for
designing an optimal food-foraging controller for a
lizard. The controller consists of an analog electrical
circuit that is evolved using the principles of natural
selection, sexual recombination, and developmental
biology. Genetic programming creates both the
topology of the controller circuit and the numerical
values for each electrical component.

1. Introduction
Connectionist learning algorithms, reinforcement learning
algorithms, genetic algorithms, and other learning
algorithms all require, in one way or another, that the
system be exposed, in its learning phase, to a non-trivial
number of training cases that are representative of the
environment.

Researchers in the field of artificial life usually adopt
one of two approaches for exposing their system to these
training cases. One approach is to simulate the system
inside a computer; the other approach is to operate the
system in a real-world environment.

An example of the first approach is the familiar
simulated robot with errorless sensors that flawlessly
executes operations in a sanitized environment in discrete
time and space. Although such simulations can be
conducted at high speeds within a computer, they may have
little resemblance to the real-world environment.

An example of the second approach is an actual physical
robot with noisy sensors that imperfectly executes
operations in a realistic environment. However, the time
required for actual operation in the real world precludes
exposing the system to any significant number of training
episodes. For example, in a novel experiment, Floreano and
Mondada (1994) ran the genetic algorithm on a fast
workstation to evolve a control strategy for an obstacle-
avoiding robot. The fitness of an individual strategy in the
population within a particular generation of the run was
determined by executing a physical robot tethered to the
workstation for 30 seconds in real time. This experiment
was necessarily severely limited because there are only
2,880 30-second intervals in a day. Consequently, a run
involving a population of only 80 individuals and only 100
generations required about three days. One can contemplate
shortening the time for each episode by perhaps one order

of magnitude and one can also contemplate simultaneously
operating more than one physical robot in parallel (at
increasing financial investment). However, it is difficult to
see how this approach can offer any realistic possibility of
being scaled up by the many orders of magnitude necessary
to undertake significant learning or evolution. On the other
hand, there will likely be increases of many orders of
magnitude in computer speed because of both speedups in
microprocessors and speedups from parallelization.

This paper proposes that a way to get the best of both of
the above two approaches is to do the simulation inside a
computer using a highly realistic simulation employing the
very same parts that would be used in a realistic system in
the physical world. Specifically, we describe how we used a
currently available accurate analog electrical simulator in
conjunction with genetic programming to evolve a
controller composed of analog electrical parts.

2. Optimal Food-Foraging Strategy
The Anolis lizard (figure 1) of the Caribbean is a "sit and
wait" predator that perches head-down on tree trunks and
scans the ground for edible insects.

Figure 1 Anolis lizard perched on a tree trunk.

Roughgarden (1995) shows that the food-foraging
strategy that yields the most food calls for the lizard to
chase an insect alighting at distance, x, within its viewing
area if

x < √(
3v
πa),

where abundance, a, is the number of insects per square
meter per second and where v is the lizard's sprint velocity.
(See also Koza, Rice, and Roughgarden 1992).

3. Electrical Implementation
A foraging strategy can be realized by an electrical circuit
(figure 2) whose input comes from the input neuron of the
lizard's visual system and whose output goes to an output
neuron that causes the lizard to chase an insect. The visual
neuron may generate a signal whose frequency is

proportional to the logarithm of the insect's distance, x
(with, say, 1000 Hertz corresponding to 8 meters). The
output neuron may receive a voltage (say, 1 volt) that
activates the lizard. The food-foraging problem can be
viewed as a problem of designing a circuit (figure 2).

Evolved
Controller

Visual
Neuron

Motor
Neuron

Figure 2 Controller has input at lizard's visual neuron
and output at lizard's motor neuron.

Electrical circuits consist of a variety of different types
of components, including resistors, capacitors, inductors,
diodes, transistors, and energy sources. The problem of
circuit synthesis involves designing an electrical circuit that
satisfies user-specified design goals. Circuits receive input
signals from zero, one, or more input sources and produce
output signals at one or more output ports (probe points). In
designing a circuit, the goal is to achieve certain desired
values of one or more observable (or calculable) quantities
involving the output(s) of the circuit (in relation to its
inputs). A complete specification of an electrical circuit
includes both its topology and the sizing of all its
components. The topology of a circuit consists of the
number of components in the circuit, the type of each
component, and a list of the connections between the
components. The sizing of a circuit consists of the
component value(s) (typically numerical) associated with
each component.

Electrical engineers will recognize that a lowpass filter
can implement the above optimal food-foraging strategy.
Specifically, the desired filter might have a passband below
1,000 Hertz and a stopband above 2,000 Hz. The passband
voltage might be between, say, 970 millivolts and 1 volt
(i.e., a passband ripple of 0.3 decibels or less) and the
stopband voltage might be between 0 volts and 1 millivolts
(i.e., a stop band attenuation of at least 60 decibels). These
design requirements can be satisfied by an elliptic (Cauer)
filter of order 5, with a reflection coefficient of 20%, and
modular angle of 30 degrees. The circuit is assumed to be
driven from a AC input source with 2 volt amplitude with
an internal (source) resistance of 1,000 Ohms and a load
resistance of 1,000 Ohms.

SPICE (an acronym for Simulation Program with
Integrated Circuit Emphasis) is a massive 217,000-line
program written over several decades at the University of
California at Berkeley for the accurate simulation of analog,
digital, and mixed analog/digital electrical circuits (Quarles
et al. 1994). SPICE performs various types of analysis on
circuits containing various circuit elements. The input to a
SPICE simulation consists of a netlist describing the circuit
and certain commands concerning the type of analysis to be
performed and output to be produced.

4. Genetic Programming
Genetic programming is an extension of John Holland's
genetic algorithm (1975) in which the population consists of
computer programs of varying sizes and shapes (Koza 1992,
1994a, and 1994b; Koza and Rice 1992).

5. Cellular Encoding of Neural Networks
In Cellular Encoding of Genetic Neural Networks, Frederic
Gruau (1992) described an innovative technique, called
cellular encoding, in which genetic programming is used to
concurrently evolve the architecture of a neural network,
along with all weights, thresholds, and biases of the neurons
in the network. In this technique, each individual program
tree in the population is a specification for developing a
complex neural network from a very simple embryonic
neural network (consisting of a single neuron). Genetic
programming is applied to populations of network-
constructing program trees in order to evolve a neural
network capable of solving a problem.

6. Analog Circuit Synthesis
Considerable progress has been made in automating the
design of certain categories of purely digital circuits.
Hemmi, Mizoguchi, and Shimohara (1994) and Higuchi et
al. (1993) have employed genetic methods to the design of
digital circuits using a hardware description language
(HDL).

The design of analog circuits and mixed analog-digital
circuits has not proved to be as amenable to automation. In
DARWIN (Kruiskamp and Leenaerts 1995), CMOS opamp
circuits are designed using the genetic algorithm. In
DARWIN, the topology of each opamp is picked randomly
from a preestablished hand-designed set of 24 topologies in
order to ensure that each circuit behaves as an opamp.

7. The Mapping between Program Trees and
Electrical Circuits

Genetic programming breeds a population of rooted, point-
labeled trees (i.e., graphs without cycles) with ordered
branches. There is a considerable difference between the
kind of trees bred by genetic programming and the labeled
cyclic graphs encountered in the world of electrical circuits.

Electrical circuits are cyclic graphs in which every line
belongs to a cycle (i.e., there are no loose wires or dangling
components). The lines of a graph that represents a circuit
are each labeled. The primary label on each line gives the
type of an electrical component. The secondary label(s), if
any, on each line give the value(s) of the component(s), if
any. One numerical value is sufficient to specify certain
components (e.g., resistors); none are required for diodes;
and many are required for a sinusoidal voltage source.

Genetic programming can be applied to circuits if a
mapping is established between the kind of point-labeled
trees found in the world of genetic programming and the
line-labeled cyclic graphs employed in the world of circuits.
In our case, developmental biology provides the motivation
for this mapping. The growth process used herein begins

with a very simple embryonic electrical circuit and builds a
more complex circuit by progressively executing the
functions in a circuit-constructing program tree. The result
is the topology of the circuit, the choice of types of
components that are situated at each location within the
topology, and the sizing of all the components.

Each program tree can contain (1) connection-modifying
functions that modify the topology of the circuit (starting
with the embryonic circuit), (2) component-creating
functions that insert particular components into locations
within the topology of the circuit in lieu of wires (and other
components) and whose arithmetic-performing subtrees
specify the numerical value (sizing) for each such
component, and perhaps (3) automatically defined
functions.

Program trees conform to a constrained syntactic
structure. Each component-creating function in a program
tree has zero, one, or more arithmetic-performing subtrees
and one or more construction-continuing subtrees. Each
connection-modifying function has one or more
construction-continuing subtrees. The arithmetic-
performing subtree(s) of each component-creating function
consists of a composition of arithmetic functions and
numerical constant terminals that together yield the
numerical value for the component. The construction-
continuing subtree specifies how the construction of the
circuit is to be continued.

Both the random program trees in the initial population
(generation 0) and all random subtrees created by the
mutation operation in later generations are created so as to
conform to this constrained syntactic structure. This
constrained syntactic structure is preserved by using
structure-preserving crossover with point typing (Koza
1994a).

8. The Embryonic Electrical Circuit
The embryonic circuit used on a problem depends on the
number of input signals and the number of output signals.

The embryonic circuit used herein contains one input
signal, one output (probe point), a fixed source resistor, and
a fixed load resistor, and two modifiable wires. The two
modifiable wires (Z0 and Z1) each initially possess a
writing head (i.e., are highlighted with a circle in figure 3).
A circuit is progressively developed by modifying the
component to which a writing head is pointing in
accordance with the functions in the circuit-constructing
program tree. Each connection-modifying and component-
creating function in the program tree modifies the
developing circuit in a particular way and each also
specifies the future disposition of the writing head(s).

Figure 3 shows the embryonic circuit used for the one-
input, one-output filter circuit discussed herein. The energy
source is a 2 volt voltage source VSOURCE whose
negative (–) end is connected to node 0 (ground) and whose
positive (+) end is connected to node 1. There is a fixed
1000-Ohm source resistor RSOURCE between nodes 1
and 2. There is a modifiable wire Z1 between nodes 2 and 3
and another modifiable wire Z0 between nodes 3 and 4.

There are circles around Z0 and Z1 to indicate that the two
writing heads point to these modifiable wires. There is a
fixed isolating wire ZOUT between nodes 3 and 5, a
voltage probe labeled VOUT at node 5, and a fixed 1000-
Ohm load resistor RLOAD between nodes 5 and ground.
There is an isolating wire ZGND between nodes 4 and 0
(ground). All of the above elements of this embryonic
circuit (except Z0 and Z1) are fixed and not subject to
modification during the process of developing the circuit.
All subsequent development of the circuit originates from
writing heads. Note that the output of the embryonic circuit
is a constant zero volt signal VOUT at node 5.

C FLIP

LIST1

2 3

-

Figure 3 One-input, one-output embryonic electrical
circuit.

The domain knowledge that went into this embryonic
circuit consisted of the facts that (1) the embryo is a circuit,
(2) the embryo has one input and one output, and (3) there
are modifiable connections between the output and the
source and between the output and ground.

A circuit is developed by modifying the component to
which a writing head is pointing in accordance with the
associated function in the circuit-constructing program tree.
The figure shows a capacitor-creating C function (described
later) and a polarity-reversing FLIP function (described
later) just below the connective LIST function at the root of
the program tree. The figure also shows a writing head
pointing from the C function to modifiable wire Z0 and
pointing from the FLIP function to modifiable wire Z1.
This C function will cause Z0 to be changed into a capacitor
and the FLIP function will cause the polarity of modifiable
wire Z1 to be reversed.

9. Component-Creating Functions
Each individual circuit-constructing program tree in the
population generally contains component-creating functions
and connection-modifying functions.

Each component-creating function inserts a component
into the developing circuit and assigns component value(s)
to the inserted component. Each component-creating
function spawns one or more writing heads (through its
construction-continuing subtrees). The construction-
continuing subtree of each component-creating function
points to a successor function or terminal in the circuit-
constructing program tree.

The arithmetic-performing subtree of a component-
creating function consists of a composition of arithmetic

functions (addition and subtraction) and random constants
(in the range –1.000 to +1.000). The arithmetic-performing
subtree specifies the numerical value of the component by
returning a floating-point value that is, in turn, interpreted
as the value for the component in a range of 10 orders of
magnitude (using a unit of measure that is appropriate for
the particular type of component involved). The floating-
point value is interpreted as the value of the component in
the following way: If the return value is between –5.0 and
+5.0, U is equated to the value returned by the subtree. If
the return value is less than –100 or greater than +100, U is
set to zero. If the return value is between –100 and –5.0, U
is found from the straight line connecting the points (–100,
0) and (–5, -5). If the return value is between +5.0 and
+100, U is found from the straight line connecting (5, 5)
and (100, 0). The value of the component is 10U in a unit
that is appropriate for the type of component. This mapping
gives the component a value within a range of 10 orders of
magnitude centered on a certain value.

9.1. The C Function
The two-argument capacitor-creating C function causes the
highlighted component to be changed into a capacitor. The
value of the capacitor is the antilogarithm of the
intermediate value U (previously described) in nano-
Farads. This mapping gives the capacitor a value within a
range of plus or minus 5 orders of magnitude centered on 1
nF.

9.2. The L Function
The two-argument inductor-creating L function causes the
highlighted component to be changed into an inductor. The
value of the inductor is in micro-Henrys within a range of
plus or minus 5 orders of magnitude centered on 1 µH.

9.3. Other Component-Creating Functions
Numerous other component-creating functions can be
employed in this process. We describe one other function
for illustrative purposes (even though it is not used in
solving the optimal food-foraging problem for the lizard).

Figure 4 shows a resistor R1 (with a writing head)
connecting nodes 1 and 2 of a partial circuit.

Figure 4 Circuit with resistor R1.

The functions in the group of three-argument transistor-
creating QT functions cause a transistor to be inserted in
place of one of the nodes to which the highlighted
component is currently connected (while also deleting the
highlighted component). Each QT function also creates
five new nodes and three new modifiable wires. After
execution of a QT function, there are three writing heads
that point to three new modifiable wires.

Figure 5 shows the result of applying the QT0 function
to resistor R1 of figure 4, thereby creating a transistor Q6.

Figure 5 Result of applying QT0 function.

10. Connection-Modifying Functions
The topology of the circuit is determined by the connection-
modifying functions.

10.1. The FLIP Function
The one-argument polarity-reversing FLIP function
attaches the positive end of the highlighted component to
the node to which its negative end is currently attached and
vice versa. After execution of the FLIP function, one
writing head points to the now-flipped original component.

10.2. SERIES Division Function
The three-argument SERIES division function operates

on one highlighted component and creates a series
composition consisting of the highlighted component, a
copy of the highlighted component, one new modifiable
wire, and two new nodes. After execution of the SERIES
function, there are three writing heads pointing to the
original component, the new modifiable wire, and the copy
of the original component. Figure 6 shows the result of
applying the SERIES function to resistor R1 of figure 4.

First, the SERIES function creates two new nodes, 3
and 4. Second, SERIES disconnects the negative end of the
original component (R1) from node 1 and connects this
negative end to the first new node, 4 (while leaving its
positive end connected to the node 2). Third, SERIES
creates a new wire (called Z6 in the figure) between new
nodes 3 and 4. The negative end of the new wire is
connected to the first new node 3 and the positive end is
connected to the second new node 4. Fourth, SERIES
inserts a duplicate (called R7 in the figure) of the original
component (including all its component values) between
new node 3 and original node 1. The positive end of the
duplicate is connected to the original node 1 and its
negative end is connected to new node 3.

Figure 6 Result of applying SERIES.

10.3. Parallel Division PSS Function
The four-argument parallel division function PSS operates
on one highlighted component to create a parallel
composition consisting of the original highlighted
component, a duplicate of the highlighted component, two
new wires, and two new nodes. After execution of PSS,
there are four writing heads. They point to the original
component, the two new modifiable wires, and the copy of
the original component.

First, the parallel division function PSS creates two new
nodes, 3 and 4. Second, PSS inserts a duplicate of the
highlighted component (including all of its component
values) between the new nodes 3 and 4 (with the negative
end of the duplicate connected to node 4 and the positive
end of the duplicate connected to 3). Third, PSS creates a
first new wire Z6 between the positive (+) end of R1
(which is at original node 2) and first new node, 3. Fourth,
PSS creates a second new wire Z8 between the negative (-)
end of R1 (which is at original node 1) to second new node,
4.

Figure 7 shows the results of applying the PSS function
to resistor R1 from figure 4. The negative end of the new
component is connected to the smaller numbered
component of the two components that were originally
connected to the negative end of the highlighted component.
Since C4 bears a smaller number than C5, new node 3 and
new wire Z6 are located between original node 2 and C4.
Since C2 bears a smaller number than C3, new node 4 and
new wire Z8 are located between original node 1 and C2.

Figure 7 Result of applying PSS.

10.4. VIA and GND Functions
Eight two-argument functions (called VIA0, ..., VIA7) and
the two-argument GND ("ground") function enable distant
parts of a circuit to be connected together. After execution,
writing heads point to two modifiable wires.

The VIA functions create a series composition
consisting of two wires that each possess a successor
writing head and a numbered port (called a via) that
possesses no writing head. The port is connected to a
designated one of eight imaginary layers (numbered from 0
to 7) of an imaginary silicon wafer. If one or more parts of
the circuit connect to a particular layer, all such parts
become electrically connected as if wires were running
between them.

The two-argument GND function is a special "via"
function that establishes a connection directly to ground.

10.5. The NOP Function
The one-argument NOP function has no effect on the
highlighted component; however, it delays activity on the
developmental path on which it appears in relation to other
developmental paths. After execution of NOP, one writing
head points to the original highlighted component.

10.6. The END Function
The zero-argument END function causes the highlighted
component to lose its writing head.

10.7. Other Connection-Modifying Functions
Numerous other connection-modifying functions can be
employed in this process. We describe two other functions
for illustrative purposes (not used in the problem at hand).

The functions in the group of three-argument Y division
functions operate on one highlighted component (and one
adjacent node) and create a Y-shaped composition
consisting of the highlighted component, two copies of the
highlighted component, and two new nodes. The Y
functions insert the two copies at the "active" node of the
highlighted component. For the Y1 function, the active
node is the node to which the negative end of the
highlighted component is connected. Figure 8 shows the
result of applying Y1 to resistor R1 of figure 4.

Figure 8 Result of applying the Y1 function.

The functions in the group of six-argument DELTA
functions operate on one highlighted component by
eliminating it (and one adjacent node) and creating a
triangular ∆−shaped composition consisting of three copies
of the original highlighted component (and all of its
component values), three new modifiable wires, and five
new nodes. Figure 9 illustrates the result of applying the
DELTA1 division function to resistor R1 of figure 4 when
the active node (node 1) is of degree 3.

Figure 9 Result of applying DELTA1 function.

11. Preparatory Steps
Since the problem of designing the lowpass LC filter calls
for a one-input, one-output circuit with a source resistor and
a load resistor, the embryonic circuit of figure 3 is suitable
for this problem.

Since the embryonic circuit starts with two writing
heads, each program tree has two result-producing branches
joined by a LIST function. There are no automatically
defined functions. The terminal set and function set for both
result-producing branches are the same. Each result-
producing branch is created in accordance with the

constrained syntactic structure that uses the left (first)
argument(s) of each component-creating function to specify
the numerical value of the component. The numerical value
is created by a composition of arithmetic functions and
random constants in this arithmetic-performing subtree. The
right (second) argument of each component-creating
function is then used to continue the program tree.

In particular, the function set, Faps, for an arithmetic-
performing subtree is
Faps = {+, -}.

The terminal set, Taps, for an arithmetic-performing
subtree consists of
Taps = {←},
where ← represents floating-point random constants
between –1.000 and +1.000.

The function set, Fccs, for a construction-continuing
subtree of each component-creating function is
Fccs = {C, L, SERIES, PSS, FLIP, NOP, GND, VIA0,

VIA1, VIA2, VIA3, VIA4, VIA5, VIA6, VIA7}.
The terminal set, Tccs, for a construction-continuing

subtree consists of
Tccs = {END}.

Note that all of the above is applicable to any LC circuit
involving one input and one output.

The user-supplied fitness measure drives the
evolutionary process. In general, the fitness measure may
incorporate any calculable characteristic or combination of
characteristics of the circuit, including the circuit's behavior
in the time domain, its behavior in the frequency domain, its
power consumption, or the number, cost, or surface area
occupied by its components.

The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with its
execution. This execution applies the functions in the
program tree to the very simple embryonic circuit, thereby
developing it into a fully developed circuit. A netlist
describing the circuit is then created. The netlist identifies
each component of the circuit, the nodes to which that
component is connected, and the value of that component.
Each circuit is then simulated to determine its behavior
using the 217,000-line SPICE simulator (modified to run as
a submodule within our genetic programming system).

Since we are designing a filter, the focus is on the
behavior of the circuit in the frequency domain. SPICE is
requested to perform an AC small signal analysis and to
report the circuit's behavior for each of 101 frequency
values chosen from the range between 10 Hz to 100,000 Hz
(in equal increments on a logarithmic scale). Fitness is
measured in terms of the sum, over these 101 fitness cases,
of the absolute weighted deviation between the actual value
of the voltage that is produced by the circuit at the probe
point VOUT at isolated node 5 and the target value for
voltage. The smaller the value of fitness, the better (with
zero being best). Specifically, the standardized fitness is

F(t) =
i=0

100
∑ [W (d (f i), f i)d (f i)]

where f(i) is the frequency of fitness case i; d(x) is the
difference between the target and observed values at
frequency x; and W(y,x) is the weighting for difference y at
frequency x.

The fitness measure does not penalize ideal values; it
slightly penalizes every acceptable deviation; and it heavily
penalizes every unacceptable deviation.

The procedure for each of the 61 points in the 3-decade
interval from 1 Hz to 1,000 Hz is as follows: If the voltage
is between 970 millivolts and 1,000 millivolts, the absolute
value of the deviation from 1,000 millivolts is weighted by
a factor of 1.0. If the voltage is less than 970 millivolts, the
absolute value of the deviation from 1,000 millivolts is
weighted by a factor of 10.0. This arrangement reflects the
fact that the ideal voltage in the passband is 1.0 volt, the fact
that a 30 millivolt shortfall is acceptable, and the fact that a
voltage below 970 millivolts is not acceptable.

The procedure for each of the 35 points between 2,000
Hz to 100,000 Hz is as follows: If the voltage is between 0
millivolts and 1 millivolt, the absolute value of the deviation
from 0 millivolts is weighted by a factor of 1.0. If the
voltage is more than 1 millvolt, the absolute value of the
deviation from 0 millivolts is weighted by a factor of 10.0.

We considered the number of fitness cases (61 and 35)
in these two main bands to be sufficiently close that we did
not attempt to equalize the weight given to the differing
numbers of fitness cases in these two main bands.

The deviation is overlooked for each of the 5 points in
the interval between 1,000 Hz and 2,000 Hz (i.e., the "don't
care" band). Hits are defined as the number of fitness cases
for which the voltage is acceptable or ideal or which lie in
the "don't care" band. Thus, the number of hits ranges from
a low of 5 to a high of 101 for this problem.

Some of the bizarre circuits that are randomly created
for the initial random population and that are created by the
crossover operation and the mutation operation in later
generations cannot be simulated by SPICE. Circuits that
cannot be simulated by SPICE are assigned a high penalty
value of fitness (108).

The population size, M, is 320,000. The percentage of
genetic operations on each generation was 89% crossovers,
10% reproductions, and 1% mutations. A maximum size of
200 points was established for each of the two result-
producing branches in each overall program. The other
parameters for controlling the runs of genetic programming
were the default values of Koza 1994a (appendix D).

This problem was run on a medium-grained parallel
Parystec computer system consisting of 64 Power PC 601
80 MHz processors arranged in a toroidal mesh with a host
PC Pentium type computer (running Windows). The so-
called distributed genetic algorithm was used with a
subpopulation (deme) size of Q = 5,000 at each of D = 64
demes. On each generation, four boatloads of emigrants,
each consisting of B = 2% (the migration rate) of the node's
subpopulation (selected on the basis of fitness) were

dispatched to each of the four toroidally adjacent processing
nodes. Details of the parallel implementation of genetic
programming can be found in Andre and Koza 1996.

12. Results
12.1. A Circuit with the "Ladder" Topology
The best individual program tree from generation 0 of run A
has a fitness of 58.71, scores 51 hits.

As the run proceeds from generation to generation, the
fitness of the best-of-generation individual tends to
improve.

SPICE cannot simulate about two-thirds of the programs
of generation 0 for this problem. However, the percentage
of unsimulatable circuits drops rapidly as new offspring are
created using Darwinian selection, crossover, and mutation.
The percentage of unsimulatable programs drops to 33% by
generation 10, and 0.3% by generation 30.

The best individual program tree of generation 32 has a
fitness of 0.00781 and scores 101 hits. Figure 10 shows the
best circuit from generation 32 from run A. It has a
recognizable seven-rung ladder topology of a Butterworth
or Chebychev filter. It also possesses repeated values of
various inductors (in series horizontally across the top of the
figure) and capacitors (vertical shunts). Figure 11 shows
the behavior in the frequency domain of this circuit. The
circuit delivers a voltage of virtually 1 volt between 1 Hz
and 1,000 Hz and virtually suppresses the voltage above
2,000 Hz.

Figure 11 Frequency domain behavior.

12.2. A Circuit with "Bridged T" Topology
Different runs of genetic programming produce different
results. Figure 12 shows a fully compliant best circuit from
generation 64 of another run (run B). In this circuit,
inductor L14 forms a recognizable bridged T arrangement
in conjunction with C3 and C15 and L11. The bridged T
arrangement is a different topology than the ladder
topology.

Note that if we disregard C12 (whose 0.338 nF size is
insignificant in relation to the 127 nF size of C24 and
C21), there are three π sections to the left of the "bridged
T." Each π section is a π-shaped segment consisting of a
127 nF capacitor as the left leg of the π, an inductor at the
top, and another 127 nF capacitor as the right leg of the π).

12.3. A Circuit with a Novel Topology
Figure 13 shows a fully compliant circuit from generation
212 of another run (run C) with a novel topology that no
electrical engineer would be likely to create.

13. Related Work and Future Work
We have also genetically designed a difficult-to-design
asymmetric bandpass filter (Koza, Andre, Bennett, and
Keane 1996), a crossover (woofer and tweeter) filter, an
amplifier and other circuits (Koza, Bennett, Andre, and
Keane 1996).

14. Conclusions
We have described an automated design process for
designing analog electrical circuits based on the principles
of natural selection, sexual recombination, and
developmental biology. The paper described how genetic
programming evolved the design of a low-pass filter that is
the solution to the problem of finding the optimal foraging
strategy for a lizard.

Acknowledgements
Tom L. Quarles advised us about SPICE. Figure 1 is
courtesy of Jonathan Roughgarden from Theory of
Population Genetics and Evolutionary Ecology: An
Introduction (1979). Simon Handley made helpful
comments on drafts of this paper.

Bibliography
Andre, David and Koza, John R. 1996. Parallel genetic

programming: A scalable implementation using the
transputer architecture. In Angeline, Peter J. and Kinnear,
Kenneth E. Jr. (editors). 1996. Advances in Genetic
Programming 2. Cambridge, MA: MIT Press.

Floreano, Dario and Mondada, Francesco. 1994. Automatic
creation of an autonomous agent: Evolution of a Neural-
Network Drive Robot. In Cliff, Dave, Husbands, Philip,
Meyer, Jean-Arcady, and Wilson, Stewart W. (editors).
1994. From Animals to Animats 3 Proceedings of the
Third International Conference on Simulation of
Adaptive Behavior. Pages 421–430.

Visual
Neuron

Motor
Neuron

Evolved Controller

Figure 10 Best-of-run seven-rung "ladder" circuit from generation 32 of run A.

Visual
Neuron

Motor
Neuron

Evolved Controller
Figure 12 "Bridged T" circuit from generation 64 of run B.
Gruau, Frederic. 1992. Cellular Encoding of Genetic Neural

Networks. Technical report 92-21. Laboratoire de
l'Informatique du Parallélisme. Ecole Normale
Supérieure de Lyon. May 1992.

Hemmi, Hitoshi, Mizoguchi, Jun'ichi, and Shimohara,
Katsunori. 1994. Development and evolution of hardware
behaviors. In Brooks, R. and Maes, P. (editors). Artificial
Life IV: Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living
Systems. Cambridge, MA: MIT Press. 371–376.

Higuchi, T., Niwa, T., Tanaka, H., Iba, H., de Garis, H. and
Furuya, T. 1993. Evolvable hardware – Genetic-based
generation of electric circuitry at gate and hardware
description language (HDL) levels. Electrotechnical
Laboratory technical report 93-4, Tsukuba, Japan.

Holland, John H. 1975. Adaptation in Natural and Artificial
Systems Ann Arbor, MI: University of Michigan Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

Koza, John R., Andre, David, Bennett III, Forrest H, and
Keane, Martin A. 1996. Automated WYWIWYG
design of both the topology and component values of
analog electrical circuits using genetic programming. In
Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). Genetic Programming 1996:

Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996. Use of automatically defined
functions and architecture-altering operations in
automated circuit synthesis using genetic programming.
In Koza, John R., Goldberg, David E., Fogel, David B.,
and Riolo, Rick L. (editors). Genetic Programming
1996: Proceedings of the First Annual Conference, July
28-31, 1996, Stanford University. Cambridge, MA: MIT
Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Koza, John R., Rice, James P., and Roughgarden, Jonathan.
1992. Evolution of food-foraging strategies for the
Caribbean Anolis lizard using genetic programming.
Adaptive Behavior. 1(2) 47-74.

Kruiskamp, Wim and Leenaerts, Domine. 1995. DARWIN:
CMOS opamp synthesis by means of a genetic algorithm.
Proceedings of the 32nd Design Automation Conference.
New York, NY: Association for Computing Machinery.
Pages 433–438.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version 3F5
User's Manual. Department of Electrical Engineering and
Computer Science, University of California, Berkeley,
California. March 1994.

Roughgarden, Jonathan. Anolis Lizards of the Caribbean:
Ecology, Evolution, and Plate Tectonics. Oxford
University Press 1995.

Visual
Neuron Motor

Neuron

Evolved Controller
Figure 13 Novel topology of 100% compliant circuit from generation 212 of run C.

