
EVOLUTION USING GENETIC PROGRAMMING OF A LOW-
DISTORTION 96 DECIBEL OPERATIONAL AMPLIFIER

John R. Koza
Computer Science Dept.

258 Gates Building
Stanford University

Stanford, California 94305
koza@cs.stanford.edu

Forrest H Bennett III
Visiting Scholar

Stanford University
Stanford, California 94305

fhb3@slip.net

David Andre
Computer Science Dept.
University of California

Berkeley, California
dandre@cs.berkeley.edu

Martin A. Keane
Martin Keane Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

KEYWORDS

Genetic programming, Automated
circuit design, Analog circuit synthesis,
operational amplifier

ABSTRACT
There is no known general technique
for automatically designing an analog
electrical circuit that satisfies design
specifications. Genetic programming
was used to evolve both the topology
and the sizing (numerical values) for
each component of a low-distortion 96
decibel (64,860 -to-1) amplifier circuit.

1. THE ANALOG DILEMMA
The field of engineering design offers a practical
yardstick for evaluating automated techniques because
the design process is usually viewed as requiring
human intelligence and because design is a major
activity of practicing engineers. In the design process,
the design requirements specify "what needs to be
done." A satisfactory design tells us "how to do it."

In the field of electrical engineering, the design
process typically involves the creation of an electrical
circuit that satisfies user-specified design goals.

Considerable progress has been made in automating
the design of certain categories of purely digital
circuits; however, the design of analog circuits and
mixed analog-digital circuitshas not proved to be as
amenable to automation (Rutenbar 1993). In
discussing "the analog dilemma," O. Aaserud and I.
Ring Nielsen (1995) (not to be confused with Ivan Riis
Nielsen cited later) observe,

"Analog designers are few and far
between. In contrast to digital design, most of
the analog circuits are still handcrafted by the
experts or so-called 'zahs' of analog design.
The design process is characterized by a
combination of experience and intuition and
requires a thorough knowledge of the process
characteristics and the detailed specifications
of the actual product.

"Analog circuit design is known to be a
knowledge-intensive, multiphase, iterative
task, which usually stretches over a significant
period of time and is performed by designers
with a large portfolio of skills. It is therefore
considered by many to be a form of art rather
than a science."

Of course, engineers employ human reasoning
abilities and intelligence in designing complex
structures. In contrast, nature employs an entirely
different approach to design. In nature, complex
structures are designed by means of evolution and
natural selection. This suggests the possibility of
applying the techniques of evolutionary computation in
order to automate the design of complex structures.

Genetic algorithms have been applied to the
problem of circuit synthesis. A CMOS operational
amplifier (op amp) circuit was designed using a
modified version of the genetic algorithm (Kruiskamp
and Leenaerts 1995); however, the topology of each op
amp was one of 24 pre-selected topologies based on the
conventional human-designed stages of an op amp.
Thompson (1996) used a genetic algorithm to evolve a
frequency discriminator on a Xilinx 6216
reconfigurable digital gate array operating in analog
mode.

Holland (1975) described how an analog of the
naturally-occurring evolutionary process can be applied
to solving scientific and engineering problems using
what is now called the genetic algorithm (GA).

Koza (1992) described an extension of Holland's
genetic algorithm in which the population consists of
computer programs. See also Koza and Rice 1992.
Koza (1994a, 1994b) described a way to evolve multi-
part programs consisting of a main program and one or

more reusable, parameterized, hierarchically-called
subprograms (called automatically defined functions).
Architecture-altering operations provide a way to
automatically determine the number of such
subprograms, the number of arguments that each
possesses, and the nature of the hierarchical references,
if any, among such subprograms (Koza 1995). Recent
research papers on genetic programming can be found
in Kinnear (1994), Angeline and Kinnear (1996), and
Koza, Goldberg, Fogel, and Riolo (1996).
Gruau's cellular encoding (1996) is an innovative
technique in which genetic programming is used to
concurrently evolve the architecture, weights,
thresholds, and biases of neurons in a neural network.

This paper demonstrates that a design for a low-
distortion 96 decibel (dB) op amp (including both the
circuit topology and component sizing) can be evolved
using genetic programming. The problem-specific
information that the user must supply in order to apply
genetic programming to a particular new problem of
analog circuit synthesis is minimal; it primarily consists
of a fitness measure for the operating characteristics of
the desired circuit. The user must also specify certain
additional basic information such as the number of
inputs and outputs of the desired circuit, the set of parts
that are to be available to the circuit (e.g., transistors,
resistors, and capacitors), and the repertoire of circuit-
constructing functions (which generally does not vary
from problem to problem).

Additional evidence of the ability of genetic
programming to evolve the design for analog electrical
circuits was presented by showing genetically evolved
designs for other types of circuits, including a lowpass
filter, an asymmetric bandpass filter, and a crossover
(woofer and tweeter) filter.
2. Circuit-Constructing Program Trees
Genetic programming can be applied to circuits if a
mapping is established between the kind of rooted,
point-labeled trees with ordered branches found in
genetic programming and the line-labeled cyclic graphs
germane to circuits.
The principles of developmental biology suggest a way
to map program trees into circuits. The starting point
of the growth process used herein is a very simple
embryonic electrical circuit. The embryonic circuit
contains certain fixed parts appropriate to the problem
at hand and certain wires that are capable of subsequent
modification. An electrical circuit is progressively
developed by applying the functions in a circuit-
constructing program tree to the modifiable wires of the
embryonic circuit (and, later, to both the modifiable
wires and other components of the successor circuits).
The functions in the circuit-constructing program trees
are divided into four categories:
(1) connection-modifying functions that modify the
topology of the circuit,

(2) component-creating functions that insert
components into the circuit,
(3) arithmetic-performing functions that appear in
arithmetic-performing subtrees as argument(s) to the
component-creating functions and that specify the
numerical value of the component, and
(4) automatically defined functions that appear in
function-defining branches and potentially enable
certain substructures to be reused.
Each branch of the program tree is created in
accordance with a constrained syntactic structure.
Branches are composed from construction-continuing
subtrees that continue the developmental process and
arithmetic-performing subtrees that determine the
numerical value of components. Connection-modifying
functions have one or more construction-continuing
subtrees, but no arithmetic-performing subtrees.
Component-creating functions have one construction-
continuing subtree and typically have one arithmetic-
performing subtree. This constrained syntactic
structure is preserved by using structure-preserving
crossover with point typing (Koza 1994a).

2.1. The Embryonic Circuit
The developmental process for converting a program
tree into an electrical circuit begins with an embryonic
circuit.

Figure 1 Feedback embryo for an amplifier. corrected
10-96 version of N:\fhb\tojohn\r708826e.doc
Figure 1 shows a one-input, one-output embryonic
circuit that serves as a test harness for evolving op amp
circuits. VSOURCE is the input signal. VOUT is the
output signal. There is a fixed 100 Ohm load resistor
RLOAD and a fixed 100 Ohm source resistor
RSOURCE.
At the beginning of the developmental process, there is
a writing head pointing to (highlighting) each of the
three modifiable wires (Z0, Z1, and Z2). All
development occurs at wires or components to which a
writing head points. The three modifiable wires
provide connectivity between the three distinct

elements of a circuit (i.e., the input, the output, and the
ground).
The domain knowledge embodied in this embryonic
circuit consists of the facts that (1) the embryo has one
input and one output, (2) the embryo is a circuit, (3)
there are modifiable connections between the output
and the source and between the output and ground, and
(4) the circuit is to be an amplifier.
Because we are evolving an amplifier, there is also a
fixed 100,000,000 Ohm feedback resistor
RFEEDBACK, a fixed 100 Ohm balancing source
resistor RBALANCE_SOURCE, and a fixed
100,000,000 Ohm balancing feedback resistor
RBALANCE_FEEDBACK. This arrangement limits
the possible amplification of the evolving circuit to a
1,000,000-to-1 ratio (120 dB).
2.2. Component-Creating Functions
Each circuit-constructing program tree in the
population contains component-creating functions and
connection-modifying functions.
Component-creating functions insert a component into
the developing circuit and assigns component value(s)
to the component. Each component-creating function
has a writing head that points to an associated
highlighted component in the developing circuit and
modifies the highlighted component in a specified way.
The construction-continuing subtree of each
component-creating function points to a successor
function or terminal in the circuit-constructing program
tree.
The arithmetic-performing subtree of a component-
creating function consists of a composition of
arithmetic functions (addition and subtraction) and
random constants (in the range –1.000 to +1.000). The
arithmetic-performing subtree specifies the numerical
value of a component by returning a floating-point
value that is, in turn, interpreted, in a logarithmic way,
as the value for the component in a range of 10 orders
of magnitude (using a unit of measure that is
appropriate for the particular type of component
involved) as described in detail in Koza, Andre,
Bennett, and Keane (1996).
 The two-argument resistor-creating R function causes
the highlighted component to be changed into a
resistor. The value of the resistor in kilo-Ohms is
specified by its arithmetic-performing subtree.
Figure 2 shows a modifiable wire Z0 connecting nodes
1 and 2 of a partial circuit containing four capacitors.
Figure 3 shows the result of applying the R function to
the modifiable wire Z0 of figure 2.

Figure 2 Modifiable wire Z0.

Figure 3 Result of applying the R function.
Similarly, the two-argument capacitor-creating C
function causes the highlighted component to be
changed into a capacitor. The value of the capacitor in
nano-Farads is specified by its arithmetic-performing
subtree.
Space does not permit a detailed description of each
function herein. See Koza, Andre, Bennett, and Keane
(1996), and Koza, Bennett, Andre, and Keane (1996a,
1996b, 1996c, 1996d) for details.
The one-argument Q_D_PNP diode-creating function
causes a diode to be inserted in lieu of the highlighted
component, where the diode is implemented using a
pnp transistor whose collector and base are connected
to each other. The Q_D_NPN function inserts a diode
using an npn transistor in a similar manner.
There are also six one-argument transistor-creating
functions (called Q_POS_COLL_NPN,
Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN,
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP,
Q_NEG_COLL_PNP) that insert a transistor in lieu of
the highlighted component. For example, the
Q_POS_COLL_NPN function inserts a npn transistor
whose collector is connected to the positive power
supply.
The three-argument transistor-creating Q_3_NPN
function causes an npn bipolar junction transistor
(model Q2N3904) to be inserted in place of the
highlighted component and one of the nodes to which
the highlighted component is connected. The
Q_3_NPN function creates five new nodes and three
new modifiable wires. There is no writing head on the
new transistor. Similarly, the three-argument
transistor-creating Q_3_PNP function causes a pnp
bipolar junction transistor (model Q2N3906) to be
inserted.
Figure 4 shows the result of applying the Q_3_NPN0
function, thereby creating transistor Q6 in lieu of
modifiable wire Z0 of figure 2.

Figure 4 Result of applying Q_3_NPN0 function.

2.3. Connection-Modifying Functions
Each connection-modifying function in a program tree
points to an associated highlighted component and
modifies the topology of the developing circuit in some
way.
The one-argument polarity-reversing FLIP function
attaches the positive end of the highlighted component
to the node to which its negative end is currently
attached and vice versa. After execution of the FLIP
function, there is one writing head pointing to the
component.
The three-argument SERIES division function creates
a series composition consisting of the highlighted
component (with a writing head), a copy of it (with a
writing head), one new modifiable wire (with a writing
head), and two new nodes.
Figure 5 illustrates the result of applying the SERIES
division function to resistor R1 from figure 3.

Figure 5 Result after applying the SERIES function.
The four-argument PSS and PSL parallel division
functions create a parallel composition consisting of the
original highlighted component (with a writing head), a
copy of it (with a writing head), two new modifiable
wires (each with a writing head), and two new nodes.
Figure 6 shows the result of applying PSS to the
resistor R1 from figure 3.

Figure 6 Result of the PSS parallel division function.
There are six three-argument functions (called
T_GND_0, T_GND_1, T_POS_0, T_POS_1,
T_NEG_0, T_NEG_1) that insert two new nodes and
two new modifiable wires and then make a connection
to ground, positive power supply, or negative power
supply, respectively. Figure 7 shows the T_GND_0
function connecting resistor R1 of figure 3 to ground.
The three-argument PAIR_CONNECT_0 and
PAIR_CONNECT_1 functions enable distant parts of a
circuit to be connected together. The first
PAIR_CONNECT to occur in the development of a
circuit creates two new wires, two new nodes, and one
temporary port. The next PAIR_CONNECT to occur
(whether PAIR_CONNECT_0 or PAIR_CONNECT_1)
creates two new wires and one new node, connects the

temporary port to the end of one of these new wires,
and then removes the temporary port.
The one-argument NOP function has no effect on the
highlighted component; however, it delays activity on
the developmental path on which it appears in relation
to other developmental paths in the overall program
tree.
The zero-argument END function causes the highlighted
component to lose its writing head. The END function
causes its writing head to be lost – thereby ending that
particular developmental path.
The zero-argument SAFE_CUT function causes the
highlighted component to be removed from the circuit
provided that the degree of the nodes at both ends of
the highlighted component is three (i.e., no dangling
components or wires are created).

Figure 7 Result of applying the T_GND_0 function.
3. Preparatory Steps
Our goal in this research is to evolve the design of a
high-gain amplifier. Before applying genetic
programming to circuit synthesis, the user must
perform seven major preparatory steps, namely
(1) identifying the embryonic circuit that is suitable for
the problem,
(2) determining the architecture of the overall circuit-
constructing program trees,
(3) identifying the terminals of the to-be-evolved
programs,
(4) identifying the primitive functions contained in the
to-be-evolved programs,
(5) creating the fitness measure,
(6) choosing certain control parameters (notably
population size and the maximum number of
generations to be run), and
(7) determining the termination criterion and method of
result designation.
The feedback embryo for the one-input, one-output
amplifier circuit of figure 1 is suitable for this problem.
The embryonic circuit has a writing head associated
with each of the three result-producing branches and
there are three result-producing branches (called RPB0,
RPB1, and RPB2) in each program tree. The number of
automatically defined functions, if any, will emerge as
a consequence of the evolutionary process using the
architecture-altering operations. Each program in the
initial population of programs has a uniform

architecture with no automatically defined functions
(i.e., three result-producing branches).
The terminal sets are identical for all three result-
producing branches of the program trees for this
problem. The function sets are identical for all three
result-producing branches.
The initial function set, Fccs-initial, for each
construction-continuing subtree is
Fccs-initial = {R, C, SERIES, PSS, PSL, FLIP, NOP,
NEW_T_GND_0, NEW_T_GND_1, NEW_T_POS_0,
NEW_T_POS_1, NEW_T_NEG_0, NEW_T_NEG_1,
PAIR_CONNECT_0, PAIR_CONNECT_1,
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11,
Q_3_PNP0, ..., Q_3_PNP11, Q_POS_COLL_NPN,
Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN,
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP,
Q_NEG_COLL_PNP}
For the npn transistors, the Q2N3904 model was used.
For pnp transistors, the Q2N3906 model was used.
The initial terminal set, Tccs-initial, for each
construction-continuing subtree is
Tccs-initial = {END, SAFE_CUT}.
The set of potential new functions, Fpotential, is
Fpotential = {ADF0, ADF1, ADF2, ADF3}.
The set of potential new terminals, Tpotential, is
Tpotential = {ARG0}.
The architecture-altering operations change the
function set, Fccs for each construction-continuing
subtree of all three result-producing branches and the
function-defining branches, so
Fccs = Fccs-initial ≈ Fpotential.
The architecture-altering operations change the
terminal set, Taps-adf, for each arithmetic-performing
subtree, so
Taps-adf = Taps-initial ≈ Tpotential.
The terminal set, Taps-initial, for each arithmetic-
performing subtree consists of
Taps-initial = {←},
where ← represents floating-point random constants
from –1.0 to +1.0.
The function set, Faps, for each arithmetic-performing
subtree is,
Faps = {+, -}.
The evaluation of fitness for each individual circuit-
constructing program tree in the population begins with
its execution. This execution applies the functions in
the program tree to the embryonic circuit, thereby
developing the embryonic circuit into a fully developed
circuit. A netlist describing the fully developed circuit
is then created. The netlist identifies each component
of the circuit, the nodes to which that component is
connected, and the value of that component. Each
circuit is then simulated to determine its behavior. The
217,000-line SPICE (Simulation Program with

Integrated Circuit Emphasis) simulation program
(Quarles et al. 1994) was modified to run as a
submodule within the genetic programming system.
Figure 8 provides additional detail on the calculation of
fitness. The calculation starts by initializing the
current CIRCUIT to the embryonic circuit. The
individual circuit-constructing program tree from the
population is then executed. This execution causes the
component-creating and connection-modifying
functions in the program tree to be applied to the
current CIRCUIT (i.e., these functions side effect the
current CIRCUIT). When this execution is completed,
the current CIRCUIT is translated into a NETLIST.

Start

Set CIRCUIT =
embryonic circuit

Evaluate individual
circuit-constructing program tree by
progressively applying component-
creating and connection-modifying
functions to the current CIRCUIT

Translate CIRCUIT
into NETLIST

Create SIMPLIFIED NETLIST by
removing wires, removing dangling

components, removing remaining
isolated subcircuits, inserting high-

resistance DC path to ground for
isolated nodes , and consolidating

series and parallel combinations of
like components

Run SPICE simulator on
SIMPLIFIED NETLIST to

create tabular values of
electrical behavior

End
Figure 8 More detailed flowchart for calculation of
fitness.
The NETLIST is then simplified in five ways to create
a SIMPLIFIED NETLIST. First, all wires are
removed. Second, any dangling components are
removed. Third, any isolated substructures are
removed. Fourth, a very large resistance (a 1 giga-
Ohm resistor RHUGE) is inserted between ground and
any node for which there is no DC path to ground. For
example, if two capacitors join at a certain node, there
is no DC path to ground from that node. The
introduction of a very large resistance between that
node and ground has no significant electrical effect;
however, it is essential for enabling the SPICE
simulator to simulate the circuit. The fifth
simplification of the netlist is done for reasons of
accelerating the SPICE simulation. The time required
for a SPICE simulation generally increases nonlinearly
as a function of the number of nodes in the netlist (in an
approximately sub-quadratic to quartic way). Thus, it

is advantageous to shorten the netlist provided to
SPICE. All series and parallel compositions of like
passive components are replaced, for purposes of the
simulation only, by a single component of appropriate
value. For example, two resistors (or inductors) in
series are replaced by a single resistor (or inductors)
whose value if the sum of the two resistances. Two
resistors in parallel are reaplced by a single resistor
whose value is the reciprocal of the sum of the
reciprocal of the two resistances. Two capacitors in
parallel are consolidated in the same manner as two
resistors in series and two capacitors in series are
consolidated in the same manner as two resistors in
parallel.
The starting point for evaluating the fitness of a circuit
is its response to a DC input. An ideal inverting
amplifier circuit would receive a DC input, invert it,
and multiply it by the amplification factor. A circuit is
flawed to the extent that it does not achieve the desired
amplification; to the extent that the output signal is not
centered on 0 Volts (i.e., it has a bias); and to the extent
that the DC response is not linear.
Thus, for this problem, we used a fitness measure based
on SPICE's DC sweep. The DC sweep analysis
measures the DC response of the circuit at several
different DC input voltages. The circuits were
analyzed with a 5 point DC sweep ranging from –10
millvolts to +10 mV, with input points at –10 mV, –5
mV, 0 mV, +5 mV, and +10 mV. SPICE then
produced the circuit's output for each of these five DC
voltages.
Fitness is then calculated from four penalties derived
from these five DC output values. Fitness is the sum of
an amplification penalty, a bias penalty, and two non-
linearity penalties.
First, the amplification factor of the circuit is measured
by the slope of the straight line between the output for –
10 mV and the output for +10 mV (i.e., between the
outputs for the endpoints of the DC sweep). If the
amplification factor is less than the maximum allowed
by the feedback resistor (120 dB for this problem),
there is a penalty equal to the shortfall in amplification.
Second, the bias is computed using the DC output
associated with a DC input of 0 Volts. The penalty is
equal to the bias times a weight. For this problem, a
weight of 0.1 is used.
Third, the linearity is measured by the deviation
between the slope of each of two line segments and the
overall amplification factor of the circuit. The first
line segment spans the output values associated with
inputs of –10 mv through –5 mv. The second line
segment spans the output values associated with inputs
of +5 mv and through +10 mv. The penalty for each of
these line segments is equal to the absolute value of the
difference in slope between the respective line segment
and amplification factor of the circuit.

Many of the circuits that are created in the initial
random population and many that are created by the
crossover and mutation operations cannot be simulated
by SPICE. Such circuits are assigned a high penalty
value of fitness (108).
The population size, M, was 640,000.
The architecture-altering operations are used sparingly
on each generation. The percentage of operations on
each generation after generation 5 was 86.5% one-
offspring crossovers; 10% reproductions; 1%
mutations; 1% branch duplications; 0% argument
duplications; 0.5% branch deletions; 0.0% argument
deletions; 1% branch creations; and 0% argument
creations. Since we do not want to waste large amounts
of computer time in early generations where only a few
programs have any automatically functions at all, the
percentage of operations on each generation before
generation 6 was 78.0% one-offspring crossovers; 10%
reproductions; 1% mutations; 5.0% branch
duplications; 0% argument duplications; 1% branch
deletions; 0.0% argument deletions; 5.0% branch
creations; and 0% argument creations.
The maximum size, Hrpb, for each of the three result-
producing branches in each overall program is 300
points.
The maximum number of automatically defined
functions is 4.
The number of arguments for each automatically
defined function is one.
The maximum size, Hadf, for each of the
automatically defined functions, if any, is 200 points.
The other parameters for controlling the runs of genetic
programming were the default values specified in Koza
1994 (appendix D).
This problem was run on a medium-grained parallel
Parsytec computer system consisting of 64 80 MHz
Power PC 601 processors arranged in a toroidal mesh
with a host PC Pentium type computer. The distributed
genetic algorithm was used with a population size of Q
= 10,000 at each of the D = 64 demes. On each
generation, four boatloads of emigrants, each consisting
of B = 2% (the migration rate) of the node's
subpopulation (selected on the basis of fitness) were
dispatched to each of the four toroidally adjacent
processing nodes. See Andre and Koza 1996 for
details.
4. Results
We made three identical runs of this problem. The
worst of the runs produced an op amp that delivered 92
dB of amplification. We describe the best run here.
About 41% of the circuits of generation 0 cannot be
simulated by SPICE; however, the percentage of
unsimulatable circuits drops to between 2% and 4%
between generations 1 and 10 and never exceeds 8%
thereafter.

The fitness of the best-of-generation individual tends to
improve from generation to generation.
The best circuit (figure 9) from generation 50 has 33
transistors, no diodes, eight capacitors, and five
resistors (in addition to the five resistors of the
feedback embryo). It achieves a fitness of 971,076.4.
No automatically defined functions are present in this
particular circuit. The DC sweep shows that the circuit
has an amplification of 89.7 dB (30,545-to-1) and a
bias of 9.77 Volts.
Based on the time domain behavior for a 20 microvolt
sinusoidal 1,000 Hz input signal, the amplification is
89.7 dB (30,500-to-1) for the best circuit from
generation 50; the bias is 9.76 Volts; and the distortion
is 6.29%.
Based on the AC sweep for the best circuit of
generation 50, the 3 dB bandwidth is 2,300 Hz. The
circuit has a flatband gain of 89.7 dB.
The best-of-run circuit (figure 10) appeared in
generation 86 and achieves a fitness of 938,427.3. The
program tree has two automatically defined functions.
ADF0 is called once; ADF1 is not called. The circuit
(without ADF0) has 25 transistors, no diodes, two
capacitors, and two resistors (in addition to the five
resistors of the feedback embryo).

Figure 9 Best circuit from generation 50.

Figure 10 Best circuit from generation 86.
d:\fhb\tojohn\r708826a.doc
Figure 11 shows automatically defined function ADF0
of the best circuit from generation 86 (which has 12
transistors, no diodes, one capacitor, and two resistors).

Figure 11 ADF0 for best circuit from generation 86.
d:\fhb\tojohn\r708826a.doc
The DC sweep for this best of generation circuit from
generation 86 shows that the circuit has an
amplification of 96.2 dB (64,860 -to-1) and a bias of
7.44 Volts.
Figure 12 shows the time domain behavior of the best
circuit from generation 86. The vertical axis is voltage
from –20 volts to +20 volts. The input is the 20
microvolt sinusoidal signal; however, it appears here as
a nearly straight line because of the scale necessary to
show the high amplification of the output signal. Based
on this transient analysis, the amplification is 94.1 dB;
the bias is 7.46 volts; and the distortion is 7.07%.

Figure 12 Time domain behavior of best of generation
86.
Figure 13 shows the frequency response of this circuit
as shown by an AC sweep. The horizontal axis shows
frequency on a logarithmic scale from 1 Hz to
1,000,000 Hz. The vertical axis shows gain and ranges
from 0 to 100 dB. The 3 dB bandwidth is 1078.4 Hz.
The circuit has a flatband gain of 96.3 dB.

Figure 13 AC sweep for the best circuit from
generation 86. d:\fhb\tojohn\r708826a.doc
We do not claim that the genetically evolved amplifier
satisfies all the additional requirements that a human
design engineer might want to incorporate into a
practical design. We do, however, claim that genetic
programming successfully created a 96 dB op amp
circuit based on the fitness measure that it was given.
We also claim that the genetically evolved circuit
demonstrates the principle that both the topology and
component sizing of a complex analog circuit can be
evolved using genetic programming – that is, that the
synthesis of analog circuits can be automated.
5. Other Examples
Genetic programming has also been successfully
applied to a variety of other problems of analog circuit
design.
The problem-specific information that the user must
supply in order to apply genetic programming to
different problems of analog circuit synthesis is
minimal. It primarily consists of a fitness measure for
the operating characteristics of the desired circuit. That
is, structure arises from fitness. In addition, the user
must also specify information such as the number of
inputs and outputs of the desired circuit, the set of parts
that are to be available to the circuit (e.g., transistors,
resistors, and capacitors), and the repertoire of circuit-
constructing functions (which generally does not vary
from problem to problem).
In this section, we describe several additional circuit
synthesis problems in order to demonstrate how to

modify the basic technique described above for other
problems.
5.1. Lowpass Filter
Genetic programming has successfully evolved a
design for a lowpass filter with passband below 1,000
Hz and a stopband above 2,000 Hz with requirements
equivalent to that of a fifth order elliptic filter (Koza,
Bennett, Andre, and Keane 1996a, 1996c).
For the amplifier described above, the fitness measure
was based on gain. For a filter, the fitness measure is
based on the amount of voltage that the circuit passes at
various frequencies. Specifically, fitness is measured
in terms of the sum, over fitness cases representing
various frequencies, of the weighted absolute value of
the deviation between the actual value of the voltage
that is produced by the circuit at the probe point VOUT
at node 5 and the target value for voltage. The smaller
the value of fitness, the better (with zero being best). A
second difference is that the embryo for a filter circuit
does not need a balancing or feedback resistor. A third
difference is that the desired filter is a passive circuit
created from inductors and capacitors (but without
transistors or power supplies).
Numerous runs produced lowpass filters having a
topology that is similar to that employed by human
engineers. For example, in one run, a 100% compliant
evolved circuit (figure 14) had the recognizable ladder
topology of a Butterworth or Chebychev filter (i.e., a
composition of series inductors horizontally with
capacitors as vertical shunts).

Figure 14 Genetically evolved ladder filter circuit.
5.2. A Crossover Filter
A design for a crossover (woofer and tweeter) filter
with a crossover frequency of 2,512 Hz was reported in
Koza, Bennett, Andre, and Keane 1996b.
This problem requires a one-input, two-output
embryonic circuit and requires that the fitness be
measured at two probe points.
The lowpass part of the genetically evolved best-of-run
circuit (figure 15) has the Butterworth topology.
Except for additional capacitor C38, the highpass part
of this circuit also has the Butterworth topology. This
circuit is slightly better than the combination of
lowpass and highpass Butterworth filters of order 7.

Figure 15 Genetically evolved crossover filter.
5.3. Asymmetric Bandpass Filter
A design for an asymmetric bandpass filter with
requirements equivalent to a tenth-order elliptic filter
was successfully evolved (Koza, Bennett, Andre, and
Keane 1996d).
The preparatory steps required to solve this problem
were almost identical to that of the two lowpass filter
mentioned above, except that the fitness measure
reflected the more complicated asymmetric
requirements of the problem.
Figure 16 shows a 100% compliant evolved
asymmetric bandpass filter.

Figure 16 Genetically evolved asymmetric bandpass
filter.
5.4. Cube Root Circuit
Analog electrical circuits that perform mathematical
functions (e.g., logarithm, square, cube root) are called
computational circuits. Computational circuits are of
special practical importance when the small number of
required mathematical functions does not warrant
converting an analog signal into a digital signal,
performing the mathematical function in the digital
domain, and then converting the result to the analog
domain. The design of computational circuits is
notoriously difficult even for mundane mathematical
functions and often relies on the clever exploitation of
some aspect of the underlying device physics of the
components. Moreover, implementation of each
mathematical function typically requires an entirely
different clever insight.
A design for a computational circuit for the cube root
function has been successfully evolved. Figure 17

shows a genetically evolved cube root circuit with 36
transistors, two diodes, no capacitors, and 12 resistors
(in addition to the source and load resistors in the
embryo).

Figure 17 Genetically evolved cube root circuit.
d:\users\fhb\tojohn\r708994c.doc

6. CONCLUSION
Genetic programming successfully evolved a 37-
transistor amplifier that delivers a DC gain of 96 dB
(64,860 -to-1).

ACKNOWLEDGMENTS
Jason Lohn and Simon Handley made helpful
comments on various drafts of this paper.

REFERENCES
Aaserud, O. and Nielsen, I. Ring. 1995. Trends in

current analog design: A panel debate. Analog
Integrated Circuits and Signal Processing. 7(1) 5-9.

Andre, David and Koza, John R. 1996. Parallel
genetic programming: A scalable implementation
using the transputer architecture. In Angeline, P. J.
and Kinnear, K. E. Jr. (editors). 1996. Advances
in Genetic Programming 2. Cambridge: MIT Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr.
(editors). 1996. Advances in Genetic Programming
2. Cambridge, MA: The MIT Press.

Gruau, Frederic. 1996. Artificial cellular development
in optimization and compilation. In Sanchez,
Eduardo and Tomassini, Marco (editors). 1996.
Towards Evolvable Hardware. Lecture Notes in
Computer Science, Volume 1062. Berlin: Springer-
Verlag. Pages 48 – 75.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in
Genetic Programming. Cambridge, MA: The MIT
Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge, MA:
MIT Press.

Koza, John R. 1995. Evolving the architecture of a
multi-part program in genetic programming using
architecture-altering operations. In McDonnell, John
R., Reynolds, Robert G., and Fogel, David B.
(editors). 1995. Evolutionary Programming IV:
Proceedings of the Fourth Annual Conference on
Evolutionary Programming. Cambridge, MA: The
MIT Press. Pages 695–717.

Koza, John R., Andre, David, Bennett III, Forrest H,
and Keane, Martin A. 1996. Use of automatically
defined functions and architecture-altering
operations in automated circuit synthesis using
genetic programming. In Koza, John R., Goldberg,
David E., Fogel, David B., and Riolo, Rick L.
(editors). 1996. Genetic Programming 1996:
Proceedings of the First Annual Conference, July
28-31, 1996, Stanford University. Cambridge, MA:
The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996a. Toward evolution of
electronic animals using genetic programming.
Artificial Life V: Proceedings of the Fifth
International Workshop on the Synthesis and
Simulation of Living Systems. Cambridge, MA: The
MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996b. Four problems for
which a computer program evolved by genetic
programming is competitive with human
performance. Proceedings of the 1996 IEEE
International Conference on Evolutionary
Computation. IEEE Press. Pages 1–10.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996c. Automated design of
both the topology and sizing of analog electrical
circuits using genetic programming. In Gero, John
S. and Sudweeks, Fay (editors). Artificial
Intelligence in Design '96. Dordrecht: Kluwer.
Pages 151-170.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996d. Automated
WYWIWYG design of both the topology and
component values of analog electrical circuits using
genetic programming. In Koza, John R., Goldberg,
David E., Fogel, David B., and Riolo, Rick L.
(editors). 1996. Genetic Programming 1996:
Proceedings of the First Annual Conference, July
28-31, 1996, Stanford University. Cambridge, MA:
The MIT Press.

Koza, John R., Goldberg, David E., Fogel, David B.,
and Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First Annual
Conference, July 28-31, 1996, Stanford University.
Cambridge, MA: The MIT Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT
Press.

Kruiskamp Marinum Wilhelmus and Leenaerts,
Domine. 1995. DARWIN: CMOS opamp synthesis
by means of a genetic algorithm. Proceedings of the
32nd Design Automation Conference. New York,
NY: Association for Computing Machinery. Pages
433–438.

Quarles, Thomas, Newton, A. R., Pederson, D. O.,
and Sangiovanni-Vincentelli, A. 1994. SPICE 3
Version 3F5 User's Manual. Department of
Electrical Engineering and Computer Science,
University of California, Berkeley, CA. March
1994.

Rutenbar, R. A. 1993. Analog design automation:
Where are we? Where are we going? Proceedings
of the l5th IEEE CICC. New York: IEEE. 13.1.1-
13.1.8.

Thompson, Adrian. 1996. Silicon evolution. In Koza,
John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First Annual
Conference, July 28-31, 1996, Stanford University.
Cambridge, MA: MIT Press.

BIOGRAPHIES
John R. Koza is Consulting Professor in the Computer
Science Department at Stanford University.

Forrest H Bennett III is visiting scholar in the
Computer Science Department at Stanford University.

David Andre is a researcher in the Computer
Science Department at the University of California at
Berkeley.

Martin A. Keane received his PhD from Northwestern University in Mathematics in 1969.

VERSION 2 - CAMERA-READY - SUBMITTED NOVEMBER ---, 1996 TO
ACM SYMPOSIUM ON APPLIED COMPUTING (SAC-97) TO BE HELD

ON FEBRUARY 28 – MARCH 2, 1997 IN SAN JOSE, CALIFORNIA.

EVOLUTION USING GENETIC PROGRAMMING OF A LOW-
DISTORTION 96 DECIBEL OPERATIONAL AMPLIFIER

John R. Koza
Computer Science Dept.

258 Gates Building
Stanford University

Stanford, California 94305
koza@cs.stanford.edu

Forrest H Bennett III
Visiting Scholar

Stanford University
Stanford, California 94305

fhb3@slip.net

David Andre
Computer Science Dept.
University of California

Berkeley, California
dandre@cs.berkeley.edu

Martin A. Keane
Martin Keane Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

10 pages = 5 x $20 = $100 page charge

