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ABSTRACT 

The solution to many problems requires, or is 
facilitated by, the use of iteration. Moreover, because 
iterative steps are repeatedly executed, they must 
have some degree of generality.  

An automatic programming system should 
require that the user make as few problem-specific 
decisions as possible concerning the size, shape, and 
character of the ultimate solution to the problem.  

Work first presented at the Fourth Annual 
Conference on Evolutionary Programming in 1995 
(EP-95) demonstrated that six then-new 
architecture-altering operations made it possible to 
automate the decision about the architecture of an 
overall program dynamically during a run of genetic 
programming. The question arises as to whether it is 
also possible to automate the decision about whether 
to employ iteration, how much iteration to employ, 
and the particular sequence of iterative steps.  

This paper introduces the new operation of 
restricted iteration creation that automatically 
creates a restricted iteration-performing branch out 
of a portion of an existing computer program during 
a run a genetic programming. Genetic programming 
with the new operation is then used (in conjunction 
with the other architecture-altering operations first 
presented at EP-95) to evolve a computer program to 
solve a non-trivial problem.  

1. Introduction 
An automatic programming system should require that the 
user make as few problem-specific decisions as possible 
prior to presenting his problem to the system. One of the 
most persistent and vexatious aspects of automated machine 
learning from the earliest times has been the requirement 
that the human user predetermine the size, shape, and 
character of the ultimate solution to the problem (Samuel 
1959). The size, shape, and character of the solution should 
be part of the answer provided by an automated machine 

learning technique, rather than part of the question supplied 
by the human user.  

1.1. Evolving Single-Part Programs 
John Holland's pioneering Adaptation in Natural and 
Artificial Systems (1975) described how an analog of the 
naturally-occurring evolutionary process can be applied to 
solving scientific and engineering problems using what is 
now called the genetic algorithm.  

Genetic programming extends Holland's genetic 
algorithm to the task of automatic programming. Early work 
on genetic programming demonstrated that it is possible to 
evolve a sequence of work-performing steps in a single 
result-producing branch (that is, a one-part "main" 
program). The book Genetic Programming: On the 
Programming of Computers by Means of Natural Selection 
(Koza 1992) describes an extension of Holland's genetic 
algorithm in which the genetic population consists of 
computer programs (that is, compositions of primitive 
functions and terminals). See also Koza and Rice (1992).  

In the most basic form of genetic programming (where 
only a single result-producing branch is evolved), genetic 
programming demonstrated the capability to discover a 
sequence (as to both its length and its content) of work-
performing steps that is sufficient to produce a satisfactory 
solution to several problems, including many problems that 
have been used over the years as benchmarks in machine 
learning and artificial intelligence. Before applying genetic 
programming to a problem, the user must perform five 
major preparatory steps, namely identifying the terminals 
(inputs) of the to-be-evolved programs,  identifying the 
primitive functions (operations) contained in the to-be-
evolved programs, creating the fitness measure for 
evaluating how well a given program does at solving the 
problem at hand, choosing certain control parameters 
(notably population size and number of generations to be 
run), and determining the termination criterion and method 
of result designation (typically the best-so-far individual 
from the populations produced during the run).  



 

1.2. Evolving Multi-Part Programs 
Later work on genetic programming demonstrated that it is 
possible to co-evolve the work-performing steps of one or 
more function-defining branches (automatically defined 
functions) concurrently with the work-performing steps of a 
result-producing branch so as to gain leverage inherent in 
reusable and parameterizable subroutines. In ordinary 
computer programs, subroutines provide a hierarchical 
mechanism to exploit, by reuse and parameterization, the 
regularities, symmetries, homogeneities, similarities, 
patterns, and modularities inherent in problem 
environments.  

Accordingly, Genetic Programming II: Automatic 
Discovery of Reusable Programs (Koza 1994a, 1994b) 
describes how to evolve multi-part programs consisting of a 
main program and one or more reusable, parameterized, 
hierarchically-callable subprograms. An automatically 
defined function (ADF) is a function (sometimes also called 
a subroutine, subprogram, DEFUN, procedure, module) 
whose work-performing body is dynamically evolved 
during a run of genetic programming and which may be 
called by a calling main program (or calling subprogram) 
whose work-performing body is concurrently being 
evolved. Genetic programming with automatically defined 
functions has demonstrated the capability of co-evolving the 
work-performing steps of the function-defining branches 
(automatically defined functions) concurrently with the 
work-performing steps of a result-producing branch.  

When automatically defined functions are being evolved 
in a run of genetic programming, it becomes necessary to 
determine the architecture of the overall to-be-evolved 
program. The specification of the architecture consists of (a) 
the number of function-defining branches (i.e., 
automatically defined functions) in the overall program, (b) 
the number of arguments (if any) possessed by each 
function-defining branch, and (c) if there is more than one 
function-defining branch, the nature of the hierarchical 
references (if any) allowed between the function-defining 
branches (and between the function-defining branches and 
the result-producing branch(es) of the overall program). The 
user may supply the specification of the architecture as an 
additional sixth preparatory step; however, it is preferable, 
in many situations, to automate this decision so that the user 
is not required to prespecify the architecture.  

1.3. Evolution of Architecture 
Recent work on genetic programming has demonstrated that 
it is possible to evolve the architecture of an overall 
program dynamically during a run of genetic programming 
using six recently developed architecture-altering 
operations, namely branch duplication, argument 
duplication, branch deletion, argument deletion, branch 
creation, and argument creation. These six recently 
developed architecture-altering operations introduced at the 
Fourth Annual Conference on Evolutionary Programming 
(Koza 1995) provide an automated way to enable genetic 
programming to dynamically determine, during the run, 
whether or not to employ function-defining branches, how 

many function-defining branches to employ, and the 
number of arguments possessed by each function-defining 
branch.  

The architecture-altering operations and automatically 
defined functions together provide an automated way to 
change the representation of a problem while solving the 
problem. Alternately, they can also be viewed as an 
automated way to decompose a problem into an non-
prespecified number of subproblems of non-pre-specified 
dimensionality; to solve the subproblems; and to assemble 
the solutions of the subproblems into a solution of the 
overall problem. The architecture-altering operations can 
also be interpreted as providing an automated way to 
specialize and generalize during the problem-solving 
process.  

1.4. Evolution of Iteration 
Typical computer programs contain iterative operators that 
perform some specified work until some condition 
expressed by a termination predicate is satisfied. Iteration is 
an important element in computer programs. The solution to 
many problems requires, or is facilitated by, iteration. 
Moreover, because iterative steps are repeatedly executed, 
they must have some degree of generality.  

The question arises as to whether it is possible to 
automate the decision about whether to employ iteration, 
how much iteration to employ, and the particular sequence 
of iterative steps in a computer program that is being 
evolved by genetic programming to solve a problem.  

This paper introduces the new operation of restricted 
iteration creation that automatically creates a restricted 
iteration-performing branch out of a portion of an existing 
computer program during a run a genetic programming. 
Genetic programming with the new operation of restricted 
iteration creation is then used (in conjunction with the other 
architecture-altering operations first presented at EP-95) to 
evolve a computer program to solve a non-trivial problem.  

1.5. Organization of This Paper 
Section 2 provides background on genetic programming. 
Section 3 explains the new architecture-altering operation of 
restricted iteration creation. Section 4 demonstrates the 
application of the new operation of restricted iteration 
creation to the transmembrane segment identification 
problem. Section 5 compares the best genetically-evolved 
program achieved using the operation of restricted iteration 
creation with the results of previously reported human-
written algorithms and with the results of two previous 
approaches using genetic programming. Section 6 is the 
conclusion.  

2. Background on Genetic Programming 
Execution of genetic programming consists of the following 
steps:   

(1) Generate an initial random population (generation 0) 
of computer programs. 

(2) Iteratively perform the following sub-steps until the 
termination criterion of the run has been satisfied: 



 

(a) Execute each program in the population and assign 
it (explicitly or implicitly) a fitness value according 
to how well it solves the problem. 

(b) Select program(s) from the population to participate 
in the genetic operations in (c) below. 

(c) Create new program(s) for the population by 
applying the following genetic operations. 

(i) Reproduction: Copy an existing program to the 
new population. 

(ii) Crossover: Create new offspring program(s) for 
the new population by recombining randomly 
chosen parts of two existing programs. 

(iii) Mutation. Create one new offspring program for 
the new population by randomly mutating a 
randomly chosen part of one existing program. 

(iv) Branch duplication:  Create one new offspring 
program for the new population by duplicating 
one function-defining branch of one existing 
program and making additional appropriate 
changes to reflect this change. 

(v) Argument duplication:  Create one new offspring 
program for the new population by duplicating 
one argument of one function-defining branch of 
one existing program and making additional 
appropriate changes to reflect this change. 

(vi) Branch deletion:  Create one new offspring 
program for the new population by deleting one 
function-defining branch of one existing program 
and making additional appropriate changes to 
reflect this change. 

(vii) Argument deletion:  Create one new offspring 
program for the new population by deleting one 
argument of one function-defining branch of one 
existing program and making additional 
appropriate changes to reflect this change. 

(viii) Branch creation:  Create one new offspring 
program for the new population by adding one 
new function-defining branch containing a portion 
of an existing branch and creating a reference to 
that new branch.  

(ix) Argument creation:  Create one new offspring 
program for the population by adding one new 
argument to the argument list of an existing 
function-defining branch and appropriately 
modifying contents of the branch and references 
to the branch. 

(x) Restricted iteration creation. Create one new 
offspring program for the new population by 
adding one new iteration-performing branch 
containing a portion of an existing branch and 
creating a reference to that new branch.  

(3) After satisfaction of the termination criterion (which 
usually includes a maximum number of generations to 
be run as well as a problem-specific success 
predicate), the single best computer program in the 
population produced during the run (the best-so-far 
individual) is designated as the result of the run. This 

result may (or may not) be a solution (or approximate 
solution) to the problem.  

Details of the basic genetic operations of reproduction, 
crossover, and mutation mentioned in (i) through (iii) of 
(2)(c) below are found in Koza (1992) or Koza (1994a). 
The six operations appearing as steps (2)(c)(iv) through 
(2)(c)(ix) are the recently developed architecture-altering 
operations (Koza 1995). The restricted iteration creation 
operation in (2)(c)(x) is the new architecture-altering 
operation that is described in detail in the next section of 
this paper.  

3. The New Operation of Restricted 
Iteration Creation  

The new operation of restricted iteration creation operates 
on one parental computer program and creates one new 
offspring program containing a new iteration-performing 
branch composed of a portion of an existing branch of the 
parental program.  

In its most general form, an iteration consists of an 
initialization step, a termination predicate, a work-
performing body, and an update step.  After executing the 
initialization step, the termination predicate is tested.  If the 
iteration is not terminated, the work-performing steps in the 
body of the iteration and the update step are then executed 
and control is returned to the termination predicate.   

As an example of a simple iteration, consider the 
following iteration involving an indexing variable. The 
starting calculation may set an indexing variable to an initial 
value; the terminate predicate may test whether the indexing 
variable equals or exceeds a final value; and the update 
calculation may  increment the indexing variable. Typically 
the work-performing steps of the iteration depend on the 
current value of the iteration variable. Many iterative 
calculations work in conjunction with memory (state). The 
memory transmits information from one execution of the 
iterative calculation to the next.  

As every programmer knows, iterative loops can be very 
time-consuming and, in the worst case, unending. In genetic 
programming, the computer programs in the population are 
initially created at random. These programs are 
subsequently subjected to modification by the crossover and 
mutation operations (and, possibly, various architecture-
altering) operations. If no restrictions are imposed on 
iteration, iterative operators can run for long periods of 
time, can become nested (and therefore consume large 
amounts of computer time), or can acquire unsatisfiable 
termination predicates (and therefore consume endless 
amounts of computer time). It is therefore a practical 
necessity to impose some kind of rationing on iteration in 
evolved programs.  

One approach to rationing involves the imposition of 
somewhat arbitrary external time-out limits on the number 
of iterative steps that may be performed.  

In some problems, iterative calculations can usefully be 
performed over a particular known finite set. Examples 
include two-dimensional pattern recognition problems 
where an iteration might usefully be performed over the 



 

entire two-dimensional array of pixels of known size, 
economic time series and signal processing problems where 
an iteration might usefully be performed over a certain 
known number of time steps, and protein or genomic 
sequence problems where an iteration might usefully be 
performed over the given linear sequence of amino acid 
residues or nucleiotide bases. For such problems, each 
iteration can be restricted to one pass over the known finite 
set.  

In restricted iteration, the start of the iteration is fixed; 
the update procedure is fixed; and the termination predicate 
is fixed. None of these three elements are susceptible to 
evolutionary modification. Consequently, excessively long 
iterations, nested iterations, and infinite loops are 
impossible. The amount of computer time therefore 
becomes capped (and thus tolerable). An overall computer 
program may consist of zero, one, or more iteration-
performing branches and one result-producing branch (as 
well as function-defining branches).  

When the overall program is executed, each iteration-
performing branch is executed exactly once. That is, each 
iteration-performing branch performs one restricted 
iteration over the finite set. The value returned by the last 
execution of the body of the iteration is available as a 
terminal (called IPB0 for the first iteration-performing 
branch, IPB1 for the second, etc.). Then, the result-
producing branch is executed. The result-producing branch 
may call (on zero, one, or multiple occasions) the function-
defining branches, if any, of the overall program. The 
result-producing branch (and possibly even function-
defining branches that may be created during the run) may 
refer (on zero, one, or multiple occasions) to the values (i.e.,  
IPB0, IPB1, etc.) returned by the iteration-performing 
branches.  

There are two avenues of communication between the 
iteration-performing branch(es) and the result-producing 
branch of the overall program.  First, the function and 
terminal sets of the problem contain means to read and write 
memory variables.  Thus, an iteration-performing branch 
may write a value to a particular memory variable and the 
result-producing branch may read that value.  Second, the 
terminals, IPB0, IPB1, ..., may appear in the result-
producing branch (and possibly even in function-defining 
branches that may be created during the run).   

Given that restricted iteration is available, it may not be 
obvious in advance whether the solution of a particular 
problem requires any restricted iterations, exactly one such 
restricted iteration, or multiple restricted iterations. It would 
therefore be desirable to automate the decision as to 
whether to employ iteration at all, how many times to 
employ iteration, and the particular sequence of steps in 
each iteration. This automation can be realized using the 
new architecture-altering operation of restricted iteration 
creation.  

The steps in the operation of restricted iteration creation 
are as follows: 

(1) Select a program from the population to participate in 
this operation. The step of selecting this parental program 
for restricted iteration creation is performed 

probabilistically on the basis of fitness, so that a program 
that is more fit has a greater probability of being selected to 
participate in this operation than a less fit program. A copy 
is first made of the selected program and the operation is 
then performed on the copy, so the original selected 
program remains unchanged in the population and is 
therefore available to be selected again for this (or any 
other) operation on the basis of its fitness. 

(2) Randomly pick one of the branches of the selected 
program.  If the selected program has only one branch, that 
branch is automatically picked.  The picking of the branch 
may, as an option, be restricted to a result-producing branch 
or another category of branches.   

(3) Randomly choose a point in the picked branch of the 
selected program. This chosen point will become the top-
most point of the body of the to-be-created restricted 
iteration-performing branch.  

((4) Add a uniquely-named new restricted iteration-
performing branch to the selected program consisting of the 
subtree rooted at the chosen point, thus increasing, by one, 
the number of iteration-performing branches in the selected 
program.   

(5) Replace the chosen point in the picked branch by the 
name of the new iteration-performing branch.  

4. Application of Restricted Iteration 
Creation to the Transmembrane Segment 
Identification Problem 

The transmembrane segment identification problem is one 
of the more difficult problems to which genetic 
programming has previously been applied. Genetic 
programming has been previously applied to three versions 
of this problem:  

(1) the set-creating version using genetic programming 
with pre-specification by the user of the architecture 
consisting of three zero-argument automatically defined 
functions and one iteration-performing branch (ch. 18.5 
through 18.9 of Koza 1994a),  

(2) the arithmetic-performing version using genetic 
programming with pre-specification by the user of the 
architecture consisting of three zero-argument automatically 
defined functions and one iteration-performing branch (ch. 
18.10 and 18.11 of Koza 1994a),  

(3) the  architecture-altering version using the six recently 
developed architecture-altering operations of branch 
duplication, argument duplication, branch deletion, 
argument deletion, branch creation, and argument creation 
(Koza and Andre 1996). 

In this section, the new architecture-altering operation of 
restricted iteration creation is applied to the transmembrane 
segment identification problem.   

4.1. The Transmembrane Segment 
Identification Problem 

Proteins are polypeptide molecules composed of sequences 
of amino acids (Stryer 1995). There are 20 amino acids 
(also called residues) in the alphabet of proteins (denoted by 



 

the letters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, 
V, W, and Y).  

A transmembrane protein is embedded in a membrane 
(such as a cell membrane) in such a way that part of the 
protein is located on one side of the membrane, part is 
within the membrane, and part is on the opposite side of the 
membrane (Yeagle 1993). Understanding the behavior of 
transmembrane proteins requires identification of the 
portion(s) of the protein sequence that are actually 
embedded within the membrane, such portion(s) being 
called the transmembrane domain(s) of the protein. Since 
biological membranes are of oily hydrophobic (water-
hating) composition, the amino acid residues of the 
transmembrane domain of a protein that are exposed to the 
membrane therefore have a tendency (but not an 
overwhelming tendency) to be hydrophobic.  

The goal in the transmembrane segment identification 
problem is to classify a given protein segment (i.e., a 
subsequence of amino acid residues from a protein 
sequence) as being a transmembrane domain or non-
transmembrane area of the protein (without using 
biochemical knowledge concerning hydrophobicity used by 
human-written algorithms for this task).  

A correct classification cannot be made by merely 
examining a particular position in the given protein 
segment, by merely testing for the presence or absence of 
any one particular amino acid residue in the segment, or by 
merely analyzing any small combination of positions within 
the segment. Success in this problem involves integrating 
information over the entire protein segment. Thus, this 
problem seems especially appropriate for illustrating the 
new operation of restricted iteration creation.  

4.2. Preparatory Steps 
We decided to start the run of this problem with an 
architecturally uniform initial random population with a 
"minimalist" structure in which each program in the 
population consists only of a single result-producing 
branch, RPB. That is, there are no automatically defined 
functions (ADFs) and no iteration-performing branches 
(IPBs) in the population at generation 0. Any automatically 
defined functions or iteration-performing branches that are 
needed to solve the problem will have to be created 
dynamically during the run of genetic programming.  

The transmembrane segment identification problem deals 
with protein segments, each of which is of a known, finite 
length. Therefore, we decided that each iteration will be 
restricted in the sense that it will consist of one pass over 
the current protein segment. This decision to use restricted 
iteration effectively caps the amount of computer time that 
can be expended in evaluating any one program. 
Specifically, the iteration will start by pointing to the first 
position of the protein segment; the transition rule for the 
iteration will consist of advancing the pointer to the next 
position of the protein segment; and the iteration will 
terminate when it points to the last position of the protein 
segment. We also decided that the iteration-performing 
branch(es) would not possess an explicit iterative index, 

but, instead, residue-detecting functions would be used to 
sense the presence or absence of a particular amino acid 
residue at the current position of the protein segment.  

There are a total of 51 functions and terminals in the 
function set and the terminal set of this problem, including 
12 initial functions, 28 initial terminals, four potential 
functions, and seven potential terminals.  
4.2.1. Function Set 
When the architecture-altering operations are used, both 
functions and terminals can migrate from one part of the 
overall program to another (both because of the action of 
the architecture-altering operations and because of the 
action of crossover using point typing). Consequently, we 
distinguish between the initial function set, Finitial; the 
initial terminal set, Tinitial; the set of additional potential 
functions, Fpotential; and the set of additional potential 
terminals, Tpotential.  

For purposes of creating the initial random population of 
individuals, the function set, Finitial, for the result-
producing branch, RPB, of each individual program is 

Finitial = {+, -, *, %, IFGTZ, ORN, SETM0, SETM1, 
SETM2, SETM3, SETM4, SETM5}  

taking 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1, and 1 arguments, 
respectively.  

Here +, -, and * are the usual two-argument arithmetic 
functions and % is the usual protected two-argument 
division function.  

The three-argument conditional branching operator 
IFGTZ evaluates and returns its second argument if its first 
argument is greater than or equal to zero, but otherwise 
evaluates and returns its third argument.  

The six one-argument setting functions, SETM0, SETM1, 
... , SETM5, can be used to set the six settable memory 
variables, M0, M1, ... , M5 to a particular value. These 
setting functions operating on specific settable variables 
(Koza 1992, 1994a) are the simplest kind of memory used 
in genetic programming. Teller's indexed memory (1994) 
and Andre's memory maps (1994) illustrate more complex 
ways of incorporating state and memory into genetic 
programming.  
ORN is implemented as a two-argument numerically 

valued disjunctive function returning +1 if either or both of 
its arguments are positive, but returning –1 otherwise. ORN 
represents a short-circuiting (optimized) disjunction in the 
sense that if its first argument is positive, its second 
argument will not be evaluated (and any side-effecting 
function, such as SETM0, contained therein will remain 
unexecuted).  

For purposes of creating the initial random population of 
individuals, the terminal set, Tinitial, for the result-producing 
branch, RPB, is,  

Tinitial = {←, M0, M1, M2, M3, M4, M5, LEN, (A?), (C?), 
... , (Y?)}.  



 

← represents floating-point random constants between –
10.0 and +10.0 chosen using a uniform probability 
distribution. Since we want to  encode each point (internal 
or external) of each program tree in the population into one 
byte of memory in the computer, the number of different 
floating-point random constants is the difference between 
256 and the total number of functions and terminals (initial 
and potential). These 200 or so initial random constants are 
adequate for this problem because the various arithmetic 
functions frequently recombine them during the run to 
produce new constants.  
M0, M1, M2, M3, M4, and M5 are a settable memory 

variables. Each is zero when execution of a given overall 
program begins.  
LEN is the length of the current protein segment.  
(A?) represents the zero-argument residue-detecting 

function returning a numerical +1 if the current residue is 
alanine (A) but otherwise returning a numerical –1. A 
similar residue-detecting function (from (C?) to  (Y?)) is 
defined for each of the 19 other amino acids. Each time 
iterative work is performed by the body of the iteration-
performing branch, the current residue of the protein is 
advanced to the next residue of the protein segment until the 
end of the entire protein segment is encountered. If a 
residue-detecting function is directly called from an 
iteration-performing branch, IPB (or indirectly called by 
virtue of being within a yet-to-be-created automatically 
defined function that is called by an iteration-performing 
branch), the residue-detecting function is evaluated for the 
current residue of the iteration.  

There are no iteration-performing branches at generation 
0. However, once the restricted iteration creation operation 
is performed, iteration-performing branches (and the 
terminals representing their return values, IPB0, IPB1, ...) 
begin to appear in the population.  

Similarly, there are no automatically defined functions 
(ADF0, ADF1, ...) or dummy variables (ARG0, ARG1, ...) in 
generation 0.  However, once the architecture-altering 
operations are performed, the functions ADF0, ADF1, ... 
and the dummy variables ARG0, ARG1, ... begin to appear 
in the population. For practical reasons, a maximum of 3 
iteration-performing branches was established. Similarly, a 
maximum of four automatically defined functions, each 
possessing between zero and four dummy variables, was 
established. Thus, the set of potential additional terminals, 
Tpotential, for this problem consists of  

Tpotential = {IPB0, IPB1, IPB2, ARG0, ARG1, ARG2, 
ARG3}.  

The set of potential additional functions, Fpotential, for 
this problem consists of  

Fpotential = {ADF0, ADF1, ADF2, ADF3},  

each taking an as-yet-unknown number of arguments 
(between 0 and 4).  

Note that shortly after iteration-performing branch(es) 
and automatically defined function(s) are created, the 

residue-detecting functions will begin to migrate into these 
newly created branches. Moreover, the automatically 
defined functions will be referenced by yet-to-be-created 
calls from the result-producing branch or iteration-
performing branch(es). When a residue-detecting function 
appears within a created automatically defined function that 
is called from within a created iteration-performing branch, 
it is, of course, evaluated for each position of the protein 
segment as the iteration proceeds. When a residue-detecting 
function appears in a program with no iteration-performing 
branches (i.e., in the result-producing branch or a created 
automatically defined function), the residue to which it is 
pointing is formally undefined. As a matter of convention 
here, it is evaluated for the first position of the protein 
segment (i.e., as if the iterative index is pointing to the first 
residue of the protein sequence). When a residue-detecting 
function appears within the result-producing branch or a 
created automatically defined function of a program with 
one or more iteration-performing branches, the residue to 
which it is pointing is also undefined. As a matter of 
convention here, it is evaluated for the leftover value of the 
iterative index (i.e., as if the iterative index is pointing to the 
last residue of the protein sequence).  

Because we use numerically valued logic (i.e., the ORN 
function), numerically valued residue-detecting functions, 
and other numerically valued functions, the set of functions 
and terminals is closed in the sense that any composition of 
functions and terminals can be successfully evaluated. This 
remains the case even after automatically defined functions 
(with varying numbers of arguments) begin to be created.  

A wrapper (output interface) is used to convert the 
floating-point value produced by the result-producing 
branch into a binary outcome. If the result-producing branch 
returns a positive numerical value, the segment will be 
classified as a transmembrane domain, but otherwise the 
segment will be classified as a non-transmembrane area of 
the protein.  
4.2.2. Fitness 
Fitness measures how well a particular genetically-evolved 
classifying program predicts whether the segment is, or is 
not, transmembrane domain. The fitness cases for this 
problem consist of protein segments. The classification 
made by the genetically-evolved program for each protein 
segment in the in-sample set of fitness cases (the training 
set) were compared to the correct classification for the 
segment. Raw fitness for this problem is based on the value 
of the correlation; standardized  ("zero is best") fitness is (1 
– C)/2.  The error rate is the number of fitness cases for 
which the classifying program is incorrect divided by the 
total number of fitness cases.  

The same proteins as used in ch. 18 of Koza 1994a were 
used here. One of the transmembrane domains of each of 
these 123 proteins was selected at random as a positive 
fitness case for this in-sample set. One segment that was of 
the same length as the chosen transmembrane segment and 
that was not contained in any of the protein's 
transmembrane domains was selected from each protein as a 
negative fitness case. Thus, there are 123 positive and 123 



 

negative fitness cases in the in-sample set of fitness cases. 
In addition, 250 out-of-sample fitness cases (125 positive 
and 125 negative) were created from the remaining 125 
proteins in a manner similar to the above to measure how 
well a genetically-evolved program generalizes to other, 
previously unseen fitness cases from the same problem 
environment (i.e., the out-of-sample data or testing  set).  
4.2.3. Parameters 
Population size, M, was 64,000. 

The operation of restricted iteration creation is, like the 
other architecture-altering operations, used sparingly on 
each generation. The percentage of operations on each 
generation after generation 6 was 85% crossovers; 10% 
reproductions; 0% mutations; 1% restricted iteration 
creations; 1% branch duplications; 1% argument 
duplications; 0.5% branch deletions; 0.5% argument 
deletions; 1% branch creations; and 0% argument creations. 
Since we did not want to waste large amounts of computer 
time in early generations where only a few programs have 
any automatically defined functions at all, we decided to get 
the run off to a fast start by setting the percentage of branch 
creation operations for generations 1 through 6 to 70% 
crossovers; 10% reproductions; 0% mutations; 6% restricted 
iteration creations; 2% branch duplications; 2% argument 
duplications; 2% branch deletions; 2% argument deletions; 
6% branch creations; 0% argument creation.  

A maximum size of 200 points was established for the 
result-producing branch, each of the yet-to-be-created 
iteration-performing branches, and each of the yet-to-be-
created function-defining branches.  The other parameters 
for the runs were the default values specified in Koza 
(1994a).  
4.2.4. Termination Criterion and Results 

Designation 
Since perfect classifying performance was unlikely to occur, 
the run was monitored and manually terminated.  
4.2.5. Parallel Implementation 
The problem (coded in ANSI C) was run on a medium-
grained parallel Parystec computer system consisting of 64  
80 MHz Power PC 601 processors arranged in a toroidal 
mesh with a host PC Pentium type computer (running 
Windows). The Power PC processors communicate by 
means of one INMOS transputer that is associated with each 
Power PC processor. The so-called distributed genetic 
algorithm or island model for parallelization (Goldberg 
l989) was used. That is, subpopulations (called demes after 
Wright 1943) were situated at the processing nodes of the 
system. Population size was Q =  1,000 at each of the D = 
64 demes for a total population size of 64,000. The initial 
random subpopulations were created locally at each 
processing node. Generations were run asynchronously on 
each node. After a generation of genetic operations was 
performed locally on each node, four boatloads, each 
consisting of B = 5% (the migration rate) of the 
subpopulation (selected on the basis of fitness) were 
dispatched to each of the four toroidally adjacent nodes. 

Details of the parallel implementation of genetic 
programming can be found in Andre and Koza 1996.  

4.3. Results 
It is difficult to understand the operation of most of the 
programs that are evolved using genetic programming. One 
practical way to obtain understandable evolved programs is 
to harvest more than the usual single high-fitness program 
from a run. When this approach is used, the run is not 
terminated as soon as the first high-fitness program is 
created, but is, instead, continued until a number of high-
fitness programs have been created. For simplicity, we 
limited our harvesting to pace-setting best-of-generation 
programs reported from the 64 processing nodes of the 
parallel computer system. Specifically, we harvested five 
different evolved programs from generations 34, 37, 40, 42, 
and 43 of our first run of this version of the problem. The 
programs harvested from generations 40 and 42 had an out-
of-sample error rate of 1.6% and the other three harvested 
programs had an out-of-sample error rate of 2%. All five of 
these programs were superior to the algorithms written by 
knowledgeable human investigators (which had error rates 
of between 2.5% and 2.8%). Other subsequent runs of this 
problem also produced equally successful results.  
4.3.1. The Myopic Performance of the Best of 

Generation 0 
The initial random population of a run of genetic 
programming is a blind random search of the search space 
of the problem. As such, it provides a baseline for 
comparing the results of subsequent generations. Figure 1 
shows that the architecture of the best-of-generation 
program consists only of one result-producing branch, RPB.  
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Figure 1  Architecture of best-of-generation program from 
generation 0.   

The best-of-generation program for generation 0 has an 
in-sample correlation of 0.3108. This 18-point program 
consists only of the result-producing branch shown below:  
(setm2 (* (setm5 (setm0 (orn LEN M0))) 

(* (* (setm4 LEN) (setm4 (M?))) (% 
(setm1 (W?)) (setm4 (V?)))))) 

When simplified, this program returns +1 if the first 
residue of the protein segment is M (methionine), V 
(valine), or W (tryptophan), but returns -1 otherwise. M and 
V are hydrophobic on the Kyte-Dolittle hydrophobicity 
scale (Kyte and Dolittle 1982) and W is neutral.  Note that 
this myopic program makes a decision for the entire protein 
segment (whose average length is 22) based on this 
manifestly inadequate test applied to a manifestly 
inadequate portion (only one residue) of the protein 
segment.  



 

4.3.2. A Myopic Iteration-Performing 
Branch 

One of the pace-setting programs from generation 1 has a 
26-point result-producing branch, a 14-point iteration-
performing branch, and an in-sample correlation of 0.4702.  
(A pace-setting program in an asynchronous parallel 
computer system is a best-of-generation program from one 
of the processing nodes that reports a new best level of 
fitness).  However, even though the program has an 
iteration-performing branch, the classification of the entire 
protein segment is myopically done on the basis of just the 
last residue from the protein segment.  

Figure 2 shows the architecture of this program consisting 
of one iteration-performing branch, IPB0, and one result-
producing branch. 
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Figure 2  Architecture of program from generation 1. 

4.3.3. An Iteration-Performing Branch that 
Globally Integrates Information 

A later pace-setting program from generation 1 uses its 
newly created iteration-performing branch to achieve an in-
sample correlation of 0.5760 by globally integrating 
information about the protein segment. However, its method 
is most unusual. Its three-point result-producing branch is 
(orn (IPB0) (L?)) 

Its six-point iteration-performing branch, IPB0, is 
(% (setm3 (orn (K?) M3)) (E?)) 

The amino acid residue K (lysine) is electrically charged and 
hydrophilic and therefore rarely occurs in a transmembrane 
domain. The settable variable M3 is iteratively set to the 
ORN of the previous value of M3 and the value (–1 or +1) 
returned by the residue-detecting function (K?). The effect 
is to scan the protein segment (averaging 22 residues) for 
the absence of K's since the value returned by the SETM3 on 
the final iteration is -1 if there are no K's in the segment. 
The test for E (glutamic acid) does not affect M3 and thus 
only becomes relevant for the last residue of the segment. If 
there is no E at the end of the segment (and there usually 
would not be in a transmembrane domain), the value 
returned by the iteration-performing branch, IPB0, is +1 if 
there are no K's in the segment. The result-producing branch 
then classifies the entire segment as a transmembrane 
domain if either the last residue is the hydrophobic residue L 
(leucine) or if there is an absence of hydrophilic K's in the 
segment.  

All succeeding pace-setting programs have at least one 
iteration-performing branch that globally integrates 
information about the entire protein segment in some way.  

4.3.4. An Iteration-Performing Branch that 
Computes a Running Sum 

The first pace-setting program from generation 2 globally 
integrates information about the protein segment and 
achieves an in-sample correlation of 0.7224. Its one-point 
result-producing branch simply returns the value of IPB0 
and its eight-point iteration-performing branch, IPB0, is 
(setm3 (+ (* (H?) (E?)) (+ (V?) M3))) 

This iteration-performing branch, IPB0, computes a 
running sum, M3.  Each hydrophobic V residue (+4.2 on the 
Kyte-Dolittle scale) contributes +1; each residue that is 
neither E (–3.5  on the scale) nor H (–3.2 on the scale) 
contributes +1; an E or a H contributes  –1.   
4.3.5. Emergence of Automatically Defined 

Functions 
The pace-setting program from generation 6 consists of a 
one-argument automatically defined function, an iteration-
performing branch, and a result-producing branch. Figure 3 
shows the architecture of this program from generation 6. 
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Figure 3  Architecture of program from generation 6.   

Of course, automatically defined functions were created 
as early as generation 1; however, this program was the first 
pace-setting program with an automatically defined 
function.   
4.3.6. Emergence of Multiple Iteration-

Performing Branches 
The first pace-setting program from generation 8 has 
multiple iteration-performing branches.  One of these 
iteration-performing branches globally integrates 
information over the entire protein segment.  
4.3.7. Emergence of Cooperativity Among 

Iteration-Performing Branches 
The second pace-setting program from generation 11 has 
two iteration-performing branches that cooperatively 
integrate global information about the protein segment.  

Its 12-point first iteration-performing branch, IPB0, is  
(setm3 (+ (* (H?) (E?)) (+ (orn (setm2 

M0) (set2 (W?))) M3)))  

This first branch, IPB0, computes a running sum, M3. An 
increment of +1 is contributed by W (tryptophan); +1 is 
contributed by each residue that is neither E nor H; and -1 is 
contributed by either an E or a H (histidine). The settable 
variable, M3, is used for communication between the first 
and second iteration-performing branches.  

The eight-point second iteration-performing branch, 
IPB1, (which, interestingly, is identical to IPB0 of the 
program from generation 2 cited above) makes an additional 
contribution to M3 based on H, E, and V (valine) as follows: 



 

  (setm3 (+ (* (H?) (E?)) (+ (V?) M3))) 

The one-point result-producing branch of this program is 
simply (IPB1). That is, the terminal IPB1 is used for 
communication between the second iteration-performing 
branch and the final result-producing branch. The value of 
the result-producing branch is the running sum to which +1 
is contributed by each V; +1 is contributed by each W; +2 is 
contributed by each residue that is neither E nor H; and -2 is 
contributed by either an E or a H.  Note that a human 
programmer would never use two cooperative iteration-
performing branches to compute this running sum M3. 
However, in this particular program, one iteration-
performing branch enhances the performance of the other.   
4.3.8. Emergence of Hierarchy among 

Automatically Defined Functions 
A pace-setting program from generation 24 has a one-
argument ADF1 and a zero-argument ADF3 such that ADF3 
refers to ADF1 (and also to IPB1).  
4.3.9. Emergence of Multiple Automatically 

Defined Functions and Multiple 
Iteration-Performing Branches 

The pace-setting program from generation 26 has three one-
argument automatically defined functions as well as two 
iteration-performing branches. Figure 4 shows this program  
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Figure 4  Architecture of program  from generation 26.  

4.3.10. A Best-of-Run Program from 
Generation 42 

The best-of-generation program from processing node 2 of 
generation 42 scores 122 true positives, 122 true negatives, 
1 false positive, and 1 false negative and has an in-sample 
correlation of 0.9938. It also scores 123 true positives, 123 
true negatives, 2 false positives, and 2 false negatives. It has 
an out-of-sample error rate of 1.6%.  

This program has two one-argument automatically 
defined functions (ADF0 and ADF1), two iteration-
performing branches (IPB0 and IPB1) that cooperatively 
integrate global information about the protein segment, and 
one result-producing branch.   

Figure 5 shows the architecture of this program.  
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Figure 5  Architecture of program  from generation 42.  

The one-point result-producing branch returns the value 
returned by the second iteration-performing branch, IPB1.  

The first automatically defined function, ADF0, has six 
points and is shown below:  
(adf1 (+ (setm0 (E?))(setm4 (Q?)))) 

Since ADF1 merely returns its one argument, ADF0 
returns 0 if the current residue is E or Q (glutamine) and 
otherwise returns –2. ADF0 also side-effects the settable 
variables M0 and M4.  

The first iteration-performing branch, IPB0, has 112 
points and is shown below: 
(setm1 (– (– (setm1 (setm1 (– (setm1 M1) 

(setm3 (setm3 (% (– (I?) (R?)) (adf0 
(H?)))))))) (setm3 (setm3 (% (– (+ 
(V?) M3) (setm2 (+ (– (D?) (+ (V?) 
(setm3 (+ (orn (Y?) (* (E?) (setm5 
(orn (P?) (D?)))))(+ (setm5 (orn M0 
(L?))) M3))))) (setm3 (R?))))) (adf0 
(% (setm1 (– (– (setm1 (setm1 (– 
(setm1 M1) (setm3 (setm3 (% (– (I?) 
(R?)) (adf0 (H?)))))))) (setm3 (setm3 
(% (– (+ (V?) M3) (setm2 (+ (– (* 
(setm5 (orn (P?) (R?))) (setm5 (orn 
(P?) (D?)))) (L?)) (setm3 (orn (Q?) (%  
M5 (V?))))))) (setm5 (orn  M0 
(L?))))))) (setm3 (setm3 (% (– (F?) 
(R?))(adf0 (H?))))))) (E?))))))) 
(setm3 (setm3 (% (– (F?) (R?))(adf0 
(H?))))))) 

The second iteration-performing branch, IPB1, has 45 
points and is shown below:  
(setm1 (– (setm1 M1) (setm3 (setm3 (% (– 

(I?) (adf1 (* (setm0 (setm1 (orn (orn 
(P?) (R?)) (– (setm1 M1) (setm3 (setm3 
(ifgtz (setm4 (– (Y?) (R?))) (setm1 
(Y?)) IPB0))))))) (setm0 (* (setm0 
(orn (K?) M0)) (setm1 (orn (setm4 
(setm1 (setm4 (P?)))) (Q?)))))))) 
(adf0 (H?))))))) 

Both possible avenues of communication and cooperation 
are employed by this program. First, two of the six settable 
variables (M0 and M1) are set in IPB0 and referenced by 
IPB1 (as highlighted by bold-faced type in IPB1). Second, 
IPB1 contains a reference to the value returned by IPB0 
(also highlighted by bold-faced type in IPB1).  

5. Comparison of Eight Methods 
Table 1 shows the out-of-sample error rate for eight 
different approaches to the transmembrane segment 
identification problem, including   

(1) the three human-written algorithms of von Heijne 
(1992), Engelman, Steitz, and Goldman (1986), and Kyte 
and Doolittle (1982) for classifying transmembrane 
domains, as described in Weiss, Cohen, and Indurkhya 
1993, 

(2) the result of Weiss, Cohen, and Indurkhya (1993) 
using a machine learning technique along with a 
considerable amount of human ingenuity, 

(3) the set-creating version using genetic programming 
with prespecification by the user of the architecture 
consisting of three zero-argument automatically defined 



 

functions and one iteration-performing branch (ch. 18.5 
through 18.9 of Koza 1994a),  

4) the arithmetic-performing version using genetic 
programming with prespecification by the user of the 
architecture consisting of three zero-argument automatically 
defined functions and one iteration-performing branch (ch. 
18.10 and 18.11 of Koza 1994a),  

(5) the  architecture-altering version using genetic 
programming employing the six recently developed 
operations of branch duplication, argument duplication, 
branch deletion, argument deletion, branch creation, and 
argument creation (Koza and Andre 1996), and 

(6) the result using the new operation of restricted 
iteration creation (and the six recently developed 
architecture-altering operations), as described in this paper.  

Table 1  Comparison of eight methods.  
Method Error 
von Heijne 1992 2.8% 
Engelman, Steitz, and Goldman 1986 2.7% 
Kyte and Doolittle 1982 2.5% 
Weiss, Cohen, and Indurkhya 1993 2.5% 
GP + Set-creating ADFs 1.6% 
GP + Arithmetic-performing ADFs   1.6% 
GP + ADFs + six architecture-altering 
operations 

1.6% 

GP + ADFs + six architecture-altering 
operations + restricted iteration creation 
operation 

1.6% 

As can be seen from the table, the error rate of all four 
versions using genetic programming are identical; all four 
are better than the error rates of the other four methods. All 
four versions using genetic programming (none of which 
employs any foreknowledge of the biochemical concept of 
hydrophobicity) are instances of an algorithm discovered by 
an automated learning paradigm whose performance is 
slightly superior to that of algorithms written by 
knowledgeable human investigators.  

6. Conclusion 
The new architecture-altering operation of restricted 
iteration creation (along with the six previously developed 
architecture-altering operations) enable genetic 
programming to evolve a successful classifying program for 
the transmembrane segment identification problem starting 
from a population that initially contains no iterations and no 
automatically defined functions. That is, this new operation 
automates the decision about whether to employ iteration, 
how much iteration to employ, and the particular sequence 
of iterative steps. This reduces the number of decisions that 
the user must make prior to using genetic programming on a 
problem.  

In the illustrative run, the first occurrence of an iteration-
performing branch was degenerate and myopic. However, 
global integration of information by a single iteration-
performing branch soon emerged. We then saw the 
emergence of multiple iteration-performing branches and, 

finally, cooperation among the iteration-performing 
branches. Meanwhile, we also saw the emergence of a first 
automatically defined function, then multiple automatically 
defined functions, and finally hierarchical arrangements of 
automatically defined functions.  
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