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ABSTRACT 
Automated synthesis of analog 
electronic circuits is recognized as a 
difficult problem.   Genetic 
programming was used to evolve both 
the topology and the sizing (numerical 
values) for each component of a circuit 
that can perform source identification 
by correctly classify an incoming signal 
into categories.  
 

1. Introduction 
The problem of source identification involves correctly 
classifying an incoming signal into a category that 
identifies the source of the signal.  The problem is 
difficult because it requires discovery of the features 
that distinguish the sources and because no two real-
world signals from the same source are ever exactly the 
same.    

This paper considers the problem of evolving the 
design for an analog electrical circuit that can solve the 
problem of source identification for incoming signals 
coming from sources that each emit signals lying in a 
certain limited range of frequencies.   Each incoming 
signal is to be identified as coming from the first 
source, the second source, or neither source.  

Solving this source identification problem will 
involve evolving the design of an analog electrical 
circuit that satisfies specified goals.  Considerable 
progress has been made in automating the design of 
certain categories of purely digital circuits; however, 
the design of analog circuits and mixed analog-digital 
circuits has not proved to be as amenable to 
automation.  As Aaserud and Nielsen (1995) observe,  

"Analog designers are few and far between.  
In contrast to digital design, most of the analog 
circuits are still handcrafted by the experts or so-
called 'zahs' of analog design.  The design process 
is characterized by a combination of experience 
and intuition and requires a thorough knowledge 
of the process characteristics and the detailed 
specifications of the actual product.  

"Analog circuit design is known to be a 
knowledge-intensive, multiphase, iterative task, 
which usually stretches over a significant period 
of time and is performed by designers with a large 
portfolio of skills.  It is therefore considered by 
many to be a form of art rather than a science."  
This paper shows that a design for an analog 

electrical circuit for a tri-state source identifier 
(including both the circuit topology and component 
sizing) can be evolved using genetic programming.   

2. Evolution of Circuits 
Genetic programming is an extension of John Holland's 
genetic algorithm (1975) in which the population 
consists of computer programs of varying sizes and 
shapes (Koza 1992, 1994a, 1994b; Koza and Rice 
1992).  Recent research on genetic programming is 
described in Kinnear (1994), Angeline and Kinnear 
(1996), and Koza, Goldberg, Fogel, and Riolo (1996).   

Genetic algorithms have been applied to the 
problem of circuit synthesis in the past.  A CMOS 



 

operational amplifier (op amp) circuit was designed 
using a modified version of the genetic algorithm 
(Kruiskamp and Leenaerts 1995); however, the 
topology of each op amp was one of 24 pre-selected 
topologies based on the conventional human-designed 
stages of an op amp. Thompson (1996) used a genetic 
algorithm to evolve a frequency discriminator on a 
Xilinx 6216 reconfigurable digital gate array operating 
in analog mode.   

Genetic programming evolves computer programs 
that are represented as rooted, point-labeled trees with 
ordered branches.  If a mapping can be established 
between the program trees found in genetic 
programming and the line-labeled cyclic graphs 
germane to circuits, genetic programming can then be 
applied to the problem of evolving the design of a 
circuit.  Cellular encoding (Gruau 1996) enables 
genetic programming to evolve a neural network.  

The principles of developmental biology suggest a 
way to map program trees into circuits. The starting 
point of the growth process can be a very simple 
embryonic electrical circuit.  This embryo contains 
certain fixed and invariant elements for the circuit that 
is to be designed (e.g., the number of inputs and 
outputs) as well as certain wires that are capable of 
subsequent modification.  An electrical circuit is 
progressively developed by applying the functions in a 
circuit-constructing program tree to the modifiable 
wires of the embryonic circuit (and to the modifiable 
wires and components of successor circuits).   

The functions in the circuit-constructing program 
trees include (1) connection-modifying functions that 
modify the topology of the circuit, (2) component-
creating functions that insert components into the 
circuit, (3) arithmetic-performing functions that appear 
in arithmetic-performing subtrees as argument(s) to the 
component-creating functions and that specify the 
numerical value of the component, and possibly (4) 
calls to automatically defined functions (if used).   

 
Figure 1  Embryonic circuit. The developmental 
process for converting a program tree into a circuit 
begins with an embryonic circuit.  Figure 1 shows a 
one-input, one-output embryonic circuit.  This embryo 
contains a voltage source VSOURCE connected to 
node 0 (ground) and 1, a fixed source resistor 
RSOURCE between nodes 1 and 2, a modifiable wire 
Z0 between nodes 2 and 3, a fixed isolating wire 

ZOUT between nodes 3 and 5, a fixed output point 
(voltage probe) VOUT at node 5, and a fixed load 
resistor RLOAD between nodes 5 and ground.  Only 
the modifiable wire Z0 is subject to modification 
during the developmental process.   

Each circuit-constructing program tree in the 
population contains component-creating functions and 
connection-modifying functions.  Each connection-
modifying function in a program tree points to an 
associated highlighted component and modifies the 
topology of the developing circuit.  Each branch of the 
program tree is created in accordance with a 
constrained syntactic structure.  Branches are composed 
from construction-continuing subtrees that continue the 
developmental process and arithmetic-performing 
subtrees that determine the numerical value of 
components.  Connection-modifying functions have 
one or more construction-continuing subtrees, but no 
arithmetic-performing subtrees.  Component-creating 
functions have one construction-continuing subtree and 
typically have one arithmetic-performing subtree.  This 
constrained syntactic structure is preserved by using 
structure-preserving crossover with point typing.   

Component-creating functions insert a component 
into the developing circuit and assigns component 
value(s) to the component.  Each component-creating 
function has a writing head that points to an associated 
highlighted component in the developing circuit and 
modifies the highlighted component in a specified way. 
The construction-continuing subtree of each 
component-creating function points to a successor 
function or terminal in the circuit-constructing program 
tree.   

The arithmetic-performing subtree of a component-
creating function consists of a composition of 
arithmetic functions (addition and subtraction) and 
random constants (in the range –1.000 to +1.000) and 
specify the numerical value of a component.  

 Space does not permit a detailed description of 
each function.  See Koza, Andre, Bennett, and Keane 
(1996), and Koza, Bennett, Andre, and Keane (1996a, 
b, c, d).   

3. Preparatory Steps 
The goal is to evolve the design for an RLC circuit that 
classifies the incoming signal into three categories.  
Specifically, the desired circuit is to produce an output 
of 1/2 volt (plus or minus 240 millivolts) if the 
frequency of the incoming signal is within 10% of 256 
Hz, produce an output of 1 volt (plus or minus 240 
millivolts) if the frequency of the incoming signal is 
within 10% of 2,560 Hz, and otherwise produce an 
output of 0 volts (plus or minus 240 millivolts).   The 
tolerance of 240 (rather than 250) millivolts was chosen 
to avoid the possibility of a tie. 

Before applying genetic programming to a problem 
of circuit synthesis, the user must perform seven major 



 

preparatory steps, namely (1) identifying the embryonic 
circuit,  (2) determining the architecture of the overall 
circuit-constructing program trees, (3) identifying the 
terminals of the programs, (4) identifying the primitive 
functions contained in the programs, (5) creating the 
fitness measure, (6) choosing certain control parameters 
(notably population size and the maximum number of 
generations to be run), and (7) determining the 
termination criterion and method of result designation.   

The one-input, one-output embryonic circuit of 
figure 1 was used for this problem.   

Since the embryonic circuit has one modifiable 
wire, there is one writing head and one result-
producing branch in each circuit-constructing program 
tree.   

For this problem, the function set, Fccs, for each 
construction-continuing subtree is 
Fccs = {R, L, C, SERIES, PSS, PSL, FLIP, NOP, 

SAFE_CUT, T_PAIR_CONNECT_0, 
T_PAIR_CONNECT_1}. 

The terminal set, Tccs, for each construction-
continuing subtree consists of 
Tccs = {END}.   

The function set, Faps, for each arithmetic-
performing subtree is 
Faps = {+, -}.  

The terminal set, Taps, for each arithmetic-
performing subtree consists of 
Taps = {←}. 
← represents random constants from –1.0 to +1.0.   

The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with 
its execution.  This execution applies the functions in 
the program tree to the embryonic circuit, thereby 
developing the embryonic circuit into a fully developed 
circuit.  A netlist describing the fully developed circuit 
is then created.  The netlist identifies each component 
of the circuit, the nodes to which that component is 
connected, and the value of that component.  Each 
circuit is then simulated to determine its behavior.  The 
217,000-line SPICE (Simulation Program with 
Integrated Circuit Emphasis) simulation program 
(Quarles et al.  1994) was modified to run as a 
submodule within the genetic programming system.  
For this problem, the voltage VOUT is probed at node 
5 and the circuit is simulated in the frequency domain.   
SPICE is requested to perform an AC small signal 
analysis and to report the circuit's behavior for each of 
101 frequency values chosen over four decades of 
frequency (between 1 and 10,000 Hz).  Each decade is 
divided into 25 parts (using a logarithmic scale).  

Fitness is measured in terms of the sum, over these 
101 fitness cases, of the absolute weighted deviation 
between the actual value of the output voltage at the 
probe point VOUT and the target value for voltage.  
The smaller the value of fitness, the better.   

The three points that are closest to the band located 
within 10% of 256 Hz are 229.1 Hz, 251.2 Hz, and 
275.4 Hz.  The procedure for each of these three points 
is as follows: If the voltage equals the ideal value of 1/2 
volts in this interval, the deviation is 0.0.  If the voltage 
is within 240 millivolts of 1/2 volts, the absolute value 
of the deviation from 1/2 volts is weighted by a factor 
of 20.  If the voltage is more than 240 millivolts from 
1/2 volts, the absolute value of the deviation from 1/2 
volts is weighted by a factor of 200.  This arrangement 
reflects the fact that the ideal output voltage for this 
range of frequencies is 1/2 volts, the fact that a 240 
millivolts discrepancy is acceptable, and the fact that a 
larger discrepancy is not acceptable.   

The three points that are closest to the band located 
within 10% of 2,560 Hz are 2,291 Hz, 2,512 Hz, and 
2,754 Hz.  The procedure for each of these three points 
is as follows: If the voltage equals the ideal value of 1 
volt in this interval, the deviation is 0.0.  If the voltage 
is within 240 millivolts of 1 volt, the absolute value of 
the deviation from 1 volt is weighted by a factor of 20.  
If the voltage is more than 240 millivolts from 1 volt, 
the absolute value of the deviation from 1 volt is 
weighted by a factor of 200.   

The procedure for each of the remaining 95 points 
is as follows:  If the voltage equals the ideal value of 0 
volts, the deviation is 0.0.  If the voltage is within 240 
millivolts of 0 volts, the absolute value of the deviation 
from 0 volts is weighted by a factor of 1.0.  If the 
voltage is more than 240 millivolts from  0 volts, the 
absolute value of the deviation from 0 volt is weighted 
by a factor of 10.   

Circuits that cannot be simulated by SPICE are 
assigned a high penalty value of fitness (108).   

Hits are defined as the number of fitness cases (0 to 
101) for which the voltage is acceptable or ideal.   

The population size was 640,000.  The percentage 
of genetic operations on each generation was 89% one-
offspring crossovers, 10% reproductions, and 1% 
mutations.  The maximum size for the result-producing 
branch was 600 points.  Other parameters were the 
default values specified in Koza 1994 (appendix D). 

This problem was run on a medium-grained parallel 
Parsytec computer system consisting of 64 80 MHz 
Power PC 601 processors arranged in a toroidal mesh 
with a host PC Pentium type computer.  The distributed 
genetic algorithm was used with a population size of Q 
=  10,000 at each of the D = 64 demes.  On each 
generation, four boatloads of emigrants, each consisting 
of B = 2% (the migration rate) of the node's 
subpopulation (selected on the basis of fitness) were 
dispatched to each of the four toroidally adjacent 
processing nodes (Andre and Koza 1996).  

4. Results 
The best circuit from generation 0 (figure 2) has a 
fitness of 286.2 and 64 hits.  It has no inductors, two 



 

capacitors, and two resistors (in addition to the source 
and load resistors in the embryo).  Figure 5 shows the 
behavior of the best circuit of generation 0 in the 
frequency domain.  The horizontal axis is logarithmic 
and ranges between 1 and 10,000 Hz.   The vertical 
axis ranges between zero and 1 volt. Notice that this 
circuit pays no special attention to the frequencies 
around 256 and 2,560 Hz.   

The best circuit from generation 20 (figure 3) has a 
fitness of 129.1 and 76 hits.  Figure 6 shows its 
behavior.  Notice the emergence of two distinct areas 
around 256 and 2,560 Hz.   

The best circuit from generation 106 (figure 4) 
achieves a fitness of 21.4 and 101 hits.  It has seven 
inductors, 15 capacitors, and four resistors.   Its circuit-
constructing program tree has 551 points.  Figure 7 
shows its behavior in the frequency domain.  As can be 
seen, the circuit will produce an output voltage in the 
correct band for incoming signals emanating from the 
first source, the second source, or neither.   

The run took 43 hours and processed about 
67,840,000 individuals.  The 64 80 mega Hertz 
processors operate together at a rate of 5.12 giga Hertz, 
so that there were about 8 ∞ 1014 clock cycles in the 
run.  If one clock cycle is approximately equal to a 
computer operation, this is about 1015 operations.  
Noting that the human brain has about  1012 neurons 
operating at an approximately millisecond rate, we have 
designated 1015 operations as a brain second.   

Interestingly, approximately 1 bs of computational 
effort was also required to evolve a one-dimensional 
cellular automata rule for the majority classification 
task whose accuracy (82.326%) exceeds that of the 
original 1978 Gacs-Kurdyumov-Levin (GKL) rule, all 
other known subsequent human-written rules, and all 
other  known rules produced by automated approaches 
for this problem (Andre, Bennett, and Koza 1996).     

Moreover, the performance of four different 
versions of genetic programming (Koza 1994a, Koza 
and Andre 1996a) on the transmembrane segment 
identification problem is slightly superior to that of 
algorithms written by knowledgeable human 
investigators.  Again, approximately 1 bs of 
computational effort was required to produce each of 
these four results.    

In addition, approximately 1 bs of computational 
effort was required for the runs of genetic programming 
that successfully evolved protein motifs for detecting 
the D-E-A-D box family of proteins and for detecting 
the manganese superoxide dismutase family as well or 
better than the comparable human-written motifs found 
in the PROSITE database (Koza and Andre 1996c).   

5. Conclusion 
Automated synthesis of analog electronic circuits is 
recognized as a difficult problem.  We have shown that 

genetic programming successfully evolved the design 
for a circuit that can perform source identification by 
correctly classify an incoming signal into categories.   
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Figure 2  Best circuit of generation 0.   

 
Figure 3  Best circuit of generation 20.   

 
Figure 4  Best circuit of generation 106.  
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Figure 5 Frequency domain behavior of the best 
circuit of generation 0.  
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Figure 6 Frequency domain behavior of the best 
circuit of generation 20.  
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Figure 7 Frequency domain behavior of the best 
circuit of generation 106.  
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