
Evolution of a Tri-State Frequency Discriminator for the Source
Identification Problem using Genetic Programming

John R. Koza

Computer Science Dept.
258 Gates Building
Stanford University

Stanford, California 94305-9020
koza@cs.stanford.edu

http://www-cs-
faculty.stanford.edu/~koza/

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
fhb3@slip.net

Jason Lohn
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
jlohn7@leland.stanford.edu

Frank Dunlap
Dunlap Consulting

Palo Alto, California

Martin A. Keane
Martin Keane Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

David Andre
Computer Science Dept.
University of California

Berkeley, California
dandre@cs.berkeley.edu

KEYWORDS

Genetic programming, Automated
design of analog electrical circuits,
Source identification problem,
Frequency discrimination

ABSTRACT
Automated synthesis of analog
electronic circuits is recognized as a
difficult problem. Genetic
programming was used to evolve both
the topology and the sizing (numerical
values) for each component of a circuit
that can perform source identification
by correctly classify an incoming signal
into categories.

1. Introduction
The problem of source identification involves correctly
classifying an incoming signal into a category that
identifies the source of the signal. The problem is
difficult because it requires discovery of the features
that distinguish the sources and because no two real-
world signals from the same source are ever exactly the
same.

This paper considers the problem of evolving the
design for an analog electrical circuit that can solve the
problem of source identification for incoming signals
coming from sources that each emit signals lying in a
certain limited range of frequencies. Each incoming
signal is to be identified as coming from the first
source, the second source, or neither source.

Solving this source identification problem will
involve evolving the design of an analog electrical
circuit that satisfies specified goals. Considerable
progress has been made in automating the design of
certain categories of purely digital circuits; however,
the design of analog circuits and mixed analog-digital
circuits has not proved to be as amenable to
automation. As Aaserud and Nielsen (1995) observe,

"Analog designers are few and far between.
In contrast to digital design, most of the analog
circuits are still handcrafted by the experts or so-
called 'zahs' of analog design. The design process
is characterized by a combination of experience
and intuition and requires a thorough knowledge
of the process characteristics and the detailed
specifications of the actual product.

"Analog circuit design is known to be a
knowledge-intensive, multiphase, iterative task,
which usually stretches over a significant period
of time and is performed by designers with a large
portfolio of skills. It is therefore considered by
many to be a form of art rather than a science."
This paper shows that a design for an analog

electrical circuit for a tri-state source identifier
(including both the circuit topology and component
sizing) can be evolved using genetic programming.

2. Evolution of Circuits
Genetic programming is an extension of John Holland's
genetic algorithm (1975) in which the population
consists of computer programs of varying sizes and
shapes (Koza 1992, 1994a, 1994b; Koza and Rice
1992). Recent research on genetic programming is
described in Kinnear (1994), Angeline and Kinnear
(1996), and Koza, Goldberg, Fogel, and Riolo (1996).

Genetic algorithms have been applied to the
problem of circuit synthesis in the past. A CMOS

operational amplifier (op amp) circuit was designed
using a modified version of the genetic algorithm
(Kruiskamp and Leenaerts 1995); however, the
topology of each op amp was one of 24 pre-selected
topologies based on the conventional human-designed
stages of an op amp. Thompson (1996) used a genetic
algorithm to evolve a frequency discriminator on a
Xilinx 6216 reconfigurable digital gate array operating
in analog mode.

Genetic programming evolves computer programs
that are represented as rooted, point-labeled trees with
ordered branches. If a mapping can be established
between the program trees found in genetic
programming and the line-labeled cyclic graphs
germane to circuits, genetic programming can then be
applied to the problem of evolving the design of a
circuit. Cellular encoding (Gruau 1996) enables
genetic programming to evolve a neural network.

The principles of developmental biology suggest a
way to map program trees into circuits. The starting
point of the growth process can be a very simple
embryonic electrical circuit. This embryo contains
certain fixed and invariant elements for the circuit that
is to be designed (e.g., the number of inputs and
outputs) as well as certain wires that are capable of
subsequent modification. An electrical circuit is
progressively developed by applying the functions in a
circuit-constructing program tree to the modifiable
wires of the embryonic circuit (and to the modifiable
wires and components of successor circuits).

The functions in the circuit-constructing program
trees include (1) connection-modifying functions that
modify the topology of the circuit, (2) component-
creating functions that insert components into the
circuit, (3) arithmetic-performing functions that appear
in arithmetic-performing subtrees as argument(s) to the
component-creating functions and that specify the
numerical value of the component, and possibly (4)
calls to automatically defined functions (if used).

Figure 1 Embryonic circuit. The developmental
process for converting a program tree into a circuit
begins with an embryonic circuit. Figure 1 shows a
one-input, one-output embryonic circuit. This embryo
contains a voltage source VSOURCE connected to
node 0 (ground) and 1, a fixed source resistor
RSOURCE between nodes 1 and 2, a modifiable wire
Z0 between nodes 2 and 3, a fixed isolating wire

ZOUT between nodes 3 and 5, a fixed output point
(voltage probe) VOUT at node 5, and a fixed load
resistor RLOAD between nodes 5 and ground. Only
the modifiable wire Z0 is subject to modification
during the developmental process.

Each circuit-constructing program tree in the
population contains component-creating functions and
connection-modifying functions. Each connection-
modifying function in a program tree points to an
associated highlighted component and modifies the
topology of the developing circuit. Each branch of the
program tree is created in accordance with a
constrained syntactic structure. Branches are composed
from construction-continuing subtrees that continue the
developmental process and arithmetic-performing
subtrees that determine the numerical value of
components. Connection-modifying functions have
one or more construction-continuing subtrees, but no
arithmetic-performing subtrees. Component-creating
functions have one construction-continuing subtree and
typically have one arithmetic-performing subtree. This
constrained syntactic structure is preserved by using
structure-preserving crossover with point typing.

Component-creating functions insert a component
into the developing circuit and assigns component
value(s) to the component. Each component-creating
function has a writing head that points to an associated
highlighted component in the developing circuit and
modifies the highlighted component in a specified way.
The construction-continuing subtree of each
component-creating function points to a successor
function or terminal in the circuit-constructing program
tree.

The arithmetic-performing subtree of a component-
creating function consists of a composition of
arithmetic functions (addition and subtraction) and
random constants (in the range –1.000 to +1.000) and
specify the numerical value of a component.

 Space does not permit a detailed description of
each function. See Koza, Andre, Bennett, and Keane
(1996), and Koza, Bennett, Andre, and Keane (1996a,
b, c, d).

3. Preparatory Steps
The goal is to evolve the design for an RLC circuit that
classifies the incoming signal into three categories.
Specifically, the desired circuit is to produce an output
of 1/2 volt (plus or minus 240 millivolts) if the
frequency of the incoming signal is within 10% of 256
Hz, produce an output of 1 volt (plus or minus 240
millivolts) if the frequency of the incoming signal is
within 10% of 2,560 Hz, and otherwise produce an
output of 0 volts (plus or minus 240 millivolts). The
tolerance of 240 (rather than 250) millivolts was chosen
to avoid the possibility of a tie.

Before applying genetic programming to a problem
of circuit synthesis, the user must perform seven major

preparatory steps, namely (1) identifying the embryonic
circuit, (2) determining the architecture of the overall
circuit-constructing program trees, (3) identifying the
terminals of the programs, (4) identifying the primitive
functions contained in the programs, (5) creating the
fitness measure, (6) choosing certain control parameters
(notably population size and the maximum number of
generations to be run), and (7) determining the
termination criterion and method of result designation.

The one-input, one-output embryonic circuit of
figure 1 was used for this problem.

Since the embryonic circuit has one modifiable
wire, there is one writing head and one result-
producing branch in each circuit-constructing program
tree.

For this problem, the function set, Fccs, for each
construction-continuing subtree is
Fccs = {R, L, C, SERIES, PSS, PSL, FLIP, NOP,

SAFE_CUT, T_PAIR_CONNECT_0,
T_PAIR_CONNECT_1}.

The terminal set, Tccs, for each construction-
continuing subtree consists of
Tccs = {END}.

The function set, Faps, for each arithmetic-
performing subtree is
Faps = {+, -}.

The terminal set, Taps, for each arithmetic-
performing subtree consists of
Taps = {←}.
← represents random constants from –1.0 to +1.0.

The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with
its execution. This execution applies the functions in
the program tree to the embryonic circuit, thereby
developing the embryonic circuit into a fully developed
circuit. A netlist describing the fully developed circuit
is then created. The netlist identifies each component
of the circuit, the nodes to which that component is
connected, and the value of that component. Each
circuit is then simulated to determine its behavior. The
217,000-line SPICE (Simulation Program with
Integrated Circuit Emphasis) simulation program
(Quarles et al. 1994) was modified to run as a
submodule within the genetic programming system.
For this problem, the voltage VOUT is probed at node
5 and the circuit is simulated in the frequency domain.
SPICE is requested to perform an AC small signal
analysis and to report the circuit's behavior for each of
101 frequency values chosen over four decades of
frequency (between 1 and 10,000 Hz). Each decade is
divided into 25 parts (using a logarithmic scale).

Fitness is measured in terms of the sum, over these
101 fitness cases, of the absolute weighted deviation
between the actual value of the output voltage at the
probe point VOUT and the target value for voltage.
The smaller the value of fitness, the better.

The three points that are closest to the band located
within 10% of 256 Hz are 229.1 Hz, 251.2 Hz, and
275.4 Hz. The procedure for each of these three points
is as follows: If the voltage equals the ideal value of 1/2
volts in this interval, the deviation is 0.0. If the voltage
is within 240 millivolts of 1/2 volts, the absolute value
of the deviation from 1/2 volts is weighted by a factor
of 20. If the voltage is more than 240 millivolts from
1/2 volts, the absolute value of the deviation from 1/2
volts is weighted by a factor of 200. This arrangement
reflects the fact that the ideal output voltage for this
range of frequencies is 1/2 volts, the fact that a 240
millivolts discrepancy is acceptable, and the fact that a
larger discrepancy is not acceptable.

The three points that are closest to the band located
within 10% of 2,560 Hz are 2,291 Hz, 2,512 Hz, and
2,754 Hz. The procedure for each of these three points
is as follows: If the voltage equals the ideal value of 1
volt in this interval, the deviation is 0.0. If the voltage
is within 240 millivolts of 1 volt, the absolute value of
the deviation from 1 volt is weighted by a factor of 20.
If the voltage is more than 240 millivolts from 1 volt,
the absolute value of the deviation from 1 volt is
weighted by a factor of 200.

The procedure for each of the remaining 95 points
is as follows: If the voltage equals the ideal value of 0
volts, the deviation is 0.0. If the voltage is within 240
millivolts of 0 volts, the absolute value of the deviation
from 0 volts is weighted by a factor of 1.0. If the
voltage is more than 240 millivolts from 0 volts, the
absolute value of the deviation from 0 volt is weighted
by a factor of 10.

Circuits that cannot be simulated by SPICE are
assigned a high penalty value of fitness (108).

Hits are defined as the number of fitness cases (0 to
101) for which the voltage is acceptable or ideal.

The population size was 640,000. The percentage
of genetic operations on each generation was 89% one-
offspring crossovers, 10% reproductions, and 1%
mutations. The maximum size for the result-producing
branch was 600 points. Other parameters were the
default values specified in Koza 1994 (appendix D).

This problem was run on a medium-grained parallel
Parsytec computer system consisting of 64 80 MHz
Power PC 601 processors arranged in a toroidal mesh
with a host PC Pentium type computer. The distributed
genetic algorithm was used with a population size of Q
= 10,000 at each of the D = 64 demes. On each
generation, four boatloads of emigrants, each consisting
of B = 2% (the migration rate) of the node's
subpopulation (selected on the basis of fitness) were
dispatched to each of the four toroidally adjacent
processing nodes (Andre and Koza 1996).

4. Results
The best circuit from generation 0 (figure 2) has a
fitness of 286.2 and 64 hits. It has no inductors, two

capacitors, and two resistors (in addition to the source
and load resistors in the embryo). Figure 5 shows the
behavior of the best circuit of generation 0 in the
frequency domain. The horizontal axis is logarithmic
and ranges between 1 and 10,000 Hz. The vertical
axis ranges between zero and 1 volt. Notice that this
circuit pays no special attention to the frequencies
around 256 and 2,560 Hz.

The best circuit from generation 20 (figure 3) has a
fitness of 129.1 and 76 hits. Figure 6 shows its
behavior. Notice the emergence of two distinct areas
around 256 and 2,560 Hz.

The best circuit from generation 106 (figure 4)
achieves a fitness of 21.4 and 101 hits. It has seven
inductors, 15 capacitors, and four resistors. Its circuit-
constructing program tree has 551 points. Figure 7
shows its behavior in the frequency domain. As can be
seen, the circuit will produce an output voltage in the
correct band for incoming signals emanating from the
first source, the second source, or neither.

The run took 43 hours and processed about
67,840,000 individuals. The 64 80 mega Hertz
processors operate together at a rate of 5.12 giga Hertz,
so that there were about 8 ∞ 1014 clock cycles in the
run. If one clock cycle is approximately equal to a
computer operation, this is about 1015 operations.
Noting that the human brain has about 1012 neurons
operating at an approximately millisecond rate, we have
designated 1015 operations as a brain second.

Interestingly, approximately 1 bs of computational
effort was also required to evolve a one-dimensional
cellular automata rule for the majority classification
task whose accuracy (82.326%) exceeds that of the
original 1978 Gacs-Kurdyumov-Levin (GKL) rule, all
other known subsequent human-written rules, and all
other known rules produced by automated approaches
for this problem (Andre, Bennett, and Koza 1996).

Moreover, the performance of four different
versions of genetic programming (Koza 1994a, Koza
and Andre 1996a) on the transmembrane segment
identification problem is slightly superior to that of
algorithms written by knowledgeable human
investigators. Again, approximately 1 bs of
computational effort was required to produce each of
these four results.

In addition, approximately 1 bs of computational
effort was required for the runs of genetic programming
that successfully evolved protein motifs for detecting
the D-E-A-D box family of proteins and for detecting
the manganese superoxide dismutase family as well or
better than the comparable human-written motifs found
in the PROSITE database (Koza and Andre 1996c).

5. Conclusion
Automated synthesis of analog electronic circuits is
recognized as a difficult problem. We have shown that

genetic programming successfully evolved the design
for a circuit that can perform source identification by
correctly classify an incoming signal into categories.

References
Aaserud, O. and Nielsen, I. Ring. 1995. Trends in

current analog design: A panel debate. Analog
Integrated Circuits and Signal Processing. 7(1) 5-9.

Andre, David, Bennett III, Forrest H, and Koza, John
R. 1996. Discovery by genetic programming of a
cellular automata rule that is better than any known
rule for the majority classification problem. In Koza,
John R., Goldberg, D. E., Fogel, D. B., and Riolo, R.
L. (editors). Genetic Programming 1996:
Proceedings of the First Annual Conference.
Cambridge, MA: The MIT Press.

Andre, David and Koza, John R. 1996. Parallel
genetic programming: A scalable implementation
using the transputer architecture. In Angeline, P. J.
and Kinnear, K. E. Jr. (editors). 1996. Advances in
Genetic Programming 2. Cambridge: MIT Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr.
(editors). 1996. Advances in Genetic Programming
2. Cambridge, MA: The MIT Press.

Gruau, Frederic. 1996. Artificial cellular development
in optimization and compilation. In Sanchez,
Eduardo and Tomassini, Marco (editors). 1996.
Towards Evolvable Hardware. Lecture Notes in
Computer Science, Vol. 1062. Berlin: Springer-
Verlag. 48–75.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in
Genetic Programming. Cambridge, MA: MIT Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. : MIT Press.

Koza, John R. and Andre, David. 1996a. Classifying
protein segments as transmembrane domains using
architecture-altering operations in genetic
programming. In Angeline, Peter J. and Kinnear,
Kenneth E. Jr. (editors). 1996. Advances in Genetic
Programming II. Cambridge, MA: MIT Press.

Koza, John R. and Andre, David. 1996b. Evolution of
iteration in genetic programming. In Evolutionary
Programming V: Proceedings of the Fifth Annual
Conference on Evolutionary Programming.
Cambridge, MA: MIT Press.

Koza, John R. and Andre, David. 1996c. Automatic
discovery of protein motifs using genetic
programming. In Yao, Xin (editor). 1996.

Evolutionary Computation: Theory and Applications.
Singapore: World Scientific. In Press.

Koza, John R., Andre, David, Bennett III, Forrest H,
and Keane, Martin A. 1996. Use of automatically
defined functions and architecture-altering operations
in automated circuit synthesis using genetic
programming. In Koza, John R., Goldberg, D. E.,
Fogel, D. B., and Riolo, R. L. (editors). 1996.
Genetic Programming 1996: Proceedings of the First
Annual Conference. Cambridge, MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, D., and
Keane, M. A. 1996a. Toward evolution of electronic
animals using genetic programming. Artificial Life V:
Proceedings Cambridge, MA: The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996b. Four problems for
which a computer program evolved by genetic
programming is competitive with human
performance. Proceedings of the 1996 IEEE
International Conference on Evolutionary
Computation. IEEE Press. Pages 1–10.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996c. Automated design of
both the topology and sizing of analog electrical
circuits using genetic programming. In Gero, John S.
and Sudweeks, Fay (editors). Artificial Intelligence
in Design '96. Dordrecht: Kluwer. Pages 151-170.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996d. Automated

WYWIWYG design of both the topology and
component values of analog electrical circuits using
genetic programming. In Koza, John R., Goldberg,
D. E., Fogel, D. B., and Riolo, R. L. (editors). 1996.
Genetic Programming 1996: Proceedings of the First
Annual Conference. Cambridge, MA: MIT Press.

Koza, John R., Goldberg, D. E., Fogel, D. B., and
Riolo, R. L. (editors). 1996. Genetic Programming
1996: Proceedings of the First Annual Conference.
Cambridge, MA: The MIT Press.

Koza, J R., and Rice, J. 1992.Genetic Programming:
The Movie. Cambridge, MA: MIT Press.

Kruiskamp Marinum W. and Leenaerts, Domine. 1995.
DARWIN: CMOS opamp synthesis by means of a
genetic algorithm. Proceedings of the 32nd Design
Automation Conference. New York, NY: Association
for Computing Machinery. 433–438.

Quarles, Thomas, Newton, A. R., Pederson, D. O.,
and Sangiovanni-Vincentelli, A. 1994. SPICE 3
Version 3F5 User's Manual. Department of
Electrical Engineering and Computer Science,
University of California, Berkeley, CA. March 1994.

Thompson, Adrian. 1996. Silicon evolution. In Koza,
John R., Goldberg, D. E., Fogel, D. B., and Riolo, R.
L. (editors). 1996. Genetic Programming 1996:
Proceedings of the First Annual Conference.
Cambridge, MA: MIT Press.

Figure 2 Best circuit of generation 0.

Figure 3 Best circuit of generation 20.

Figure 4 Best circuit of generation 106.

1.0Hz 100Hz 10KHz

 Frequency
VM(1)

1.0V

0V

Figure 5 Frequency domain behavior of the best
circuit of generation 0.

1.0Hz 100Hz 10KHz

 Frequency
VM(1)

1.0V

0V

Figure 6 Frequency domain behavior of the best
circuit of generation 20.

1.0Hz 100Hz 10KHz

 Frequency
VM(1)

1.0V

0V

Figure 7 Frequency domain behavior of the best
circuit of generation 106.

Camera-Ready Version – Submitted January 6, 1997 to First
International Workshop on Frontiers in Evolutionary Algorithms
(FEA-97) to be held on February 28 – March 2 – 5, 1997 in
Research Triangle Park, North Carolina.

Evolution of a Tri-State Frequency Discriminator for the Source
Identification Problem using Genetic Programming

John R. Koza

Computer Science Dept.
258 Gates Building
Stanford University

Stanford, California 94305-9020
koza@cs.stanford.edu

http://www-cs-
faculty.stanford.edu/~koza/

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
fhb3@slip.net

Jason Lohn
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
jlohn7@leland.stanford.edu

Frank Dunlap
Dunlap Consulting

Palo Alto, California

Martin A. Keane
Martin Keane Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

David Andre
Computer Science Dept.
University of California

Berkeley, California
dandre@cs.berkeley.edu

