
Evolution of Iteration in Genetic Programming
John R. Koza

Computer Science Department
Stanford University

Stanford, California 94305-9020 USA
E-MAIL: Koza@Cs.Stanford.Edu

WWW: http://www-cs-faculty.stanford.edu/~koza/
David Andre

Visiting Scholar
Computer Science Department

Stanford University
Stanford, California 94305 USA

E-MAIL: Andre@Flamingo.Stanford.Edu
ABSTRACT

The solution to many problems requires, or is
facilitated by, the use of iteration. Moreover, because
iterative steps are repeatedly executed, they must
have some degree of generality.

An automatic programming system should
require that the user make as few problem-specific
decisions as possible concerning the size, shape, and
character of the ultimate solution to the problem.

Work first presented at the Fourth Annual
Conference on Evolutionary Programming in 1995
(EP-95) demonstrated that six then-new
architecture-altering operations made it possible to
automate the decision about the architecture of an
overall program dynamically during a run of genetic
programming. The question arises as to whether it is
also possible to automate the decision about whether
to employ iteration, how much iteration to employ,
and the particular sequence of iterative steps.

This paper introduces the new operation of
restricted iteration creation that automatically
creates a restricted iteration-performing branch out
of a portion of an existing computer program during
a run a genetic programming. Genetic programming
with the new operation is then used (in conjunction
with the other architecture-altering operations first
presented at EP-95) to evolve a computer program to
solve a non-trivial problem.

1. Introduction
An automatic programming system should require that the
user make as few problem-specific decisions as possible
prior to presenting his problem to the system. One of the
most persistent and vexatious aspects of automated machine
learning from the earliest times has been the requirement
that the human user predetermine the size, shape, and
character of the ultimate solution to the problem (Samuel
1959). The size, shape, and character of the solution should
be part of the answer provided by an automated machine

learning technique, rather than part of the question supplied
by the human user.

1.1. Evolving Single-Part Programs
John Holland's pioneering Adaptation in Natural and
Artificial Systems (1975) described how an analog of the
naturally-occurring evolutionary process can be applied to
solving scientific and engineering problems using what is
now called the genetic algorithm.

Genetic programming extends Holland's genetic
algorithm to the task of automatic programming. Early work
on genetic programming demonstrated that it is possible to
evolve a sequence of work-performing steps in a single
result-producing branch (that is, a one-part "main"
program). The book Genetic Programming: On the
Programming of Computers by Means of Natural Selection
(Koza 1992) describes an extension of Holland's genetic
algorithm in which the genetic population consists of
computer programs (that is, compositions of primitive
functions and terminals). See also Koza and Rice (1992).

In the most basic form of genetic programming (where
only a single result-producing branch is evolved), genetic
programming demonstrated the capability to discover a
sequence (as to both its length and its content) of work-
performing steps that is sufficient to produce a satisfactory
solution to several problems, including many problems that
have been used over the years as benchmarks in machine
learning and artificial intelligence. Before applying genetic
programming to a problem, the user must perform five
major preparatory steps, namely identifying the terminals
(inputs) of the to-be-evolved programs, identifying the
primitive functions (operations) contained in the to-be-
evolved programs, creating the fitness measure for
evaluating how well a given program does at solving the
problem at hand, choosing certain control parameters
(notably population size and number of generations to be
run), and determining the termination criterion and method
of result designation (typically the best-so-far individual
from the populations produced during the run).

1.2. Evolving Multi-Part Programs
Later work on genetic programming demonstrated that it is
possible to co-evolve the work-performing steps of one or
more function-defining branches (automatically defined
functions) concurrently with the work-performing steps of a
result-producing branch so as to gain leverage inherent in
reusable and parameterizable subroutines. In ordinary
computer programs, subroutines provide a hierarchical
mechanism to exploit, by reuse and parameterization, the
regularities, symmetries, homogeneities, similarities,
patterns, and modularities inherent in problem
environments.

Accordingly, Genetic Programming II: Automatic
Discovery of Reusable Programs (Koza 1994a, 1994b)
describes how to evolve multi-part programs consisting of a
main program and one or more reusable, parameterized,
hierarchically-callable subprograms. An automatically
defined function (ADF) is a function (sometimes also called
a subroutine, subprogram, DEFUN, procedure, module)
whose work-performing body is dynamically evolved
during a run of genetic programming and which may be
called by a calling main program (or calling subprogram)
whose work-performing body is concurrently being
evolved. Genetic programming with automatically defined
functions has demonstrated the capability of co-evolving the
work-performing steps of the function-defining branches
(automatically defined functions) concurrently with the
work-performing steps of a result-producing branch.

When automatically defined functions are being evolved
in a run of genetic programming, it becomes necessary to
determine the architecture of the overall to-be-evolved
program. The specification of the architecture consists of (a)
the number of function-defining branches (i.e.,
automatically defined functions) in the overall program, (b)
the number of arguments (if any) possessed by each
function-defining branch, and (c) if there is more than one
function-defining branch, the nature of the hierarchical
references (if any) allowed between the function-defining
branches (and between the function-defining branches and
the result-producing branch(es) of the overall program). The
user may supply the specification of the architecture as an
additional sixth preparatory step; however, it is preferable,
in many situations, to automate this decision so that the user
is not required to prespecify the architecture.

1.3. Evolution of Architecture
Recent work on genetic programming has demonstrated that
it is possible to evolve the architecture of an overall
program dynamically during a run of genetic programming
using six recently developed architecture-altering
operations, namely branch duplication, argument
duplication, branch deletion, argument deletion, branch
creation, and argument creation. These six recently
developed architecture-altering operations introduced at the
Fourth Annual Conference on Evolutionary Programming
(Koza 1995) provide an automated way to enable genetic
programming to dynamically determine, during the run,
whether or not to employ function-defining branches, how

many function-defining branches to employ, and the
number of arguments possessed by each function-defining
branch.

The architecture-altering operations and automatically
defined functions together provide an automated way to
change the representation of a problem while solving the
problem. Alternately, they can also be viewed as an
automated way to decompose a problem into an non-
prespecified number of subproblems of non-pre-specified
dimensionality; to solve the subproblems; and to assemble
the solutions of the subproblems into a solution of the
overall problem. The architecture-altering operations can
also be interpreted as providing an automated way to
specialize and generalize during the problem-solving
process.

1.4. Evolution of Iteration
Typical computer programs contain iterative operators that
perform some specified work until some condition
expressed by a termination predicate is satisfied. Iteration is
an important element in computer programs. The solution to
many problems requires, or is facilitated by, iteration.
Moreover, because iterative steps are repeatedly executed,
they must have some degree of generality.

The question arises as to whether it is possible to
automate the decision about whether to employ iteration,
how much iteration to employ, and the particular sequence
of iterative steps in a computer program that is being
evolved by genetic programming to solve a problem.

This paper introduces the new operation of restricted
iteration creation that automatically creates a restricted
iteration-performing branch out of a portion of an existing
computer program during a run a genetic programming.
Genetic programming with the new operation of restricted
iteration creation is then used (in conjunction with the other
architecture-altering operations first presented at EP-95) to
evolve a computer program to solve a non-trivial problem.

1.5. Organization of This Paper
Section 2 provides background on genetic programming.
Section 3 explains the new architecture-altering operation of
restricted iteration creation. Section 4 demonstrates the
application of the new operation of restricted iteration
creation to the transmembrane segment identification
problem. Section 5 compares the best genetically-evolved
program achieved using the operation of restricted iteration
creation with the results of previously reported human-
written algorithms and with the results of two previous
approaches using genetic programming. Section 6 is the
conclusion.

2. Background on Genetic Programming
Execution of genetic programming consists of the following
steps:

(1) Generate an initial random population (generation 0)
of computer programs.

(2) Iteratively perform the following sub-steps until the
termination criterion of the run has been satisfied:

(a) Execute each program in the population and assign
it (explicitly or implicitly) a fitness value according
to how well it solves the problem.

(b) Select program(s) from the population to participate
in the genetic operations in (c) below.

(c) Create new program(s) for the population by
applying the following genetic operations.

(i) Reproduction: Copy an existing program to the
new population.

(ii) Crossover: Create new offspring program(s) for
the new population by recombining randomly
chosen parts of two existing programs.

(iii) Mutation. Create one new offspring program for
the new population by randomly mutating a
randomly chosen part of one existing program.

(iv) Branch duplication: Create one new offspring
program for the new population by duplicating
one function-defining branch of one existing
program and making additional appropriate
changes to reflect this change.

(v) Argument duplication: Create one new offspring
program for the new population by duplicating
one argument of one function-defining branch of
one existing program and making additional
appropriate changes to reflect this change.

(vi) Branch deletion: Create one new offspring
program for the new population by deleting one
function-defining branch of one existing program
and making additional appropriate changes to
reflect this change.

(vii) Argument deletion: Create one new offspring
program for the new population by deleting one
argument of one function-defining branch of one
existing program and making additional
appropriate changes to reflect this change.

(viii) Branch creation: Create one new offspring
program for the new population by adding one
new function-defining branch containing a portion
of an existing branch and creating a reference to
that new branch.

(ix) Argument creation: Create one new offspring
program for the population by adding one new
argument to the argument list of an existing
function-defining branch and appropriately
modifying contents of the branch and references
to the branch.

(x) Restricted iteration creation. Create one new
offspring program for the new population by
adding one new iteration-performing branch
containing a portion of an existing branch and
creating a reference to that new branch.

(3) After satisfaction of the termination criterion (which
usually includes a maximum number of generations to
be run as well as a problem-specific success
predicate), the single best computer program in the
population produced during the run (the best-so-far
individual) is designated as the result of the run. This

result may (or may not) be a solution (or approximate
solution) to the problem.

Details of the basic genetic operations of reproduction,
crossover, and mutation mentioned in (i) through (iii) of
(2)(c) below are found in Koza (1992) or Koza (1994a).
The six operations appearing as steps (2)(c)(iv) through
(2)(c)(ix) are the recently developed architecture-altering
operations (Koza 1995). The restricted iteration creation
operation in (2)(c)(x) is the new architecture-altering
operation that is described in detail in the next section of
this paper.

3. The New Operation of Restricted
Iteration Creation

The new operation of restricted iteration creation operates
on one parental computer program and creates one new
offspring program containing a new iteration-performing
branch composed of a portion of an existing branch of the
parental program.

In its most general form, an iteration consists of an
initialization step, a termination predicate, a work-
performing body, and an update step. After executing the
initialization step, the termination predicate is tested. If the
iteration is not terminated, the work-performing steps in the
body of the iteration and the update step are then executed
and control is returned to the termination predicate.

As an example of a simple iteration, consider the
following iteration involving an indexing variable. The
starting calculation may set an indexing variable to an initial
value; the terminate predicate may test whether the indexing
variable equals or exceeds a final value; and the update
calculation may increment the indexing variable. Typically
the work-performing steps of the iteration depend on the
current value of the iteration variable. Many iterative
calculations work in conjunction with memory (state). The
memory transmits information from one execution of the
iterative calculation to the next.

As every programmer knows, iterative loops can be very
time-consuming and, in the worst case, unending. In genetic
programming, the computer programs in the population are
initially created at random. These programs are
subsequently subjected to modification by the crossover and
mutation operations (and, possibly, various architecture-
altering) operations. If no restrictions are imposed on
iteration, iterative operators can run for long periods of
time, can become nested (and therefore consume large
amounts of computer time), or can acquire unsatisfiable
termination predicates (and therefore consume endless
amounts of computer time). It is therefore a practical
necessity to impose some kind of rationing on iteration in
evolved programs.

One approach to rationing involves the imposition of
somewhat arbitrary external time-out limits on the number
of iterative steps that may be performed.

In some problems, iterative calculations can usefully be
performed over a particular known finite set. Examples
include two-dimensional pattern recognition problems
where an iteration might usefully be performed over the

entire two-dimensional array of pixels of known size,
economic time series and signal processing problems where
an iteration might usefully be performed over a certain
known number of time steps, and protein or genomic
sequence problems where an iteration might usefully be
performed over the given linear sequence of amino acid
residues or nucleiotide bases. For such problems, each
iteration can be restricted to one pass over the known finite
set.

In restricted iteration, the start of the iteration is fixed;
the update procedure is fixed; and the termination predicate
is fixed. None of these three elements are susceptible to
evolutionary modification. Consequently, excessively long
iterations, nested iterations, and infinite loops are
impossible. The amount of computer time therefore
becomes capped (and thus tolerable). An overall computer
program may consist of zero, one, or more iteration-
performing branches and one result-producing branch (as
well as function-defining branches).

When the overall program is executed, each iteration-
performing branch is executed exactly once. That is, each
iteration-performing branch performs one restricted
iteration over the finite set. The value returned by the last
execution of the body of the iteration is available as a
terminal (called IPB0 for the first iteration-performing
branch, IPB1 for the second, etc.). Then, the result-
producing branch is executed. The result-producing branch
may call (on zero, one, or multiple occasions) the function-
defining branches, if any, of the overall program. The
result-producing branch (and possibly even function-
defining branches that may be created during the run) may
refer (on zero, one, or multiple occasions) to the values (i.e.,
IPB0, IPB1, etc.) returned by the iteration-performing
branches.

There are two avenues of communication between the
iteration-performing branch(es) and the result-producing
branch of the overall program. First, the function and
terminal sets of the problem contain means to read and write
memory variables. Thus, an iteration-performing branch
may write a value to a particular memory variable and the
result-producing branch may read that value. Second, the
terminals, IPB0, IPB1, ..., may appear in the result-
producing branch (and possibly even in function-defining
branches that may be created during the run).

Given that restricted iteration is available, it may not be
obvious in advance whether the solution of a particular
problem requires any restricted iterations, exactly one such
restricted iteration, or multiple restricted iterations. It would
therefore be desirable to automate the decision as to
whether to employ iteration at all, how many times to
employ iteration, and the particular sequence of steps in
each iteration. This automation can be realized using the
new architecture-altering operation of restricted iteration
creation.

The steps in the operation of restricted iteration creation
are as follows:

(1) Select a program from the population to participate in
this operation. The step of selecting this parental program
for restricted iteration creation is performed

probabilistically on the basis of fitness, so that a program
that is more fit has a greater probability of being selected to
participate in this operation than a less fit program. A copy
is first made of the selected program and the operation is
then performed on the copy, so the original selected
program remains unchanged in the population and is
therefore available to be selected again for this (or any
other) operation on the basis of its fitness.

(2) Randomly pick one of the branches of the selected
program. If the selected program has only one branch, that
branch is automatically picked. The picking of the branch
may, as an option, be restricted to a result-producing branch
or another category of branches.

(3) Randomly choose a point in the picked branch of the
selected program. This chosen point will become the top-
most point of the body of the to-be-created restricted
iteration-performing branch.

((4) Add a uniquely-named new restricted iteration-
performing branch to the selected program consisting of the
subtree rooted at the chosen point, thus increasing, by one,
the number of iteration-performing branches in the selected
program.

(5) Replace the chosen point in the picked branch by the
name of the new iteration-performing branch.

4. Application of Restricted Iteration
Creation to the Transmembrane Segment
Identification Problem

The transmembrane segment identification problem is one
of the more difficult problems to which genetic
programming has previously been applied. Genetic
programming has been previously applied to three versions
of this problem:

(1) the set-creating version using genetic programming
with pre-specification by the user of the architecture
consisting of three zero-argument automatically defined
functions and one iteration-performing branch (ch. 18.5
through 18.9 of Koza 1994a),

(2) the arithmetic-performing version using genetic
programming with pre-specification by the user of the
architecture consisting of three zero-argument automatically
defined functions and one iteration-performing branch (ch.
18.10 and 18.11 of Koza 1994a),

(3) the architecture-altering version using the six recently
developed architecture-altering operations of branch
duplication, argument duplication, branch deletion,
argument deletion, branch creation, and argument creation
(Koza and Andre 1996).

In this section, the new architecture-altering operation of
restricted iteration creation is applied to the transmembrane
segment identification problem.

4.1. The Transmembrane Segment
Identification Problem

Proteins are polypeptide molecules composed of sequences
of amino acids (Stryer 1995). There are 20 amino acids
(also called residues) in the alphabet of proteins (denoted by

the letters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T,
V, W, and Y).

A transmembrane protein is embedded in a membrane
(such as a cell membrane) in such a way that part of the
protein is located on one side of the membrane, part is
within the membrane, and part is on the opposite side of the
membrane (Yeagle 1993). Understanding the behavior of
transmembrane proteins requires identification of the
portion(s) of the protein sequence that are actually
embedded within the membrane, such portion(s) being
called the transmembrane domain(s) of the protein. Since
biological membranes are of oily hydrophobic (water-
hating) composition, the amino acid residues of the
transmembrane domain of a protein that are exposed to the
membrane therefore have a tendency (but not an
overwhelming tendency) to be hydrophobic.

The goal in the transmembrane segment identification
problem is to classify a given protein segment (i.e., a
subsequence of amino acid residues from a protein
sequence) as being a transmembrane domain or non-
transmembrane area of the protein (without using
biochemical knowledge concerning hydrophobicity used by
human-written algorithms for this task).

A correct classification cannot be made by merely
examining a particular position in the given protein
segment, by merely testing for the presence or absence of
any one particular amino acid residue in the segment, or by
merely analyzing any small combination of positions within
the segment. Success in this problem involves integrating
information over the entire protein segment. Thus, this
problem seems especially appropriate for illustrating the
new operation of restricted iteration creation.

4.2. Preparatory Steps
We decided to start the run of this problem with an
architecturally uniform initial random population with a
"minimalist" structure in which each program in the
population consists only of a single result-producing
branch, RPB. That is, there are no automatically defined
functions (ADFs) and no iteration-performing branches
(IPBs) in the population at generation 0. Any automatically
defined functions or iteration-performing branches that are
needed to solve the problem will have to be created
dynamically during the run of genetic programming.

The transmembrane segment identification problem deals
with protein segments, each of which is of a known, finite
length. Therefore, we decided that each iteration will be
restricted in the sense that it will consist of one pass over
the current protein segment. This decision to use restricted
iteration effectively caps the amount of computer time that
can be expended in evaluating any one program.
Specifically, the iteration will start by pointing to the first
position of the protein segment; the transition rule for the
iteration will consist of advancing the pointer to the next
position of the protein segment; and the iteration will
terminate when it points to the last position of the protein
segment. We also decided that the iteration-performing
branch(es) would not possess an explicit iterative index,

but, instead, residue-detecting functions would be used to
sense the presence or absence of a particular amino acid
residue at the current position of the protein segment.

There are a total of 51 functions and terminals in the
function set and the terminal set of this problem, including
12 initial functions, 28 initial terminals, four potential
functions, and seven potential terminals.
4.2.1. Function Set
When the architecture-altering operations are used, both
functions and terminals can migrate from one part of the
overall program to another (both because of the action of
the architecture-altering operations and because of the
action of crossover using point typing). Consequently, we
distinguish between the initial function set, Finitial; the
initial terminal set, Tinitial; the set of additional potential
functions, Fpotential; and the set of additional potential
terminals, Tpotential.

For purposes of creating the initial random population of
individuals, the function set, Finitial, for the result-
producing branch, RPB, of each individual program is

Finitial = {+, -, *, %, IFGTZ, ORN, SETM0, SETM1,
SETM2, SETM3, SETM4, SETM5}

taking 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1, and 1 arguments,
respectively.

Here +, -, and * are the usual two-argument arithmetic
functions and % is the usual protected two-argument
division function.

The three-argument conditional branching operator
IFGTZ evaluates and returns its second argument if its first
argument is greater than or equal to zero, but otherwise
evaluates and returns its third argument.

The six one-argument setting functions, SETM0, SETM1,
... , SETM5, can be used to set the six settable memory
variables, M0, M1, ... , M5 to a particular value. These
setting functions operating on specific settable variables
(Koza 1992, 1994a) are the simplest kind of memory used
in genetic programming. Teller's indexed memory (1994)
and Andre's memory maps (1994) illustrate more complex
ways of incorporating state and memory into genetic
programming.
ORN is implemented as a two-argument numerically

valued disjunctive function returning +1 if either or both of
its arguments are positive, but returning –1 otherwise. ORN
represents a short-circuiting (optimized) disjunction in the
sense that if its first argument is positive, its second
argument will not be evaluated (and any side-effecting
function, such as SETM0, contained therein will remain
unexecuted).

For purposes of creating the initial random population of
individuals, the terminal set, Tinitial, for the result-producing
branch, RPB, is,

Tinitial = {←, M0, M1, M2, M3, M4, M5, LEN, (A?), (C?),
... , (Y?)}.

← represents floating-point random constants between –
10.0 and +10.0 chosen using a uniform probability
distribution. Since we want to encode each point (internal
or external) of each program tree in the population into one
byte of memory in the computer, the number of different
floating-point random constants is the difference between
256 and the total number of functions and terminals (initial
and potential). These 200 or so initial random constants are
adequate for this problem because the various arithmetic
functions frequently recombine them during the run to
produce new constants.
M0, M1, M2, M3, M4, and M5 are a settable memory

variables. Each is zero when execution of a given overall
program begins.
LEN is the length of the current protein segment.
(A?) represents the zero-argument residue-detecting

function returning a numerical +1 if the current residue is
alanine (A) but otherwise returning a numerical –1. A
similar residue-detecting function (from (C?) to (Y?)) is
defined for each of the 19 other amino acids. Each time
iterative work is performed by the body of the iteration-
performing branch, the current residue of the protein is
advanced to the next residue of the protein segment until the
end of the entire protein segment is encountered. If a
residue-detecting function is directly called from an
iteration-performing branch, IPB (or indirectly called by
virtue of being within a yet-to-be-created automatically
defined function that is called by an iteration-performing
branch), the residue-detecting function is evaluated for the
current residue of the iteration.

There are no iteration-performing branches at generation
0. However, once the restricted iteration creation operation
is performed, iteration-performing branches (and the
terminals representing their return values, IPB0, IPB1, ...)
begin to appear in the population.

Similarly, there are no automatically defined functions
(ADF0, ADF1, ...) or dummy variables (ARG0, ARG1, ...) in
generation 0. However, once the architecture-altering
operations are performed, the functions ADF0, ADF1, ...
and the dummy variables ARG0, ARG1, ... begin to appear
in the population. For practical reasons, a maximum of 3
iteration-performing branches was established. Similarly, a
maximum of four automatically defined functions, each
possessing between zero and four dummy variables, was
established. Thus, the set of potential additional terminals,
Tpotential, for this problem consists of

Tpotential = {IPB0, IPB1, IPB2, ARG0, ARG1, ARG2,
ARG3}.

The set of potential additional functions, Fpotential, for
this problem consists of

Fpotential = {ADF0, ADF1, ADF2, ADF3},

each taking an as-yet-unknown number of arguments
(between 0 and 4).

Note that shortly after iteration-performing branch(es)
and automatically defined function(s) are created, the

residue-detecting functions will begin to migrate into these
newly created branches. Moreover, the automatically
defined functions will be referenced by yet-to-be-created
calls from the result-producing branch or iteration-
performing branch(es). When a residue-detecting function
appears within a created automatically defined function that
is called from within a created iteration-performing branch,
it is, of course, evaluated for each position of the protein
segment as the iteration proceeds. When a residue-detecting
function appears in a program with no iteration-performing
branches (i.e., in the result-producing branch or a created
automatically defined function), the residue to which it is
pointing is formally undefined. As a matter of convention
here, it is evaluated for the first position of the protein
segment (i.e., as if the iterative index is pointing to the first
residue of the protein sequence). When a residue-detecting
function appears within the result-producing branch or a
created automatically defined function of a program with
one or more iteration-performing branches, the residue to
which it is pointing is also undefined. As a matter of
convention here, it is evaluated for the leftover value of the
iterative index (i.e., as if the iterative index is pointing to the
last residue of the protein sequence).

Because we use numerically valued logic (i.e., the ORN
function), numerically valued residue-detecting functions,
and other numerically valued functions, the set of functions
and terminals is closed in the sense that any composition of
functions and terminals can be successfully evaluated. This
remains the case even after automatically defined functions
(with varying numbers of arguments) begin to be created.

A wrapper (output interface) is used to convert the
floating-point value produced by the result-producing
branch into a binary outcome. If the result-producing branch
returns a positive numerical value, the segment will be
classified as a transmembrane domain, but otherwise the
segment will be classified as a non-transmembrane area of
the protein.
4.2.2. Fitness
Fitness measures how well a particular genetically-evolved
classifying program predicts whether the segment is, or is
not, transmembrane domain. The fitness cases for this
problem consist of protein segments. The classification
made by the genetically-evolved program for each protein
segment in the in-sample set of fitness cases (the training
set) were compared to the correct classification for the
segment. Raw fitness for this problem is based on the value
of the correlation; standardized ("zero is best") fitness is (1
– C)/2. The error rate is the number of fitness cases for
which the classifying program is incorrect divided by the
total number of fitness cases.

The same proteins as used in ch. 18 of Koza 1994a were
used here. One of the transmembrane domains of each of
these 123 proteins was selected at random as a positive
fitness case for this in-sample set. One segment that was of
the same length as the chosen transmembrane segment and
that was not contained in any of the protein's
transmembrane domains was selected from each protein as a
negative fitness case. Thus, there are 123 positive and 123

negative fitness cases in the in-sample set of fitness cases.
In addition, 250 out-of-sample fitness cases (125 positive
and 125 negative) were created from the remaining 125
proteins in a manner similar to the above to measure how
well a genetically-evolved program generalizes to other,
previously unseen fitness cases from the same problem
environment (i.e., the out-of-sample data or testing set).
4.2.3. Parameters
Population size, M, was 64,000.

The operation of restricted iteration creation is, like the
other architecture-altering operations, used sparingly on
each generation. The percentage of operations on each
generation after generation 6 was 85% crossovers; 10%
reproductions; 0% mutations; 1% restricted iteration
creations; 1% branch duplications; 1% argument
duplications; 0.5% branch deletions; 0.5% argument
deletions; 1% branch creations; and 0% argument creations.
Since we did not want to waste large amounts of computer
time in early generations where only a few programs have
any automatically defined functions at all, we decided to get
the run off to a fast start by setting the percentage of branch
creation operations for generations 1 through 6 to 70%
crossovers; 10% reproductions; 0% mutations; 6% restricted
iteration creations; 2% branch duplications; 2% argument
duplications; 2% branch deletions; 2% argument deletions;
6% branch creations; 0% argument creation.

A maximum size of 200 points was established for the
result-producing branch, each of the yet-to-be-created
iteration-performing branches, and each of the yet-to-be-
created function-defining branches. The other parameters
for the runs were the default values specified in Koza
(1994a).
4.2.4. Termination Criterion and Results

Designation
Since perfect classifying performance was unlikely to occur,
the run was monitored and manually terminated.
4.2.5. Parallel Implementation
The problem (coded in ANSI C) was run on a medium-
grained parallel Parystec computer system consisting of 64
80 MHz Power PC 601 processors arranged in a toroidal
mesh with a host PC Pentium type computer (running
Windows). The Power PC processors communicate by
means of one INMOS transputer that is associated with each
Power PC processor. The so-called distributed genetic
algorithm or island model for parallelization (Goldberg
l989) was used. That is, subpopulations (called demes after
Wright 1943) were situated at the processing nodes of the
system. Population size was Q = 1,000 at each of the D =
64 demes for a total population size of 64,000. The initial
random subpopulations were created locally at each
processing node. Generations were run asynchronously on
each node. After a generation of genetic operations was
performed locally on each node, four boatloads, each
consisting of B = 5% (the migration rate) of the
subpopulation (selected on the basis of fitness) were
dispatched to each of the four toroidally adjacent nodes.

Details of the parallel implementation of genetic
programming can be found in Andre and Koza 1996.

4.3. Results
It is difficult to understand the operation of most of the
programs that are evolved using genetic programming. One
practical way to obtain understandable evolved programs is
to harvest more than the usual single high-fitness program
from a run. When this approach is used, the run is not
terminated as soon as the first high-fitness program is
created, but is, instead, continued until a number of high-
fitness programs have been created. For simplicity, we
limited our harvesting to pace-setting best-of-generation
programs reported from the 64 processing nodes of the
parallel computer system. Specifically, we harvested five
different evolved programs from generations 34, 37, 40, 42,
and 43 of our first run of this version of the problem. The
programs harvested from generations 40 and 42 had an out-
of-sample error rate of 1.6% and the other three harvested
programs had an out-of-sample error rate of 2%. All five of
these programs were superior to the algorithms written by
knowledgeable human investigators (which had error rates
of between 2.5% and 2.8%). Other subsequent runs of this
problem also produced equally successful results.
4.3.1. The Myopic Performance of the Best of

Generation 0
The initial random population of a run of genetic
programming is a blind random search of the search space
of the problem. As such, it provides a baseline for
comparing the results of subsequent generations. Figure 1
shows that the architecture of the best-of-generation
program consists only of one result-producing branch, RPB.

RPB

PROGN

Figure 1 Architecture of best-of-generation program from
generation 0.

The best-of-generation program for generation 0 has an
in-sample correlation of 0.3108. This 18-point program
consists only of the result-producing branch shown below:
(setm2 (* (setm5 (setm0 (orn LEN M0)))

(* (* (setm4 LEN) (setm4 (M?))) (%
(setm1 (W?)) (setm4 (V?))))))

When simplified, this program returns +1 if the first
residue of the protein segment is M (methionine), V
(valine), or W (tryptophan), but returns -1 otherwise. M and
V are hydrophobic on the Kyte-Dolittle hydrophobicity
scale (Kyte and Dolittle 1982) and W is neutral. Note that
this myopic program makes a decision for the entire protein
segment (whose average length is 22) based on this
manifestly inadequate test applied to a manifestly
inadequate portion (only one residue) of the protein
segment.

4.3.2. A Myopic Iteration-Performing
Branch

One of the pace-setting programs from generation 1 has a
26-point result-producing branch, a 14-point iteration-
performing branch, and an in-sample correlation of 0.4702.
(A pace-setting program in an asynchronous parallel
computer system is a best-of-generation program from one
of the processing nodes that reports a new best level of
fitness). However, even though the program has an
iteration-performing branch, the classification of the entire
protein segment is myopically done on the basis of just the
last residue from the protein segment.

Figure 2 shows the architecture of this program consisting
of one iteration-performing branch, IPB0, and one result-
producing branch.

IPB0 RPB

PROGN

Figure 2 Architecture of program from generation 1.

4.3.3. An Iteration-Performing Branch that
Globally Integrates Information

A later pace-setting program from generation 1 uses its
newly created iteration-performing branch to achieve an in-
sample correlation of 0.5760 by globally integrating
information about the protein segment. However, its method
is most unusual. Its three-point result-producing branch is
(orn (IPB0) (L?))

Its six-point iteration-performing branch, IPB0, is
(% (setm3 (orn (K?) M3)) (E?))

The amino acid residue K (lysine) is electrically charged and
hydrophilic and therefore rarely occurs in a transmembrane
domain. The settable variable M3 is iteratively set to the
ORN of the previous value of M3 and the value (–1 or +1)
returned by the residue-detecting function (K?). The effect
is to scan the protein segment (averaging 22 residues) for
the absence of K's since the value returned by the SETM3 on
the final iteration is -1 if there are no K's in the segment.
The test for E (glutamic acid) does not affect M3 and thus
only becomes relevant for the last residue of the segment. If
there is no E at the end of the segment (and there usually
would not be in a transmembrane domain), the value
returned by the iteration-performing branch, IPB0, is +1 if
there are no K's in the segment. The result-producing branch
then classifies the entire segment as a transmembrane
domain if either the last residue is the hydrophobic residue L
(leucine) or if there is an absence of hydrophilic K's in the
segment.

All succeeding pace-setting programs have at least one
iteration-performing branch that globally integrates
information about the entire protein segment in some way.

4.3.4. An Iteration-Performing Branch that
Computes a Running Sum

The first pace-setting program from generation 2 globally
integrates information about the protein segment and
achieves an in-sample correlation of 0.7224. Its one-point
result-producing branch simply returns the value of IPB0
and its eight-point iteration-performing branch, IPB0, is
(setm3 (+ (* (H?) (E?)) (+ (V?) M3)))

This iteration-performing branch, IPB0, computes a
running sum, M3. Each hydrophobic V residue (+4.2 on the
Kyte-Dolittle scale) contributes +1; each residue that is
neither E (–3.5 on the scale) nor H (–3.2 on the scale)
contributes +1; an E or a H contributes –1.
4.3.5. Emergence of Automatically Defined

Functions
The pace-setting program from generation 6 consists of a
one-argument automatically defined function, an iteration-
performing branch, and a result-producing branch. Figure 3
shows the architecture of this program from generation 6.

IPB0 RPBADF0

PROGN

Figure 3 Architecture of program from generation 6.

Of course, automatically defined functions were created
as early as generation 1; however, this program was the first
pace-setting program with an automatically defined
function.
4.3.6. Emergence of Multiple Iteration-

Performing Branches
The first pace-setting program from generation 8 has
multiple iteration-performing branches. One of these
iteration-performing branches globally integrates
information over the entire protein segment.
4.3.7. Emergence of Cooperativity Among

Iteration-Performing Branches
The second pace-setting program from generation 11 has
two iteration-performing branches that cooperatively
integrate global information about the protein segment.

Its 12-point first iteration-performing branch, IPB0, is
(setm3 (+ (* (H?) (E?)) (+ (orn (setm2

M0) (set2 (W?))) M3)))

This first branch, IPB0, computes a running sum, M3. An
increment of +1 is contributed by W (tryptophan); +1 is
contributed by each residue that is neither E nor H; and -1 is
contributed by either an E or a H (histidine). The settable
variable, M3, is used for communication between the first
and second iteration-performing branches.

The eight-point second iteration-performing branch,
IPB1, (which, interestingly, is identical to IPB0 of the
program from generation 2 cited above) makes an additional
contribution to M3 based on H, E, and V (valine) as follows:

 (setm3 (+ (* (H?) (E?)) (+ (V?) M3)))

The one-point result-producing branch of this program is
simply (IPB1). That is, the terminal IPB1 is used for
communication between the second iteration-performing
branch and the final result-producing branch. The value of
the result-producing branch is the running sum to which +1
is contributed by each V; +1 is contributed by each W; +2 is
contributed by each residue that is neither E nor H; and -2 is
contributed by either an E or a H. Note that a human
programmer would never use two cooperative iteration-
performing branches to compute this running sum M3.
However, in this particular program, one iteration-
performing branch enhances the performance of the other.
4.3.8. Emergence of Hierarchy among

Automatically Defined Functions
A pace-setting program from generation 24 has a one-
argument ADF1 and a zero-argument ADF3 such that ADF3
refers to ADF1 (and also to IPB1).
4.3.9. Emergence of Multiple Automatically

Defined Functions and Multiple
Iteration-Performing Branches

The pace-setting program from generation 26 has three one-
argument automatically defined functions as well as two
iteration-performing branches. Figure 4 shows this program

RPBIPB0 IPB1ADF2ADF0 ADF1

PROGN

Figure 4 Architecture of program from generation 26.

4.3.10. A Best-of-Run Program from
Generation 42

The best-of-generation program from processing node 2 of
generation 42 scores 122 true positives, 122 true negatives,
1 false positive, and 1 false negative and has an in-sample
correlation of 0.9938. It also scores 123 true positives, 123
true negatives, 2 false positives, and 2 false negatives. It has
an out-of-sample error rate of 1.6%.

This program has two one-argument automatically
defined functions (ADF0 and ADF1), two iteration-
performing branches (IPB0 and IPB1) that cooperatively
integrate global information about the protein segment, and
one result-producing branch.

Figure 5 shows the architecture of this program.

RPBIPB0 IPB1ADF1ADF0

PROGN

Figure 5 Architecture of program from generation 42.

The one-point result-producing branch returns the value
returned by the second iteration-performing branch, IPB1.

The first automatically defined function, ADF0, has six
points and is shown below:
(adf1 (+ (setm0 (E?))(setm4 (Q?))))

Since ADF1 merely returns its one argument, ADF0
returns 0 if the current residue is E or Q (glutamine) and
otherwise returns –2. ADF0 also side-effects the settable
variables M0 and M4.

The first iteration-performing branch, IPB0, has 112
points and is shown below:
(setm1 (– (– (setm1 (setm1 (– (setm1 M1)

(setm3 (setm3 (% (– (I?) (R?)) (adf0
(H?)))))))) (setm3 (setm3 (% (– (+
(V?) M3) (setm2 (+ (– (D?) (+ (V?)
(setm3 (+ (orn (Y?) (* (E?) (setm5
(orn (P?) (D?)))))(+ (setm5 (orn M0
(L?))) M3))))) (setm3 (R?))))) (adf0
(% (setm1 (– (– (setm1 (setm1 (–
(setm1 M1) (setm3 (setm3 (% (– (I?)
(R?)) (adf0 (H?)))))))) (setm3 (setm3
(% (– (+ (V?) M3) (setm2 (+ (– (*
(setm5 (orn (P?) (R?))) (setm5 (orn
(P?) (D?)))) (L?)) (setm3 (orn (Q?) (%
M5 (V?))))))) (setm5 (orn M0
(L?))))))) (setm3 (setm3 (% (– (F?)
(R?))(adf0 (H?))))))) (E?)))))))
(setm3 (setm3 (% (– (F?) (R?))(adf0
(H?)))))))

The second iteration-performing branch, IPB1, has 45
points and is shown below:
(setm1 (– (setm1 M1) (setm3 (setm3 (% (–

(I?) (adf1 (* (setm0 (setm1 (orn (orn
(P?) (R?)) (– (setm1 M1) (setm3 (setm3
(ifgtz (setm4 (– (Y?) (R?))) (setm1
(Y?)) IPB0))))))) (setm0 (* (setm0
(orn (K?) M0)) (setm1 (orn (setm4
(setm1 (setm4 (P?)))) (Q?))))))))
(adf0 (H?)))))))

Both possible avenues of communication and cooperation
are employed by this program. First, two of the six settable
variables (M0 and M1) are set in IPB0 and referenced by
IPB1 (as highlighted by bold-faced type in IPB1). Second,
IPB1 contains a reference to the value returned by IPB0
(also highlighted by bold-faced type in IPB1).

5. Comparison of Eight Methods
Table 1 shows the out-of-sample error rate for eight
different approaches to the transmembrane segment
identification problem, including

(1) the three human-written algorithms of von Heijne
(1992), Engelman, Steitz, and Goldman (1986), and Kyte
and Doolittle (1982) for classifying transmembrane
domains, as described in Weiss, Cohen, and Indurkhya
1993,

(2) the result of Weiss, Cohen, and Indurkhya (1993)
using a machine learning technique along with a
considerable amount of human ingenuity,

(3) the set-creating version using genetic programming
with prespecification by the user of the architecture
consisting of three zero-argument automatically defined

functions and one iteration-performing branch (ch. 18.5
through 18.9 of Koza 1994a),

4) the arithmetic-performing version using genetic
programming with prespecification by the user of the
architecture consisting of three zero-argument automatically
defined functions and one iteration-performing branch (ch.
18.10 and 18.11 of Koza 1994a),

(5) the architecture-altering version using genetic
programming employing the six recently developed
operations of branch duplication, argument duplication,
branch deletion, argument deletion, branch creation, and
argument creation (Koza and Andre 1996), and

(6) the result using the new operation of restricted
iteration creation (and the six recently developed
architecture-altering operations), as described in this paper.

Table 1 Comparison of eight methods.
Method Error
von Heijne 1992 2.8%
Engelman, Steitz, and Goldman 1986 2.7%
Kyte and Doolittle 1982 2.5%
Weiss, Cohen, and Indurkhya 1993 2.5%
GP + Set-creating ADFs 1.6%
GP + Arithmetic-performing ADFs 1.6%
GP + ADFs + six architecture-altering
operations

1.6%

GP + ADFs + six architecture-altering
operations + restricted iteration creation
operation

1.6%

As can be seen from the table, the error rate of all four
versions using genetic programming are identical; all four
are better than the error rates of the other four methods. All
four versions using genetic programming (none of which
employs any foreknowledge of the biochemical concept of
hydrophobicity) are instances of an algorithm discovered by
an automated learning paradigm whose performance is
slightly superior to that of algorithms written by
knowledgeable human investigators.

6. Conclusion
The new architecture-altering operation of restricted
iteration creation (along with the six previously developed
architecture-altering operations) enable genetic
programming to evolve a successful classifying program for
the transmembrane segment identification problem starting
from a population that initially contains no iterations and no
automatically defined functions. That is, this new operation
automates the decision about whether to employ iteration,
how much iteration to employ, and the particular sequence
of iterative steps. This reduces the number of decisions that
the user must make prior to using genetic programming on a
problem.

In the illustrative run, the first occurrence of an iteration-
performing branch was degenerate and myopic. However,
global integration of information by a single iteration-
performing branch soon emerged. We then saw the
emergence of multiple iteration-performing branches and,

finally, cooperation among the iteration-performing
branches. Meanwhile, we also saw the emergence of a first
automatically defined function, then multiple automatically
defined functions, and finally hierarchical arrangements of
automatically defined functions.

Bibliography
Andre, David (1994). Evolution of map making: Learning,

planning, and memory using genetic programming.
Proceedings of the First IEEE Conference on
Evolutionary Computation. IEEE Press. Volume I.
250–255.

Andre, David and Koza, John R. 1996. Parallel genetic
programming: A scalable implementation using the
transputer architecture. In Angeline, Peter J. and
Kinnear, Kenneth E. Jr. (editors). 1996. Advances in
Genetic Programming 2. Cambridge, MA: The MIT
Press.

Engelman, D., Steitz, T., and Goldman, A. 1986.
Identifying nonpolar transbilayer helices in amino
acid sequences of membrane proteins. Annual Review
of Biophysics and Biophysiological Chemistry.
Volume 15.

Goldberg, David E. l989. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.

Holland, John H. 1975. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. Ann
Arbor, MI: University of Michigan Press. (2nd ed.
MIT Press 1992).

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA:
The MIT Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: The MIT
Press.

Koza, John R. 1995a. Evolving the architecture of a multi-
part program in genetic programming using
architecture-altering operations. In McDonnell, John
R., Reynolds, Robert G., and Fogel, David B.
(editors). 1995. Evolutionary Programming IV:
Proceedings of the Fourth Annual Conference on
Evolutionary Programming. Cambridge, MA: The
MIT Press. 695–717.

Koza, John R. and Andre, David. 1996. Classifying protein
segments as transmembrane domains using
architecture-altering operations in genetic
programming. Angeline, Peter and Kinnear, Kenneth
E., Jr. (editors). 1996. Advances in Genetic
Programming 2, Cambridge, MA: The MIT Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: The
MIT Press.

Kyte, J. and Doolittle, R. 1982. A simple method for
displaying the hydropathic character of proteins.
Journal of Molecular Biology. 157:105-132.

Samuel, Arthur L. 1959. Some studies in machine learning
using the game of checkers. IBM Journal of Research
and Development. 3(3): 210–229.

Stryer, Lubert. 1995. Biochemistry. New York, NY:W. H.
Freeman. Fourth Edition.

Teller, A.. (1994). The evolution of mental models. In
Kinnear, K. E. Jr. (editor). Advances in Genetic
Programming. Cambridge, MA: The MIT Press.

von Heijne, G. 1992. Membrane protein structure
prediction: Hydrophobicity analysis and the positive-
inside rule. Journal of Molecular Biology. 225:487–
494.

Weiss, S. M., Cohen, D. M., and Indurkhya, N. 1993.
Transmembrane segment prediction from protein
sequence data. In Hunter, L., Searls, D., and Shavlik,
J. (editors). Proceedings of the First International
Conference on Intelligent Systems for Molecular
Biology. Menlo Park, CA: AAAI Press.

Wright, Sewall. 1943. Isolation by distance. Genetics
28:114–138.

Yeagle, Philip L. 1993. The Membranes of Cells. Second
edition. San Diego, CA: Academic Press.

