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ABSTRACT 
There is no known general technique 
for automatically designing an analog 
electrical circuit that satisfies design 
specifications.  Genetic programming 
was used to evolve both the topology 
and the sizing (numerical values) for 
each component of a low-distortion 96 
decibel (64,860 -to-1) amplifier circuit.  

1.  THE ANALOG DILEMMA 
The field of engineering design offers a practical 
yardstick for evaluating automated techniques because 
the design process is usually viewed as requiring 
human intelligence and because design is a major 
activity of practicing engineers.  In the design process, 
the design requirements specify "what needs to be 
done." A satisfactory design tells us "how to do it."   

In the field of electrical engineering, the design 
process typically involves the creation of an electrical 
circuit that satisfies user-specified design goals.   

Considerable progress has been made in automating 
the design of certain categories of purely digital 
circuits; however, the design of analog circuits and 
mixed analog-digital circuitshas not proved to be as 
amenable to automation (Rutenbar 1993).  In 
discussing "the analog dilemma," O. Aaserud and I. 
Ring Nielsen (1995) (not to be confused with Ivan Riis 
Nielsen cited later) observe,  

 

"Analog designers are few and far 
between.  In contrast to digital design, most of 
the analog circuits are still handcrafted by the 
experts or so-called 'zahs' of analog design.  
The design process is characterized by a 
combination of experience and intuition and 
requires a thorough knowledge of the process 
characteristics and the detailed specifications 
of the actual product.  

"Analog circuit design is known to be a 
knowledge-intensive, multiphase, iterative 
task, which usually stretches over a significant 
period of time and is performed by designers 
with a large portfolio of skills.  It is therefore 
considered by many to be a form of art rather 
than a science."  

Of course, engineers employ human reasoning 
abilities and intelligence in designing complex 
structures.  In contrast, nature employs an entirely 
different approach to design.  In nature, complex 
structures are designed by means of evolution and 
natural selection.  This suggests the possibility of 
applying the techniques of evolutionary computation in 
order to automate the design of complex structures.   

Genetic algorithms have been applied to the 
problem of circuit synthesis.  A CMOS operational 
amplifier (op amp) circuit was designed using a 
modified version of the genetic algorithm (Kruiskamp 
and Leenaerts 1995); however, the topology of each op 
amp was one of 24 pre-selected topologies based on the 
conventional human-designed stages of an op amp. 
Thompson (1996) used a genetic algorithm to evolve a 
frequency discriminator on a Xilinx 6216 
reconfigurable digital gate array operating in analog 
mode.   

Holland (1975) described how an analog of the 
naturally-occurring evolutionary process can be applied 
to solving scientific and engineering problems using 
what is now called the genetic algorithm (GA).   

Koza (1992) described an extension of Holland's 
genetic algorithm in which the population consists of 
computer programs.  See also Koza and Rice 1992.  
Koza (1994a, 1994b) described a way to evolve multi-
part programs consisting of a main program and one or 



 

more reusable, parameterized, hierarchically-called 
subprograms (called automatically defined functions).  
Architecture-altering operations provide a way to 
automatically determine the number of such 
subprograms, the number of arguments that each 
possesses, and the nature of the hierarchical references, 
if any, among such subprograms (Koza 1995).  Recent 
research papers on genetic programming can be found 
in Kinnear (1994), Angeline and Kinnear (1996), and 
Koza, Goldberg, Fogel, and Riolo (1996).   
Gruau's cellular encoding (1996) is an innovative 
technique in which genetic programming is used to 
concurrently evolve the architecture, weights, 
thresholds, and biases of neurons in a neural network.    

This paper demonstrates that a design for a low-
distortion 96 decibel (dB) op amp (including both the 
circuit topology and component sizing) can be evolved 
using genetic programming.  The problem-specific 
information that the user must supply in order to apply 
genetic programming to a particular new problem of 
analog circuit synthesis is minimal; it primarily consists 
of a fitness measure for the operating characteristics of 
the desired circuit.  The user must also specify certain 
additional basic information such as the number of 
inputs and outputs of the desired circuit, the set of parts 
that are to be available to the circuit (e.g., transistors, 
resistors, and capacitors), and the repertoire of circuit-
constructing functions (which generally does not vary 
from problem to problem).   

Additional evidence of the ability of genetic 
programming to evolve the design for analog electrical 
circuits was presented by showing genetically evolved 
designs for other types of circuits, including a lowpass 
filter, an asymmetric bandpass filter, and a crossover 
(woofer and tweeter) filter. 
2. Circuit-Constructing Program Trees 
Genetic programming can be applied to circuits if a 
mapping is established between the kind of rooted, 
point-labeled trees with ordered branches found in 
genetic programming and the line-labeled cyclic graphs 
germane to circuits.   
The principles of developmental biology suggest a way 
to map program trees into circuits.  The starting point 
of the growth process used herein is a very simple 
embryonic electrical circuit.  The embryonic circuit 
contains certain fixed parts appropriate to the problem 
at hand and certain wires that are capable of subsequent 
modification.  An electrical circuit is progressively 
developed by applying the functions in a circuit-
constructing program tree to the modifiable wires of the 
embryonic circuit (and, later, to both the modifiable 
wires and other components of the successor circuits).   
The functions in the circuit-constructing program trees 
are divided into four categories:  
(1) connection-modifying functions that modify the 
topology of the circuit,  

(2) component-creating functions that insert 
components into the circuit, 
(3) arithmetic-performing functions that appear in 
arithmetic-performing subtrees as argument(s) to the 
component-creating functions and that specify the 
numerical value of the component, and  
(4) automatically defined functions that appear in 
function-defining branches and potentially enable 
certain substructures to be reused.   
Each branch of the program tree is created in 
accordance with a constrained syntactic structure.  
Branches are composed from construction-continuing 
subtrees that continue the developmental process and 
arithmetic-performing subtrees that determine the 
numerical value of components.  Connection-modifying 
functions have one or more construction-continuing 
subtrees, but no arithmetic-performing subtrees.  
Component-creating functions have one construction-
continuing subtree and typically have one arithmetic-
performing subtree.  This constrained syntactic 
structure is preserved by using structure-preserving 
crossover with point typing (Koza 1994a).   

2.1. The Embryonic Circuit 
The developmental process for converting a program 
tree into an electrical circuit begins with an embryonic 
circuit. 

 
Figure 1  Feedback embryo for an amplifier. corrected 
10-96 version of N:\fhb\tojohn\r708826e.doc 
Figure 1 shows a one-input, one-output embryonic 
circuit that serves as a test harness for evolving op amp 
circuits.  VSOURCE is the input signal.  VOUT is the 
output signal.  There is a fixed 100 Ohm load resistor 
RLOAD and a fixed 100 Ohm source resistor 
RSOURCE.   
At the beginning of the developmental process, there is 
a writing head pointing to (highlighting) each of the 
three modifiable wires (Z0, Z1, and Z2).  All 
development occurs at wires or components to which a 
writing head points.  The three modifiable wires 
provide connectivity between the three distinct 



 

elements of a circuit (i.e., the input, the output, and the 
ground).    
The domain knowledge embodied in this embryonic 
circuit consists of the facts that (1) the embryo has one 
input and one output, (2) the embryo is a circuit, (3) 
there are modifiable connections between the output 
and the source and between the output and ground, and 
(4) the circuit is to be an amplifier.  
Because we are evolving an amplifier, there is also a 
fixed 100,000,000 Ohm feedback resistor 
RFEEDBACK, a fixed 100 Ohm balancing source 
resistor RBALANCE_SOURCE, and a fixed 
100,000,000 Ohm balancing feedback resistor 
RBALANCE_FEEDBACK.  This arrangement limits 
the possible amplification of the evolving circuit to a 
1,000,000-to-1 ratio (120 dB).   
2.2. Component-Creating Functions 
Each circuit-constructing program tree in the 
population contains component-creating functions and 
connection-modifying functions.   
Component-creating functions insert a component into 
the developing circuit and assigns component value(s) 
to the component.   Each component-creating function 
has a writing head that points to an associated 
highlighted component in the developing circuit and 
modifies the highlighted component in a specified way.  
The construction-continuing subtree of each 
component-creating function points to a successor 
function or terminal in the circuit-constructing program 
tree.   
The arithmetic-performing subtree of a component-
creating function consists of a composition of 
arithmetic functions (addition and subtraction) and 
random constants (in the range –1.000 to +1.000).  The 
arithmetic-performing subtree specifies the numerical 
value of a component by returning a floating-point 
value that is, in turn, interpreted, in a logarithmic way, 
as the value for the component in a range of 10 orders 
of magnitude (using a unit of measure that is 
appropriate for the particular type of component 
involved) as described in detail in Koza, Andre, 
Bennett, and Keane (1996).   
 The two-argument resistor-creating R function causes 
the highlighted component to be changed into a 
resistor.  The value of the resistor in kilo-Ohms is 
specified by its arithmetic-performing subtree.   
Figure 2 shows a modifiable wire Z0 connecting nodes 
1 and 2 of a partial circuit containing four capacitors.   
Figure 3 shows the result of applying the R function to 
the modifiable wire Z0 of figure 2.   

 

Figure 2  Modifiable wire Z0.   

 
Figure 3  Result of applying the R function.   
Similarly, the two-argument capacitor-creating C 
function causes the highlighted component to be 
changed into a capacitor.  The value of the capacitor in 
nano-Farads is specified by its arithmetic-performing 
subtree.   
Space does not permit a detailed description of each 
function herein.  See Koza, Andre, Bennett, and Keane 
(1996), and Koza, Bennett, Andre, and Keane (1996a, 
1996b, 1996c, 1996d) for details.   
The one-argument Q_D_PNP diode-creating function 
causes a diode to be inserted in lieu of the highlighted 
component, where the diode is implemented using a 
pnp transistor whose collector and base are connected 
to each other.  The Q_D_NPN function inserts a diode 
using an npn transistor in a similar manner.   
There are also six one-argument transistor-creating 
functions (called Q_POS_COLL_NPN, 
Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, 
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, 
Q_NEG_COLL_PNP) that insert a transistor in lieu of 
the highlighted component.  For example, the 
Q_POS_COLL_NPN function inserts a npn transistor 
whose collector is connected to the positive power 
supply.   
The three-argument transistor-creating Q_3_NPN 
function causes an npn bipolar junction transistor 
(model Q2N3904) to be inserted in place of the 
highlighted component and one of the nodes to which 
the highlighted component is connected.  The 
Q_3_NPN function creates five new nodes and three 
new modifiable wires.  There is no writing head on the 
new transistor.  Similarly, the three-argument 
transistor-creating Q_3_PNP function causes a pnp 
bipolar junction transistor (model Q2N3906) to be 
inserted.   
Figure 4 shows the result of applying the Q_3_NPN0 
function, thereby creating transistor Q6 in lieu of 
modifiable wire Z0 of figure 2.   

 
Figure 4  Result of applying Q_3_NPN0 function.   



 

2.3. Connection-Modifying Functions 
Each connection-modifying function in a program tree 
points to an associated highlighted component and 
modifies the topology of the developing circuit in some 
way.   
The one-argument polarity-reversing FLIP function 
attaches the positive end of the highlighted component 
to the node to which its negative end is currently 
attached and vice versa.  After execution of the FLIP 
function, there is one writing head pointing to the 
component. 
The three-argument SERIES division function creates 
a series composition consisting of the highlighted 
component (with a writing head), a copy of it (with a 
writing head), one new modifiable wire (with a writing 
head), and two new nodes.   
Figure 5 illustrates the result of applying the SERIES 
division function to resistor R1 from figure 3.   

 
Figure 5  Result after applying the SERIES function.   
The four-argument PSS and PSL parallel division 
functions create a parallel composition consisting of the 
original highlighted component (with a writing head), a 
copy of it (with a writing head), two new modifiable 
wires (each with a writing head), and two new nodes.  
Figure 6 shows the result of applying PSS to the 
resistor R1 from figure 3.   

  
Figure 6  Result of the PSS parallel division function.   
There are six three-argument functions (called 
T_GND_0, T_GND_1, T_POS_0,  T_POS_1, 
T_NEG_0, T_NEG_1) that insert two new nodes and 
two new modifiable wires and then make a connection 
to ground, positive power supply, or negative power 
supply, respectively.  Figure 7 shows the T_GND_0 
function connecting resistor R1 of figure 3 to ground.   
The three-argument PAIR_CONNECT_0 and 
PAIR_CONNECT_1 functions enable distant parts of a 
circuit to be connected together.  The first 
PAIR_CONNECT to occur in the development of a 
circuit creates two new wires, two new nodes, and one 
temporary port.  The next PAIR_CONNECT to occur 
(whether PAIR_CONNECT_0 or PAIR_CONNECT_1) 
creates two new wires and one new node, connects the 

temporary port to the end of one of these new wires, 
and then removes the temporary port.   
The one-argument NOP function has no effect on the 
highlighted component; however, it delays activity on 
the developmental path on which it appears in relation 
to other developmental paths in the overall program 
tree.   
The zero-argument END function causes the highlighted 
component to lose its writing head.  The END function 
causes its writing head to be lost – thereby ending that 
particular developmental path.   
The zero-argument SAFE_CUT function causes the 
highlighted component to be removed from the circuit 
provided that the degree of the nodes at both ends of 
the highlighted component is three (i.e., no dangling 
components or wires are created).   

 
Figure 7  Result of applying the T_GND_0 function. 
3. Preparatory Steps
Our goal in this research is to evolve the design of a 
high-gain amplifier.  Before applying genetic 
programming to circuit synthesis, the user must 
perform seven major preparatory steps, namely  
(1) identifying the embryonic circuit that is suitable for 
the problem,   
(2) determining the architecture of the overall circuit-
constructing program trees,  
(3) identifying the terminals of the to-be-evolved 
programs,  
(4) identifying the primitive functions contained in the 
to-be-evolved programs,  
(5) creating the fitness measure,  
(6) choosing certain control parameters (notably 
population size and the maximum number of 
generations to be run), and  
(7) determining the termination criterion and method of 
result designation. 
The feedback embryo for the one-input, one-output 
amplifier circuit of figure 1 is suitable for this problem.   
The embryonic circuit has a writing head associated 
with each of the three result-producing branches and 
there are three result-producing branches (called RPB0, 
RPB1, and RPB2) in each program tree. The number of 
automatically defined functions, if any, will emerge as 
a consequence of the evolutionary process using the 
architecture-altering operations.  Each program in the 
initial population of programs has a uniform 



 

architecture with no automatically defined functions 
(i.e., three result-producing branches).   
The terminal sets are identical for all three result-
producing branches of the program trees for this 
problem.  The function sets are identical for all three 
result-producing branches.  
The initial function set, Fccs-initial, for each 
construction-continuing subtree is 
Fccs-initial = {R, C, SERIES, PSS, PSL, FLIP, NOP, 
NEW_T_GND_0, NEW_T_GND_1, NEW_T_POS_0,  
NEW_T_POS_1, NEW_T_NEG_0, NEW_T_NEG_1, 
PAIR_CONNECT_0, PAIR_CONNECT_1, 
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11, 
Q_3_PNP0, ..., Q_3_PNP11, Q_POS_COLL_NPN, 
Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, 
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, 
Q_NEG_COLL_PNP} 
For the npn transistors, the Q2N3904 model was used.  
For pnp transistors, the Q2N3906 model was used.  
The initial terminal set, Tccs-initial, for each 
construction-continuing subtree is 
Tccs-initial = {END, SAFE_CUT}.   
The set of potential new functions, Fpotential, is 
Fpotential = {ADF0, ADF1, ADF2, ADF3}.  
The set of potential new terminals, Tpotential, is 
Tpotential = {ARG0}.  
The architecture-altering operations change the 
function set, Fccs for each construction-continuing 
subtree of all three result-producing branches and the 
function-defining branches, so  
Fccs = Fccs-initial  ≈  Fpotential. 
The architecture-altering operations change the 
terminal set, Taps-adf, for each arithmetic-performing 
subtree, so 
Taps-adf = Taps-initial ≈  Tpotential.   
The terminal set, Taps-initial, for each arithmetic-
performing subtree consists of 
Taps-initial = {←}, 
where ← represents floating-point random constants 
from –1.0 to +1.0.   
The function set, Faps, for each arithmetic-performing 
subtree is, 
Faps = {+, -}. 
The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with 
its execution.  This execution applies the functions in 
the program tree to the embryonic circuit, thereby 
developing the embryonic circuit into a fully developed 
circuit.  A netlist describing the fully developed circuit 
is then created.  The netlist identifies each component 
of the circuit, the nodes to which that component is 
connected, and the value of that component.  Each 
circuit is then simulated to determine its behavior.  The 
217,000-line SPICE  (Simulation Program with 

Integrated Circuit Emphasis) simulation program 
(Quarles et al.  1994) was modified to run as a 
submodule within the genetic programming system.   
Figure 8 provides additional detail on the calculation of 
fitness.   The calculation starts by initializing the 
current CIRCUIT to the embryonic circuit.   The 
individual circuit-constructing program tree from the 
population is then executed.  This execution causes the 
component-creating and connection-modifying 
functions in the program tree to be applied to the 
current CIRCUIT (i.e., these functions side effect the 
current CIRCUIT).  When this execution is completed, 
the current CIRCUIT is translated into a NETLIST.   

Start

Set CIRCUIT  =
embryonic circuit

Evaluate individual
circuit-constructing program tree by
progressively applying component-
creating and connection-modifying
functions to the current CIRCUIT

Translate CIRCUIT
into NETLIST

Create SIMPLIFIED NETLIST  by
removing wires, removing dangling

components, removing remaining
isolated subcircuits, inserting high-

resistance DC path to ground for
isolated nodes , and consolidating

series and parallel combinations of
like components

Run SPICE simulator on
SIMPLIFIED NETLIST  to

create tabular values of
electrical behavior

End  
Figure 8  More detailed flowchart for calculation of 
fitness.   
The NETLIST is then simplified in five ways to create 
a SIMPLIFIED NETLIST.  First, all wires are 
removed.  Second, any dangling components are 
removed.  Third, any isolated substructures are 
removed.    Fourth, a very large resistance (a 1 giga-
Ohm resistor RHUGE) is inserted between ground and 
any node for which there is no DC path to ground.  For 
example, if two capacitors join at a certain node, there 
is no DC path to ground from that node.   The 
introduction of a very large resistance between that 
node and ground has no significant electrical effect; 
however, it is essential for enabling the SPICE 
simulator to simulate the circuit.  The fifth 
simplification of the netlist is done for reasons of 
accelerating the SPICE simulation.  The time required 
for a SPICE simulation generally increases nonlinearly 
as a function of the number of nodes in the netlist (in an 
approximately sub-quadratic to quartic way).  Thus, it 



 

is advantageous to shorten the netlist provided to 
SPICE.  All series and parallel compositions of like 
passive components are replaced, for purposes of the 
simulation only, by a single component of appropriate 
value.   For example, two resistors (or inductors) in 
series are replaced by a single resistor (or inductors) 
whose value if the sum of the two resistances.  Two 
resistors in parallel are reaplced by a single resistor 
whose value is the reciprocal of the sum of the 
reciprocal of the two resistances.   Two capacitors in 
parallel are consolidated in the same manner as two 
resistors in series and two capacitors in series are 
consolidated in the same manner as two resistors in 
parallel.     
The starting point for evaluating the fitness of a circuit 
is its response to a DC input. An ideal inverting 
amplifier circuit would receive a DC input, invert it, 
and multiply it by the amplification factor.  A circuit is 
flawed to the extent that it does not achieve the desired 
amplification; to the extent that the output signal is not 
centered on 0 Volts (i.e., it has a bias); and to the extent 
that the DC response is not linear.   
Thus, for this problem, we used a fitness measure based 
on SPICE's DC sweep.  The DC sweep analysis 
measures the DC response of the circuit at several 
different DC input voltages.  The circuits were 
analyzed with a 5 point DC sweep ranging from –10 
millvolts to +10 mV, with input points at –10 mV, –5 
mV, 0 mV, +5 mV, and +10 mV.  SPICE then 
produced the circuit's output for each of these five DC 
voltages.   
Fitness is then calculated from four penalties derived 
from these five DC output values.  Fitness is the sum of 
an amplification penalty, a bias penalty, and two non-
linearity penalties.   
First, the amplification factor of the circuit is measured 
by the slope of the straight line between the output for –
10 mV and the output for +10 mV (i.e., between the 
outputs for the endpoints of the DC sweep).  If the 
amplification factor is less than the maximum allowed 
by the feedback resistor (120 dB for this problem), 
there is a penalty equal to the shortfall in amplification.   
Second, the bias is computed using the DC output 
associated with a DC input of 0 Volts.  The penalty is 
equal to the bias times a weight.  For this problem, a 
weight of 0.1 is used.   
Third, the linearity is measured by the deviation 
between the slope of each of two line segments and the 
overall amplification factor of the circuit.   The first 
line segment spans the output values associated with 
inputs of –10 mv through –5 mv.  The second line 
segment spans the output values associated with inputs 
of +5 mv and through +10 mv.  The penalty for each of 
these line segments is equal to the absolute value of the 
difference in slope between the respective line segment 
and amplification factor of the circuit. 

Many of the circuits that are created in the initial 
random population and many that are created by the 
crossover and mutation operations cannot be simulated 
by SPICE.  Such circuits are assigned a high penalty 
value of fitness (108).   
The population size, M, was 640,000.   
The architecture-altering operations are used sparingly 
on each generation.  The percentage of operations on 
each generation after generation 5 was 86.5% one-
offspring crossovers; 10% reproductions; 1% 
mutations; 1% branch duplications; 0% argument 
duplications; 0.5% branch deletions; 0.0% argument 
deletions; 1% branch creations; and 0% argument 
creations.  Since we do not want to waste large amounts 
of computer time in early generations where only a few 
programs have any automatically functions at all, the 
percentage of operations on each generation before 
generation 6 was 78.0% one-offspring crossovers; 10% 
reproductions; 1% mutations; 5.0% branch 
duplications; 0% argument duplications; 1% branch 
deletions; 0.0% argument deletions; 5.0% branch 
creations; and 0% argument creations.   
The maximum size, Hrpb, for each of the three result-
producing branches in each overall program is 300 
points.  
The maximum number of automatically defined 
functions is 4.   
The number of arguments for each automatically 
defined function is one. 
The maximum size, Hadf, for each of the 
automatically defined functions, if any, is 200 points. 
The other parameters for controlling the runs of genetic 
programming were the default values specified in Koza 
1994 (appendix D). 
This problem was run on a medium-grained parallel 
Parsytec computer system consisting of 64 80 MHz 
Power PC 601 processors arranged in a toroidal mesh 
with a host PC Pentium type computer.  The distributed 
genetic algorithm was used with a population size of Q 
=  10,000 at each of the D = 64 demes.  On each 
generation, four boatloads of emigrants, each consisting 
of B = 2% (the migration rate) of the node's 
subpopulation (selected on the basis of fitness) were 
dispatched to each of the four toroidally adjacent 
processing nodes.  See Andre and Koza 1996 for 
details.    
4. Results 
We made three identical runs of this problem.  The 
worst of the runs produced an op amp that delivered 92 
dB of amplification.  We describe the best run here. 
About 41% of the circuits of generation 0 cannot be 
simulated by SPICE; however, the percentage of 
unsimulatable circuits drops to between 2% and 4% 
between generations 1 and 10 and never exceeds 8% 
thereafter.   



 

The fitness of the best-of-generation individual tends to 
improve from generation to generation.   
The best circuit (figure 9) from generation 50 has 33 
transistors, no diodes, eight capacitors, and five 
resistors (in addition to the five resistors of the 
feedback embryo).  It achieves a fitness of 971,076.4.  
No automatically defined functions are present in this 
particular circuit. The DC sweep shows that the circuit 
has an amplification of 89.7 dB (30,545-to-1) and a 
bias of 9.77 Volts.   
Based on the time domain behavior for a 20 microvolt 
sinusoidal 1,000 Hz input signal, the amplification is 
89.7 dB (30,500-to-1) for the best circuit from 
generation 50; the bias is 9.76 Volts; and the distortion 
is 6.29%.   
Based on the AC sweep for the best circuit of 
generation 50, the 3 dB bandwidth is 2,300 Hz. The 
circuit has a flatband gain of 89.7 dB.  
The best-of-run circuit (figure 10) appeared in 
generation 86 and achieves a fitness of 938,427.3.  The 
program tree has two automatically defined functions.    
ADF0 is called once; ADF1 is not called.  The circuit 
(without ADF0) has 25 transistors, no diodes, two 
capacitors, and two resistors (in addition to the five 
resistors of the feedback embryo).   

 
Figure 9  Best circuit from generation 50. 

 
Figure 10  Best circuit from generation 86.  
d:\fhb\tojohn\r708826a.doc 
Figure 11 shows automatically defined function ADF0 
of the best circuit from generation 86 (which has 12 
transistors, no diodes, one capacitor, and two resistors).   

 
Figure 11  ADF0 for best circuit from generation 86.  
d:\fhb\tojohn\r708826a.doc 
The DC sweep for this best of generation circuit from 
generation 86 shows that the circuit has an 
amplification of 96.2 dB (64,860 -to-1) and a bias of 
7.44 Volts.   
Figure 12 shows the time domain behavior of the best 
circuit from generation 86. The vertical axis is voltage 
from –20 volts to +20 volts.  The input is the 20 
microvolt sinusoidal signal; however, it appears here as 
a nearly straight line because of the scale necessary to 
show the high amplification of the output signal. Based 
on this transient analysis, the amplification is 94.1 dB; 
the bias is 7.46 volts; and the distortion is 7.07%.   



 

 
Figure 12  Time domain behavior of best of generation 
86. 
Figure 13 shows the frequency response of this circuit 
as shown by an AC sweep. The horizontal axis shows 
frequency on a logarithmic scale from 1 Hz to 
1,000,000 Hz. The vertical axis shows gain and ranges 
from 0 to 100 dB.  The 3 dB bandwidth is 1078.4 Hz.  
The circuit has a flatband gain of 96.3 dB.   

 
Figure 13  AC sweep for the best circuit from 
generation 86.  d:\fhb\tojohn\r708826a.doc 
We do not claim that the genetically evolved amplifier 
satisfies all the additional requirements that a human 
design engineer might want to incorporate into a 
practical design.  We do, however, claim that genetic 
programming successfully created a 96 dB op amp 
circuit based on the fitness measure that it was given.  
We also claim that the genetically evolved circuit 
demonstrates the principle that both the topology and 
component sizing of a complex analog circuit can be 
evolved using genetic programming – that is, that the 
synthesis of analog circuits can be automated. 
5. Other Examples 
Genetic programming has also been successfully 
applied to a variety of other problems of analog circuit 
design.   
The problem-specific information that the user must 
supply in order to apply genetic programming to 
different problems of analog circuit synthesis is 
minimal.  It primarily consists of a fitness measure for 
the operating characteristics of the desired circuit.  That 
is, structure arises from fitness.  In addition, the user 
must also specify information such as the number of 
inputs and outputs of the desired circuit, the set of parts 
that are to be available to the circuit (e.g., transistors, 
resistors, and capacitors), and the repertoire of circuit-
constructing functions (which generally does not vary 
from problem to problem).   
In this section, we describe several additional circuit 
synthesis problems in order to demonstrate how to 

modify the basic technique described above for other 
problems.  
5.1. Lowpass Filter 
Genetic programming has successfully evolved a 
design for a lowpass filter with passband below 1,000 
Hz and a stopband above 2,000 Hz with requirements 
equivalent to that of a fifth order elliptic filter (Koza, 
Bennett, Andre, and Keane 1996a, 1996c).  
For the amplifier described above, the fitness measure 
was based on gain.  For a filter, the fitness measure is 
based on the amount of voltage that the circuit passes at 
various frequencies.  Specifically, fitness is measured 
in terms of the sum, over fitness cases representing 
various frequencies, of the weighted absolute value of 
the deviation between the actual value of the voltage 
that is produced by the circuit at the probe point VOUT 
at node 5 and the target value for voltage.  The smaller 
the value of fitness, the better (with zero being best).  A 
second difference is that the embryo for a filter circuit 
does not need a balancing or feedback resistor.  A third 
difference is that the desired filter is a passive circuit 
created from inductors and capacitors (but without 
transistors or power supplies).   
Numerous runs produced lowpass filters having a 
topology that is similar to that employed by human 
engineers.  For example, in one run, a 100% compliant 
evolved circuit (figure 14) had the recognizable ladder 
topology of a Butterworth or Chebychev filter (i.e., a 
composition of series inductors horizontally with 
capacitors as vertical shunts).   

 
Figure 14  Genetically evolved ladder filter circuit.   
5.2. A Crossover Filter
A design for a crossover (woofer and tweeter) filter 
with a crossover frequency of 2,512 Hz was reported in 
Koza, Bennett, Andre, and Keane 1996b.  
This problem requires a one-input, two-output 
embryonic circuit and requires that the fitness be 
measured at two probe points.  
The lowpass part of the genetically evolved best-of-run 
circuit (figure 15) has the Butterworth topology.  
Except for additional capacitor C38, the highpass part 
of this circuit also has the Butterworth topology.   This 
circuit is slightly better than the combination of 
lowpass and highpass Butterworth filters of order 7.  



 

   
Figure 15  Genetically evolved crossover filter.  
5.3. Asymmetric Bandpass Filter 
A design for an asymmetric bandpass filter with 
requirements equivalent to a tenth-order elliptic filter 
was successfully evolved (Koza, Bennett, Andre, and 
Keane 1996d).    
The preparatory steps required to solve this problem 
were almost identical to that of the two lowpass filter 
mentioned above, except that the fitness measure 
reflected the more complicated asymmetric 
requirements of the problem.   
Figure 16 shows a 100% compliant evolved 
asymmetric bandpass filter.  

 
Figure 16  Genetically evolved asymmetric bandpass 
filter. 
5.4. Cube Root Circuit 
Analog electrical circuits that perform mathematical 
functions (e.g., logarithm, square, cube root) are called 
computational circuits.     Computational circuits are of 
special practical importance when the small number of 
required mathematical functions does not warrant 
converting an analog signal into a digital signal, 
performing the mathematical function in the digital 
domain, and then converting the result to the analog 
domain.  The design of computational circuits is 
notoriously difficult even for mundane mathematical 
functions and often relies on the clever exploitation of 
some aspect of the underlying device physics of the 
components.  Moreover, implementation of each 
mathematical function typically requires an entirely 
different clever insight.   
A design for a computational circuit for the cube root 
function has been successfully evolved.  Figure 17 

shows a genetically evolved cube root circuit with 36 
transistors, two diodes, no capacitors, and 12 resistors 
(in addition to the source and load resistors in the 
embryo).  

 
Figure 17  Genetically evolved cube root circuit.  
d:\users\fhb\tojohn\r708994c.doc 

6. CONCLUSION 
Genetic programming successfully evolved a 37-
transistor amplifier that delivers a DC gain of 96 dB 
(64,860 -to-1).   
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