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Abstract 

This paper describes an automated process for 
designing an optimal food-foraging controller for a 
lizard. The controller consists of an analog electrical 
circuit that is evolved using the principles of natural 
selection, sexual recombination, and developmental 
biology. Genetic programming creates both the 
topology of the controller circuit and the numerical 
values for each electrical component. 

1.   Introduction 
Connectionist learning algorithms, reinforcement learning 
algorithms, genetic algorithms, and other learning 
algorithms all require, in one way or another, that the 
system be exposed, in its learning phase, to a non-trivial 
number of training cases that are representative of the 
environment.  

Researchers in the field of artificial life usually adopt 
one of two approaches for exposing their system to these 
training cases. One approach is to simulate the system 
inside a computer; the other approach is to operate the 
system in a real-world environment.  

An example of the first approach is the familiar 
simulated robot with errorless sensors that flawlessly 
executes operations in a sanitized environment in discrete 
time and space. Although such simulations can be 
conducted at high speeds within a computer, they may have 
little resemblance to the real-world environment. 

An example of the second approach is an actual physical 
robot with noisy sensors that imperfectly executes 
operations in a realistic environment. However, the time 
required for actual operation in the real world precludes 
exposing the system to any significant number of training 
episodes. For example, in a novel experiment, Floreano and 
Mondada (1994) ran the genetic algorithm on a fast 
workstation to evolve a control strategy for an obstacle-
avoiding robot. The fitness of an individual strategy in the 
population within a particular generation of the run was 
determined by executing a physical robot tethered to the 
workstation for 30 seconds in real time. This experiment 
was necessarily severely limited because there are only 
2,880 30-second intervals in a day. Consequently, a run 
involving a population of only 80 individuals and only 100 
generations required about three days. One can contemplate 
shortening the time for each episode by perhaps one order 

of magnitude and one can also contemplate simultaneously 
operating more than one physical robot in parallel (at 
increasing financial investment). However, it is difficult to 
see how this approach can offer any realistic possibility of 
being scaled up by the many orders of magnitude necessary 
to undertake significant learning or evolution. On the other 
hand, there will likely be increases of many orders of 
magnitude in computer speed because of both speedups in 
microprocessors and speedups from parallelization.  

This paper proposes that a way to get the best of both of 
the above two approaches is to do the simulation inside a 
computer using a highly realistic simulation employing the 
very same parts that would be used in a realistic system in 
the physical world. Specifically, we describe how we used a 
currently available accurate analog electrical simulator in 
conjunction with genetic programming to evolve a 
controller composed of analog electrical parts.  

2.  Optimal Food-Foraging Strategy 
The Anolis lizard (figure 1) of the Caribbean is a "sit and 
wait" predator that perches head-down on tree trunks and 
scans the ground for edible insects.  

 
Figure 1  Anolis lizard perched on a tree trunk.  

Roughgarden (1995) shows that the food-foraging 
strategy that yields the most food calls for the lizard to 
chase an insect alighting at distance, x, within its viewing 
area if  

x < √(
3v
πa ), 

where abundance, a, is the number of insects per square 
meter per second and where v  is the lizard's sprint velocity.  
(See also Koza, Rice, and Roughgarden 1992).   

3.  Electrical Implementation 
A foraging strategy can be realized by an electrical circuit 
(figure 2) whose input comes from the input neuron of the 
lizard's visual system and whose output goes to an output 
neuron that causes the lizard to chase an insect.  The visual 
neuron may generate a signal whose frequency is 



 

proportional to the logarithm of the insect's distance, x 
(with, say, 1000 Hertz corresponding to 8 meters).  The 
output neuron may receive a voltage (say, 1 volt) that 
activates the lizard. The food-foraging problem can be 
viewed as a problem of designing a circuit (figure 2).  
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Motor
Neuron

 
Figure 2  Controller has input at lizard's visual neuron 
and output at lizard's motor neuron.  

Electrical circuits consist of a variety of different types 
of components, including resistors, capacitors, inductors, 
diodes, transistors, and energy sources. The problem of 
circuit synthesis involves designing an electrical circuit that 
satisfies user-specified design goals. Circuits receive input 
signals from zero, one, or more input sources and produce 
output signals at one or more output ports (probe points). In 
designing a circuit, the goal is to achieve certain desired 
values of one or more observable (or calculable) quantities 
involving the output(s) of the circuit (in relation to its 
inputs). A complete specification of an electrical circuit 
includes both its topology and the sizing of all its 
components. The topology of a circuit consists of the 
number of components in the circuit, the type of each 
component, and a list of the connections between the 
components. The sizing of a circuit consists of the 
component value(s) (typically numerical) associated with 
each component.  

Electrical engineers will recognize that a lowpass filter 
can implement the above optimal food-foraging strategy. 
Specifically, the desired filter might have a passband below 
1,000 Hertz and a stopband above 2,000 Hz.  The passband 
voltage might be between, say, 970 millivolts and 1 volt 
(i.e., a passband  ripple of 0.3 decibels or less) and the 
stopband voltage might be between 0 volts and 1 millivolts 
(i.e., a stop band attenuation of at least 60 decibels). These 
design requirements can be satisfied by an elliptic (Cauer) 
filter of order 5, with a reflection coefficient of 20%, and 
modular angle of 30 degrees. The circuit is assumed to be 
driven from a AC input source with 2 volt amplitude with 
an internal (source) resistance of 1,000 Ohms and a load 
resistance of 1,000 Ohms.  

SPICE (an acronym for Simulation Program with 
Integrated Circuit Emphasis) is a massive 217,000-line 
program written over several decades at the University of 
California at Berkeley for the accurate simulation of analog, 
digital, and mixed analog/digital electrical circuits (Quarles 
et al. 1994). SPICE performs various types of analysis on 
circuits containing various circuit elements. The input to a 
SPICE simulation consists of a netlist describing the circuit 
and certain commands concerning the type of analysis to be 
performed and output to be produced.   

4.  Genetic Programming 
Genetic programming is an extension of John Holland's 
genetic algorithm (1975) in which the population consists of 
computer programs of varying sizes and shapes (Koza 1992, 
1994a, and 1994b; Koza and Rice 1992).  

5.  Cellular Encoding of Neural Networks 
In Cellular Encoding of Genetic Neural Networks, Frederic 
Gruau (1992) described an innovative technique, called 
cellular encoding, in which genetic programming is used to 
concurrently evolve the architecture of a neural network, 
along with all weights, thresholds, and biases of the neurons 
in the network. In this technique, each individual program 
tree in the population is a specification for developing a 
complex neural network from a very simple embryonic 
neural network (consisting of a single neuron). Genetic 
programming is applied to populations of network-
constructing program trees in order to evolve a neural 
network capable of solving a problem.  

6.  Analog Circuit Synthesis 
Considerable progress has been made in automating the 
design of certain categories of purely digital circuits. 
Hemmi, Mizoguchi, and Shimohara (1994) and Higuchi et 
al. (1993) have employed genetic methods to the design of 
digital circuits using a hardware description language 
(HDL).  

The design of analog circuits and mixed analog-digital 
circuits has not proved to be as amenable to automation. In 
DARWIN (Kruiskamp and Leenaerts 1995), CMOS opamp 
circuits are designed using the genetic algorithm. In 
DARWIN, the topology of each opamp is picked randomly 
from a preestablished hand-designed set of 24 topologies in 
order to ensure that each circuit behaves as an opamp.  

7.  The Mapping between Program Trees and 
Electrical Circuits 

Genetic programming breeds a population of rooted, point-
labeled trees (i.e., graphs without cycles) with ordered 
branches. There is a considerable difference between the 
kind of trees bred by genetic programming and the labeled 
cyclic graphs encountered in the world of electrical circuits.  

Electrical circuits are cyclic graphs in which every line 
belongs to a cycle (i.e., there are no loose wires or dangling 
components). The lines of a graph that represents a circuit 
are each labeled. The primary label on each line gives the 
type of an electrical component. The secondary label(s), if 
any, on each line give the value(s) of the component(s), if 
any. One numerical value is sufficient to specify certain 
components (e.g., resistors); none are required for diodes; 
and many are required for a sinusoidal voltage source.  

Genetic programming can be applied to circuits if a 
mapping is established between the kind of point-labeled 
trees found in the world of genetic programming and the 
line-labeled cyclic graphs employed in the world of circuits. 
In our case, developmental biology provides the motivation 
for this mapping. The growth process used herein begins 



 

with a very simple embryonic electrical circuit and builds a 
more complex circuit by progressively executing the 
functions in a circuit-constructing program tree. The result 
is the topology of the circuit, the choice of types of 
components that are situated at each location within the 
topology, and the sizing of all the components.  

Each program tree can contain (1) connection-modifying 
functions that modify the topology of the circuit (starting 
with the embryonic circuit), (2) component-creating 
functions that insert particular components into locations 
within the topology of the circuit in lieu of wires (and other 
components) and whose arithmetic-performing subtrees 
specify the numerical value (sizing) for each such 
component, and perhaps (3) automatically defined 
functions.  

Program trees conform to a constrained syntactic 
structure. Each component-creating function in a program 
tree has zero, one, or more arithmetic-performing subtrees 
and one or more construction-continuing subtrees. Each 
connection-modifying function has one or more 
construction-continuing subtrees. The arithmetic-
performing subtree(s) of each component-creating function 
consists of a composition of arithmetic functions and 
numerical constant terminals that together yield the 
numerical value for the component. The construction-
continuing subtree specifies how the construction of the 
circuit is to be continued.  

Both the random program trees in the initial population 
(generation 0) and all random subtrees created by the 
mutation operation in later generations are created so as to 
conform to this constrained syntactic structure. This 
constrained syntactic structure is preserved by using 
structure-preserving crossover with point typing (Koza 
1994a).  

8.  The Embryonic Electrical Circuit 
The embryonic circuit used on a problem depends on the 
number of input signals and the number of output signals.  

The embryonic circuit used herein contains one input 
signal, one output (probe point), a fixed source resistor, and 
a fixed load resistor, and two modifiable wires. The two 
modifiable wires (Z0 and Z1) each initially possess a 
writing head (i.e., are highlighted with a circle in figure 3). 
A circuit is progressively developed by modifying the 
component to which a writing head is pointing in 
accordance with the functions in the circuit-constructing 
program tree. Each connection-modifying and component-
creating function in the program tree modifies the 
developing circuit in a particular way and each also 
specifies the future disposition of the writing head(s). 

Figure 3 shows the embryonic circuit used for the one-
input, one-output filter circuit discussed herein. The energy 
source is a 2 volt voltage source VSOURCE whose 
negative (–) end is connected to node 0 (ground) and whose 
positive (+) end is connected to node 1. There is a fixed 
1000-Ohm source resistor RSOURCE between nodes 1 
and 2. There is a modifiable wire Z1 between nodes 2 and 3 
and another modifiable wire Z0 between nodes 3 and 4. 

There are circles around Z0 and Z1 to indicate that the two 
writing heads point to these modifiable wires. There is a 
fixed isolating wire ZOUT between nodes 3 and 5, a 
voltage probe labeled VOUT at node 5, and a fixed 1000-
Ohm load resistor RLOAD between nodes 5 and ground. 
There is an isolating wire ZGND between nodes 4 and 0 
(ground). All of the above elements of this embryonic 
circuit (except Z0 and Z1) are fixed and not subject to 
modification during the process of developing the circuit. 
All subsequent development of the circuit originates from 
writing heads.  Note that the output of the embryonic circuit 
is a constant zero volt signal VOUT at node 5.   

C FLIP

LIST1

2 3

-

 
Figure 3  One-input, one-output embryonic electrical 
circuit.  

The domain knowledge that went into this embryonic 
circuit consisted of the facts that (1) the embryo is a circuit, 
(2) the embryo has one input and one output, and (3)  there 
are modifiable connections between the output and the 
source and between the output and ground.  

A circuit is developed by modifying the component to 
which a writing head is pointing in accordance with the 
associated function in the circuit-constructing program tree. 
The figure shows a capacitor-creating C function (described 
later) and a polarity-reversing FLIP function (described 
later) just below the connective LIST function at the root of 
the program tree. The figure also shows a writing head 
pointing from the C function to modifiable wire Z0 and 
pointing from the FLIP function to modifiable wire Z1. 
This C function will cause Z0 to be changed into a capacitor 
and the FLIP function will cause the polarity of modifiable 
wire Z1 to be reversed.  

9.  Component-Creating Functions 
Each individual circuit-constructing program tree in the 
population generally contains component-creating functions 
and connection-modifying functions.  

Each component-creating function inserts a component 
into the developing circuit and assigns component value(s) 
to the inserted component. Each component-creating 
function spawns one or more writing heads (through its 
construction-continuing subtrees). The construction-
continuing subtree of each component-creating function 
points to a successor function or terminal in the circuit-
constructing program tree.  

The arithmetic-performing subtree of a component-
creating function consists of a composition of arithmetic 



 

functions (addition and subtraction) and random constants 
(in the range –1.000 to +1.000). The arithmetic-performing 
subtree specifies the numerical value of the component by 
returning a floating-point value that is, in turn, interpreted 
as the value for the component in a range of 10 orders of 
magnitude (using a unit of measure that is appropriate for 
the particular type of component involved). The floating-
point value is interpreted as the value of the component in 
the following way:  If the return value is between –5.0 and 
+5.0, U is equated to the value returned by the subtree. If 
the return value is less than –100 or greater than +100, U is 
set to zero. If the return value is between –100 and –5.0, U 
is found from the straight line connecting the points (–100, 
0) and (–5, -5). If the return value is between +5.0 and 
+100, U is found from the straight line connecting (5, 5) 
and (100, 0). The value of the component is 10U in a unit 
that is appropriate for the type of component. This mapping 
gives the component a value within a range of 10 orders of 
magnitude centered on a certain value.  

9.1.  The C Function 
The two-argument capacitor-creating C function causes the 
highlighted component to be changed into a capacitor. The 
value of the capacitor is the antilogarithm of the 
intermediate value U  (previously described) in nano-
Farads. This mapping gives the capacitor a value within a 
range of plus or minus 5 orders of magnitude centered on 1 
nF.  

9.2.  The L Function 
The two-argument inductor-creating L function causes the 
highlighted component to be changed into an inductor. The 
value of the inductor is in micro-Henrys within a range of 
plus or minus 5 orders of magnitude centered on 1 µH.  

9.3.  Other Component-Creating Functions 
Numerous other component-creating functions can be 
employed in this process.  We describe one other function 
for illustrative purposes (even though it is not used in 
solving the optimal food-foraging problem for the lizard).  

Figure 4 shows a resistor R1 (with a writing head) 
connecting nodes 1 and 2 of a partial circuit.   

 
Figure 4  Circuit with resistor R1.  

The functions in the group of three-argument transistor-
creating QT functions cause a transistor to be inserted in 
place of one of the nodes to which the highlighted 
component is currently connected (while also deleting the 
highlighted component).   Each QT function also creates 
five new nodes and three new modifiable wires.  After 
execution of a QT function, there are three writing heads 
that point to three new modifiable wires.   

Figure 5 shows the result of applying the QT0 function 
to resistor R1 of figure 4, thereby creating a transistor Q6.   

 
Figure 5  Result of applying QT0 function.   

10.  Connection-Modifying Functions 
The topology of the circuit is determined by the connection-
modifying functions. 

10.1.  The FLIP Function 
The one-argument polarity-reversing FLIP function 
attaches the positive end of the highlighted component to 
the node to which its negative end is currently attached and 
vice versa. After execution of the FLIP function, one 
writing head points to the now-flipped original component.  

10.2.  SERIES Division Function 
The three-argument SERIES division function operates 

on one highlighted component and creates a series 
composition consisting of the highlighted component, a 
copy of the highlighted component, one new modifiable 
wire, and two new nodes. After execution of the SERIES 
function, there are three writing heads pointing to the 
original component, the new modifiable wire, and the copy 
of the original component. Figure 6  shows the result of 
applying the SERIES function to resistor R1 of figure 4.   

First, the SERIES function creates two new nodes, 3 
and 4. Second, SERIES disconnects the negative end of the 
original component (R1) from node 1 and connects this 
negative end to the first new node, 4 (while leaving its 
positive end connected to the node 2). Third, SERIES 
creates a new wire (called Z6 in the figure) between new 
nodes 3 and 4. The negative end of the new wire is 
connected to the first new node 3 and the positive end is 
connected to the second new node 4. Fourth, SERIES 
inserts a duplicate (called R7 in the figure) of the original 
component (including all its component values) between 
new node 3 and original node 1. The positive end of the 
duplicate is connected to the original node 1 and its 
negative end is connected to new node 3.  

 
Figure 6   Result of applying SERIES.  



 

10.3.  Parallel Division PSS Function 
The four-argument parallel division function PSS operates 
on one highlighted component to create a parallel 
composition consisting of the original highlighted 
component, a duplicate of the highlighted component, two 
new wires, and two new nodes. After execution of PSS, 
there are four writing heads. They point to the original 
component, the two new modifiable wires, and the copy of 
the original component.  

First, the parallel division function PSS creates two new 
nodes, 3 and 4. Second, PSS inserts a duplicate of the 
highlighted component (including all of its component 
values) between the new nodes 3 and 4 (with the negative 
end of the duplicate connected to node 4 and the positive 
end of the duplicate connected to 3). Third, PSS creates a 
first new wire Z6 between the positive (+) end of R1 
(which is at original node 2) and first new node, 3. Fourth, 
PSS creates a second new wire Z8 between the negative (-) 
end of R1 (which is at original node 1) to second new node, 
4.  

Figure 7  shows the results of applying the PSS function 
to resistor R1 from figure 4. The negative end of the new 
component is connected to the smaller numbered 
component of the two components that were originally 
connected to the negative end of the highlighted component. 
Since C4 bears a smaller number than C5, new node 3 and 
new wire Z6 are located between original node 2 and C4. 
Since C2 bears a smaller number than C3, new node 4 and 
new wire Z8 are located between original node 1 and C2.  

  
Figure 7   Result of applying PSS.  

10.4.  VIA and GND Functions 
Eight two-argument functions (called VIA0, ..., VIA7) and 
the two-argument GND ("ground") function enable distant 
parts of a circuit to be connected together. After execution, 
writing heads point to two modifiable wires.  

The VIA functions create a series composition 
consisting of two wires that each possess a successor 
writing head and a numbered port (called a via) that 
possesses no writing head. The port is connected to a 
designated one of eight imaginary layers (numbered from 0 
to 7) of an imaginary silicon wafer. If one or more parts of 
the circuit connect to a particular layer, all such parts 
become electrically connected as if wires were running 
between them.  

The two-argument GND function is a special "via" 
function that establishes a connection directly to ground.  

10.5.  The NOP Function 
The one-argument NOP function has no effect on the 
highlighted component; however, it delays activity on the 
developmental path on which it appears in relation to other 
developmental paths. After execution of NOP, one writing 
head points to the original highlighted component.  

10.6.  The END Function 
The zero-argument END function causes the highlighted 
component to lose its writing head.  

10.7.  Other Connection-Modifying Functions 
Numerous other connection-modifying functions can be 
employed in this process.  We describe two other functions 
for illustrative purposes (not used in the problem at hand).   

The  functions in the group of three-argument Y division 
functions operate on one highlighted component (and one 
adjacent node) and create a Y-shaped composition 
consisting of the highlighted component, two copies of the 
highlighted component, and two new nodes.  The Y 
functions insert the two copies at the "active" node of the 
highlighted component.  For the Y1 function, the active 
node is the node to which the negative end of the 
highlighted component is connected.  Figure 8  shows the 
result of applying Y1 to resistor R1 of figure 4.   

 
Figure 8   Result of applying the Y1 function.  

The functions in the group of six-argument DELTA 
functions operate on one highlighted component by 
eliminating it (and one adjacent node) and creating a 
triangular ∆−shaped composition consisting of three copies 
of the original highlighted component (and all of its 
component values), three new modifiable wires, and five 
new nodes.   Figure 9  illustrates the result of applying the 
DELTA1 division function to resistor R1 of figure 4 when 
the active node (node 1) is of degree 3.   

 
Figure 9   Result of applying DELTA1 function. 

11.  Preparatory Steps 
Since the problem of designing the lowpass LC filter calls 
for a one-input, one-output circuit with a source resistor and 
a load resistor, the embryonic circuit of figure 3 is suitable 
for this problem.  

Since the embryonic circuit starts with two writing 
heads, each program tree has two result-producing branches 
joined by a LIST function. There are no automatically 
defined functions. The terminal set and function set for both 
result-producing branches are the same. Each result-
producing branch is created in accordance with the 



 

constrained syntactic structure that uses the left (first) 
argument(s) of each component-creating function to specify 
the numerical value of the component. The numerical value 
is created by a composition of arithmetic functions and 
random constants in this arithmetic-performing subtree. The 
right (second) argument of each component-creating 
function is then used to continue the program tree.  

In particular, the function set, Faps, for an arithmetic-
performing subtree is 
Faps = {+, -}. 

The terminal set, Taps, for an arithmetic-performing 
subtree consists of 
Taps = {←}, 
where ← represents floating-point random constants 
between –1.000 and +1.000.  

The function set, Fccs, for a construction-continuing 
subtree of each component-creating function is 
Fccs = {C, L, SERIES, PSS, FLIP, NOP, GND, VIA0, 

VIA1, VIA2, VIA3, VIA4, VIA5, VIA6, VIA7}. 
The terminal set, Tccs, for a construction-continuing 

subtree consists of 
Tccs = {END}.  

Note that all of the above is applicable to any LC circuit 
involving one input and one output.  

The user-supplied fitness measure drives the 
evolutionary process. In general, the fitness measure may 
incorporate any calculable characteristic or combination of 
characteristics of the circuit, including the circuit's behavior 
in the time domain, its behavior in the frequency domain, its 
power consumption, or the number, cost, or surface area 
occupied by its components.  

The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with its 
execution. This execution applies the functions in the 
program tree to the very simple embryonic circuit, thereby 
developing it into a fully developed circuit. A netlist 
describing the circuit is then created. The netlist identifies 
each component of the circuit, the nodes to which that 
component is connected, and the value of that component. 
Each circuit is then simulated to determine its behavior 
using the 217,000-line SPICE simulator (modified to run as 
a submodule within our genetic programming system).   

Since we are designing a filter, the focus is on the 
behavior of the circuit in the frequency domain.  SPICE is 
requested to perform an AC small signal analysis and to 
report the circuit's behavior for each of 101 frequency 
values chosen from the range between 10 Hz to 100,000 Hz 
(in equal increments on a logarithmic scale).  Fitness is 
measured in terms of the sum, over these 101 fitness cases, 
of the absolute weighted deviation between the actual value 
of the voltage that is produced by the circuit at the probe 
point VOUT at isolated node 5 and the target value for 
voltage. The smaller the value of fitness, the better (with 
zero being best).  Specifically, the standardized fitness is 

F(t) = 
i=0

100
∑ [W (d ( f i ), f i )d ( f i )] 

where f(i) is the frequency of fitness case i; d(x) is the 
difference between the target and observed values at 
frequency x; and W(y,x) is the weighting for difference y at 
frequency x. 

The fitness measure does not penalize ideal values; it 
slightly penalizes every acceptable deviation; and it heavily 
penalizes every unacceptable deviation.  

The procedure for each of the 61 points in the 3-decade 
interval from 1 Hz to 1,000 Hz is as follows: If the voltage 
is between 970 millivolts and 1,000 millivolts, the absolute 
value of the deviation from 1,000 millivolts is weighted by 
a factor of 1.0. If the voltage is less than 970 millivolts, the 
absolute value of the deviation from 1,000 millivolts is 
weighted by a factor of 10.0. This arrangement reflects the 
fact that the ideal voltage in the passband is 1.0 volt, the fact 
that a 30 millivolt shortfall is acceptable, and the fact that a 
voltage below 970 millivolts is not acceptable.  

The procedure for each of the 35 points between 2,000 
Hz to 100,000 Hz is as follows:  If the voltage is between 0 
millivolts and 1 millivolt, the absolute value of the deviation 
from 0 millivolts is weighted by a factor of 1.0. If the 
voltage is more than 1 millvolt, the absolute value of the 
deviation from 0 millivolts is weighted by a factor of 10.0.  

We considered the number of fitness cases (61 and 35) 
in these two main bands to be sufficiently close that we did 
not attempt to equalize the weight given to the differing 
numbers of fitness cases in these two main bands.  

The deviation is overlooked for each of the 5 points in 
the interval between 1,000 Hz and 2,000 Hz (i.e., the "don't 
care" band).  Hits are defined as the number of fitness cases 
for which the voltage is acceptable or ideal or which lie in 
the "don't care" band. Thus, the number of hits ranges from 
a low of 5 to a high of 101 for this problem.  

Some of the bizarre circuits that are randomly created 
for the initial random population and that are created by the 
crossover operation and the mutation operation in later 
generations cannot be simulated by SPICE. Circuits that 
cannot be simulated by SPICE are assigned a high penalty 
value of fitness (108).  

The population size, M, is 320,000. The percentage of 
genetic operations on each generation was 89% crossovers, 
10% reproductions, and 1% mutations. A maximum size of 
200 points was established for each of the two result-
producing branches in each overall program. The other 
parameters for controlling the runs of genetic programming 
were the default values of Koza 1994a (appendix D).  

This problem was run on a medium-grained parallel 
Parystec computer system consisting of 64 Power PC 601 
80 MHz processors arranged in a toroidal mesh with a host 
PC Pentium type computer (running Windows).  The so-
called distributed genetic algorithm was used with a 
subpopulation (deme) size of Q =  5,000 at each of D = 64 
demes.  On each generation, four boatloads of emigrants, 
each consisting of B = 2% (the migration rate) of the node's 
subpopulation (selected on the basis of fitness) were 



 

dispatched to each of the four toroidally adjacent processing 
nodes.  Details of the parallel implementation of genetic 
programming can be found in Andre and Koza 1996.   

12.  Results 
12.1.  A Circuit with the "Ladder" Topology 
The best individual program tree from generation 0 of run A 
has a fitness of 58.71, scores 51 hits.  

As the run proceeds from generation to generation, the 
fitness of the best-of-generation individual tends to 
improve.  

SPICE cannot simulate about two-thirds of the programs 
of generation 0 for this problem. However, the percentage 
of unsimulatable circuits drops rapidly as new offspring are 
created using Darwinian selection, crossover, and mutation. 
The percentage of unsimulatable programs drops to 33% by 
generation 10, and 0.3% by generation 30.  

The best individual program tree of generation 32 has a 
fitness of 0.00781 and scores 101 hits.  Figure 10  shows the 
best circuit from generation 32 from run A. It has a 
recognizable seven-rung ladder topology of a Butterworth 
or Chebychev filter. It also possesses repeated values of 
various inductors (in series horizontally across the top of the 
figure) and capacitors (vertical shunts).  Figure 11  shows 
the behavior in the frequency domain of this circuit. The 
circuit delivers a voltage of virtually 1 volt between 1 Hz 
and 1,000 Hz and virtually suppresses the voltage above 
2,000 Hz.  

 
Figure 11   Frequency domain behavior.  

12.2.  A Circuit with "Bridged T" Topology  
Different runs of genetic programming produce different 
results. Figure 12  shows a fully compliant best circuit from 
generation 64 of another run (run B). In this circuit, 
inductor L14 forms a recognizable bridged T arrangement 
in conjunction with C3 and C15 and L11. The bridged T 
arrangement is a different topology than the ladder 
topology.  

Note that if we disregard C12 (whose 0.338 nF size is 
insignificant in relation to the 127 nF size of C24 and 
C21), there are three π sections  to the left of the "bridged 
T."  Each π section is a π-shaped segment consisting of a 
127 nF capacitor as the left leg of the π, an inductor at the 
top, and another 127 nF capacitor as the right leg of the π).  

12.3.  A Circuit with a Novel Topology 
Figure 13  shows a fully compliant circuit from generation 
212 of another run (run C) with a novel topology that no 
electrical engineer would be likely to create.    

13.  Related Work and Future Work 
We have also genetically designed a difficult-to-design 
asymmetric bandpass filter (Koza, Andre, Bennett, and 
Keane 1996), a crossover (woofer and tweeter) filter, an 
amplifier and other circuits (Koza, Bennett, Andre, and 
Keane 1996).  

14.  Conclusions 
We have described an automated design process for 
designing analog electrical circuits based on the principles 
of natural selection, sexual recombination, and 
developmental biology. The paper described how genetic 
programming evolved the design of a low-pass filter that is 
the solution to the problem of finding the optimal foraging 
strategy for a lizard.  
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