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ABSTRACT 
The problem of source identification 

involves correctly classifying an 
incoming signal into a category that 
identifies the signal's source.   

The problem is difficult because 
information is not provided concerning 
each source's distinguishing 
characteristics and because successive 
signals from the same source differ. The 
source identification problem can be 
made more difficult by dynamically 
changing the repertoire of sources while 
the problem is being solved.  

We used genetic programming to 
evolve both the topology and the sizing 
(numerical values) for each component 
of an analog electrical circuit that can 
correctly classify an incoming analog 
electrical signal into three categories.  
Then, the repertoire of sources was 
dynamically changed by adding a new 
source during the run.  The paper 
describes how the architecture-altering 
operations enabled genetic 
programming to adapt, during the run, 
to the changed environment. 
Specifically, a three-way source 
identification circuit was evolved and 
then adapted into a four-way classifier, 

during the run, thereby successfully 
handling the additional new source.  

 

1. Introduction 
In nature, living things exhibit considerable ability to adapt 
to a change in their environment by acquiring new 
capabilities.  One mechanism that enables living things to 
adapt involves changes in the architecture of their genome.  
When we refer to architectural changes in the genome, we 
do not mean mere changes in the value of an allele at a 
particular preexisting location on the chromosome.  Instead, 
we mean a structural change that permits the manufacture of 
an entirely new protein that, in turn, supports a new 
structure, new behavior, or new functionality.   

There is an analog in the world of computer 
programming to a change in the architecture of the genome 
of a living organism.  That analog consists of a change in 
the architecture of a computer program.  When we refer to a 
change in architecture of a computer program, we mean a 
structural change in the program (i.e., a change in the 
number of subprograms, the number of arguments 
possessed by each subprogram, or the nature of the 
hierarchical references among the subprograms) as opposed 
to a mere change in the sequence of work-performing 
primitive operations or the number of such operations in a 
particular preexisting branch of the program.   

The problem of source identification involves correctly 
classifying an incoming signal into a category that identifies 
the signal's source. The problem is difficult because 
information is not provided concerning each source's 
distinguishing characteristics and because successive 
signals from the same source differ.  

The source identification problem can be made more 
difficult by dynamically changing the repertoire of sources 
while the problem is being solved.  This kind of change 



 

occurs, for example, when a living organism encounters 
something fundamentally new and different in its 
environment (and must adapt to it).   

This paper first considers the problem of evolving the 
design for an analog electrical circuit that can solve the 
problem of source identification for signals coming from 
two different sources, each emitting various signals from a 
certain range of frequencies.  Each incoming signal is 
identified as coming from the first source, the second 
source, or neither source in this three-way version of the 
problem.    

The paper then considers a second version of the 
problem in which an additional source is dynamically 
introduced, during the run, as soon as genetic programming 
successfully evolves a solution to the original three-way 
source identification problem.  The addition of the source 
during the run  (thereby creating a four-way source 
identification problem) can be viewed as a change in the 
environment.   

One way to solve a source identification problem 
involves evolving the design of an analog electrical circuit 
that satisfies the specified goal of correctly classifying the 
incoming signals as to their source.  Automated design 
(synthesis) of analog electronic circuits (involving both the 
circuit topology and component sizing) is recognized as a 
difficult problem.  As Aaserud and Nielsen (1995) observe,  

"Analog designers are few and far between.  In 
contrast to digital design, most of the analog circuits 
are still handcrafted by the experts or so-called 'zahs' 
of analog design.  The design process is characterized 
by a combination of experience and intuition and 
requires a thorough knowledge of the process 
characteristics and the detailed specifications of the 
actual product.  

"Analog circuit design is known to be a knowledge-
intensive, multiphase, iterative task, which usually 
stretches over a significant period of time and is 
performed by designers with a large portfolio of skills.  
It is therefore considered by many to be a form of art 
rather than a science."  
When genetic programming was used to adapt to a 

changing environment during the run and solve the four-
way source identification problem, we included 
automatically defined functions (Koza 1992, 1994).  Of 
course, when automatically defined functions are used, we 
must address the question of how to determine the 
architecture of the to-be-evolved computer program (i.e., 
number of automatically defined functions, the number of 
arguments that they each possess, and the nature of the 
hierarchical references, if any, among them).  Architecture-
altering operations (Koza 1994c) enable genetic 
programming to determine the architecture of a multi-part 
computer program dynamically during a run.  A change in 
the architecture of a multi-part computer program during a 
run of genetic programming corresponds to a change in 
genome structure in the natural world.  Thus, we used both 
automatically defined functions and architecture-altering 
operation for the version of the problem in which the 
number of sources changes during the run.   

The architecture-altering operations for genetic 
programming are motivated by the naturally occurring 
mechanisms of gene duplication and gene deletion in 
chromosome strings as described in Susumu Ohno's seminal 
book Evolution by Gene Duplication (1970).  In nature, 
sexual recombination ordinarily recombines a part of the 
chromosome of one parent with a homologous part of the 
second parent's chromosome.  However, in certain rare and 
unpredictable occasions, recombination does not occur in 
this normal way.  A gene duplication is an aberrant 
recombination event that results in the duplication of a 
lengthy subsequence of nucleiotide bases of the DNA.   

Ohno advanced the thesis that the creation of new 
proteins (and hence new structures and new behaviors in 
living things) begins with a gene duplication.   

After a subsequence of nucleiotide bases that code for a 
particular protein becomes duplicated in the DNA, there are 
two identical ways of manufacturing the same protein (but 
no immediate change in the set of proteins that are 
manufactured).  However, over time, some other genetic 
operation, such as mutation or crossover, may change one 
or the other of the two initially identical genes.  Over short 
periods of time, the changes accumulating in a gene may be 
of no practical effect or value.  As long as one of the two 
genes remains unchanged, the original protein manufactured 
from the unchanged gene continues to be manufactured and 
the structure and behavior of the organism involved may 
continue as before.  The changed gene is simply carried 
along in the DNA from generation to generation.   

Natural selection exerts a powerful force in favor of 
maintaining a gene that encodes for the manufacture of a 
protein that is important for the survival and successful 
performance of the organism.  However, after a gene 
duplication has occurred, there is usually no disadvantage 
associated with the loss of a second way of manufacturing 
the original protein.  Consequently, natural selection usually 
exerts little or no pressure to maintain a second way of 
manufacturing a particular protein.  Over time, the second 
gene may accumulate additional changes and diverge more 
and more from the original gene.  Eventually the changed 
gene may lead to the manufacture of a distinctly new and 
different protein that actually does affect (advantageously or 
disadvantageously) the structure and behavior of the living 
thing.  When a changed gene leads to the manufacture of a 
viable and advantageous new protein, natural selection 
again works to preserve that new gene.   

Ohno also points out that ordinary point mutation and 
crossover are insufficient to explain major changes.   

"...while allelic changes at already existing gene loci 
suffice for racial differentiation within species as well 
as for adaptive radiation from an immediate ancestor, 
they cannot account for large changes in evolution, 
because large changes are made possible by the 
acquisition of new gene loci with previously non-
existent functions." 
Ohno continues, 

"Only by the accumulation of forbidden mutations 
at the active sites can the gene locus change its basic 
character and become a new gene locus.  An escape 



 

from the ruthless pressure of natural selection is 
provided by the mechanism of gene duplication.  By 
duplication, a redundant copy of a locus is created.  
Natural selection often ignores such a redundant copy, 
and, while being ignored, it accumulates formerly 
forbidden mutations and is reborn as a new gene locus 
with a hitherto non-existent function."  (Emphasis in 
original).   
Ohno concludes, 

"Thus, gene duplication emerges as the major force 
of evolution."   
In other words, it is gene duplication that enables living 

things to adapt to changing environments by acquiring new 
structure, new behavior, and new functionality.  The 
analogy, in the realm of computer programming, of nature's 
ability to adapt to changing environments is the set of 
architecture-altering operations that enable an evolving 
program to acquire new structure, new behavior, and new 
functionality.   

Section 2 of this paper provides background on the 
process of evolving analog electrical circuits using genetic 
programming.  Section 3 presents the preparatory steps for 
the three-way source identification problem and section 4 
presents the results.  In section 5, adaptation to a changing 
environment is required.   In section 6, the three-way source 
identification problem is first solved and, then, the four-way 
version of the problem is solved during the same run.   

2. Evolution of Circuits 
Genetic programming is an extension of John Holland's 
genetic algorithm (1975) in which the population consists of 
computer programs of varying sizes and shapes (Koza 1992, 
1994a, 1994b; Koza and Rice 1992).  Recent work is 
described in Kinnear (1994), Angeline and Kinnear (1996), 
and Koza, Goldberg, Fogel, and Riolo (1996).   

Genetic algorithms have been applied to the problem of 
circuit synthesis in the past.  For example, a CMOS 
operational amplifier (op amp) circuit was designed using 
the genetic algorithm with a problem-specific crossover 
operation (Kruiskamp and Leenaerts 1995); however, the 
topology of each op amp was one of 24 pre-selected 
topologies based on the conventional human-designed 
stages of an op amp.  In his paper "Silicon Evolution," 
Thompson (1996) used a genetic algorithm to evolve a 
frequency discriminator on a Xilinx 6216 reconfigurable 
digital gate array operating in analog mode.   

Genetic programming evolves computer programs that 
are represented as rooted, point-labeled trees with ordered 
branches.  Genetic programming can be applied to circuits if 
a mapping is established between the rooted, point-labeled 
trees with ordered branches found in genetic programming 
and the line-labeled cyclic graphs germane to circuits.  
Gruau's innovative work on cellular encoding (1996) 
enables genetic programming to evolve neural networks.  

The principles of developmental biology suggest a way 
to map program trees into circuits. The starting point of the 
growth process can be a very simple embryonic electrical 
circuit.  This embryo contains certain fixed and invariant 

elements for the circuit that is to be designed (e.g., the 
number of inputs and outputs) as well as certain wires that 
are capable of subsequent modification.  An electrical 
circuit is progressively developed by applying the functions 
in a circuit-constructing program tree to the modifiable 
wires of the embryonic circuit (and to the modifiable wires 
and components of successor circuits).   

The functions in the circuit-constructing program trees 
include (1) connection-modifying functions that modify the 
topology of the circuit, (2) component-creating functions 
that insert components into the circuit, (3) arithmetic-
performing functions that appear in arithmetic-performing 
subtrees as argument(s) to the component-creating functions 
and that fix the component's numerical value, and possibly 
(4) calls to automatically defined functions (if used).   

The developmental process for converting a program 
tree into a circuit begins with an embryonic circuit.  Figure 
1 shows a one-input, one-output embryonic circuit.  This 
embryo contains a voltage source VSOURCE connected to 
nodes 0 (ground) and 1, a fixed source resistor RSOURCE 
between nodes 1 and 2, a modifiable wire Z0 between 
nodes 2 and 3, a fixed isolating wire ZOUT between nodes 
3 and 5, a fixed output point (voltage probe) VOUT at node 
5, and a fixed load resistor RLOAD between nodes 5 and 
ground.  Only the modifiable wire Z0 is subject to 
modification during the developmental process.   

 
Figure 1  Embryonic circuit. Each circuit-constructing 
program tree in the population contains component-creating 
functions and connection-modifying functions.  Each 
connection-modifying function in a program tree points to 
an associated highlighted component and modifies the 
topology of the developing circuit.  Each branch of the 
program tree is created in accordance with a constrained 
syntactic structure.  Branches are composed from 
construction-continuing subtrees that continue the 
developmental process and arithmetic-performing subtrees 
that set the value of components.  Connection-modifying 
functions have one or more construction-continuing 
subtrees, but no arithmetic-performing subtrees.  
Component-creating functions have one construction-
continuing subtree (and often an arithmetic-performing 
subtree).  Structure-preserving crossover with point typing 
preserves the constrained syntactic structure.   

The component-creating functions insert a component 
into the developing circuit and assign component value(s) to 
the component.  Each component-creating function has a 
writing head that points to an associated highlighted 
component in the developing circuit and modifies the 



 

highlighted component in a specified way. The 
construction-continuing subtree of each component-creating 
function points to a successor function or terminal in the 
circuit-constructing program tree.  The arithmetic-
performing subtree of a component-creating function 
consists of a composition of arithmetic functions and 
random constants that specify, after interpretation, the value 
of a component.  

Space does not permit giving details for each 
component-creating and connection-modifying function.  
For details, see Koza, Andre, Bennett, and Keane (1996), 
and Koza, Bennett, Andre, and Keane (1996a, 1996b, 
1996c, 1996d, 1997).   

3. Preparatory Steps for the Three-
Way Problem 

The goal is to evolve the design for an analog electrical 
circuit that classifies the incoming signal into three 
categories.  Successive incoming signals from the same 
source are different; however, their differences are small in 
comparison to signals coming from another source.   

Specifically, the desired circuit is to produce an output 
of 1/2 volt (plus or minus 240 millivolts) if the frequency of 
the incoming signal is within 10% of 256 Hz, produce an 
output of 1 volt (plus or minus 240 millivolts) if the 
frequency of the incoming signal is within 10% of 2,560 
Hz, and otherwise produce an output of 0 volts (plus or 
minus 240 millivolts).   The tolerance of 240 (rather than 
250) millivolts was chosen to avoid the possibility of a tie 
and to clearly separate the classifications.   

Before applying genetic programming to a problem of 
circuit synthesis, the user must perform seven major 
preparatory steps, namely (1) identifying the embryonic 
circuit that is suitable for the problem,  (2) determining the 
architecture of the circuit-constructing program trees, (3) 
identifying the terminals, (4) identifying the primitive 
functions contained in the programs, (5) creating the fitness 
measure, (6) choosing control parameters, and (7) setting 
the termination criterion and method of result designation.   

A one-input, one-output embryo (figure 1) was used.   
We did not use automatically defined functions for the 

three-way source identification problem.  Since the 
embryonic circuit has one modifiable wire (and hence one 
writing head), there is one result-producing branch in each 
circuit-constructing program tree.   

For this problem, the function set, Fccs, for each 
construction-continuing subtree is 
Fccs = {R, L, C, SERIES, PSS, PSL, FLIP, NOP, 

T_PAIR_CONNECT_0, T_PAIR_CONNECT_1}. 
The terminal set, Tccs, for each construction-continuing 

subtree is 
Tccs = {END, SAFE_CUT}.   

The function set, Faps, for each arithmetic-performing 
subtree is 
Faps = {+, -}.  

The terminal set for an arithmetic-performing subtree is 
Taps = {←},  

where ← represents random constants from –1.0 to +1.0.   
The evaluation of fitness for each individual circuit-

constructing program tree in the population begins with its 
execution.  This execution applies the functions in the 
program tree to the embryonic circuit, thereby developing 
the embryonic circuit into a fully developed circuit.  A 
netlist describing the fully developed circuit is then created.  
The netlist identifies each component of the circuit, the 
nodes to which that component is connected, and the value 
of that component.  Each circuit is then simulated to 
determine its behavior.  The 217,000-line SPICE 
(Simulation Program with Integrated Circuit Emphasis) 
simulation program (Quarles et al. 1994) was modified to 
run as a submodule within the genetic programming system.   

For this problem, the voltage VOUT is probed at node 5 
and the circuit is simulated in the frequency domain.   
SPICE is requested to perform an AC small signal analysis 
and to report the circuit's behavior for each of 101 
frequency values chosen over four decades of frequency 
(between 1 and 10,000 Hz).  Each decade is divided into 25 
parts (using a logarithmic scale).  

Fitness is measured in terms of the sum, over these 101 
fitness cases, of the absolute weighted deviation between 
the actual value of the output voltage at the probe point 
VOUT and the target value for voltage.   

The three points that are closest to the band located 
within 10% of 256 Hz are 229.1 Hz, 251.2 Hz, and 275.4 
Hz.  The procedure for each of these three points is as 
follows: If the voltage equals the ideal value of 1/2 volts in 
this interval, the deviation is 0.0.  If the voltage is within 
240 millivolts of 1/2 volts, the absolute value of the 
deviation from 1/2 volts is weighted by a factor of 20.  If 
the voltage is more than 240 millivolts from 1/2 volts, the 
absolute value of the deviation from 1/2 volts is weighted 
by a factor of 200.  This arrangement reflects the fact that 
the ideal output voltage for this range of frequencies is 1/2 
volt, that a 240 millivolts discrepancy is acceptable, and that 
a larger discrepancy is not acceptable.   

The three points that are closest to the band located 
within 10% of 2,560 Hz are 2,291 Hz, 2,512 Hz, and 2,754 
Hz.  The procedure for each of these three points is as 
follows: If the voltage equals the ideal value of 1 volt in this 
interval, the deviation is 0.0.  If the voltage is within 240 
millivolts of 1 volt, the absolute value of the deviation from 
1 volt is weighted by a factor of 20.  If the voltage is more 
than 240 millivolts from 1 volt, the absolute value of the 
deviation from 1 volt is weighted by a factor of 200.   

The procedure for each of the remaining 95 points is as 
follows:  If the voltage equals the ideal value of 0 volts, the 
deviation is 0.0.  If the voltage is within 240 millivolts of 0 
volts, the absolute value of the deviation from 0 volts is 
weighted by a factor of 1.0.  If the voltage is more than 240 
millivolts from  0 volts, the absolute value of the deviation 
from 0 volt is weighted by a factor of 10.   

Greater weights (20 and 200) were used in the two 
passbands because they contain only 6 of the 101 points.   

Many of the circuits that are created in the initial 
random population and many that are created by the 



 

crossover and mutation operations cannot be simulated by 
SPICE.  Such circuits are assigned a high penalty value of 
fitness (108).   

The number of hits was defined as the number of fitness 
cases (0 to 101) for which the voltage is acceptable or ideal.   

The population size, M, was 640,000.  The percentage of 
genetic operations on each generation was 89% one-
offspring crossovers, 10% reproductions, and 1% mutations.  
The architecture-altering operations were not used on this 
problem.  Since only one result-producing branch was used 
in the embryo for this problem, the maximum size, Hrpb, 
for the result-producing branch was 600 points.  The other 
parameters for controlling the runs of genetic programming 
were the default values specified in Koza 1994 (appendix 
D). 

This problem was run on a medium-grained parallel 
Parsytec computer system consisting of 64 80-MHz Power 
PC 601 processors arranged in a toroidal mesh with a host 
PC Pentium type computer.  The distributed genetic 
algorithm was used with a population size of Q =  10,000 at 
each of the D = 64 demes.  On each generation, four 
boatloads of emigrants, each consisting of B = 2% (the 
migration rate) of the node's subpopulation (selected on the 
basis of fitness) were dispatched to each of the four 
toroidally adjacent processing nodes (Andre and Koza 
1996).  

4. Results for the Three-Way Source 
Identification Problem 

A satisfactory solution to the problem was found on our 
first run of this problem.   

The best circuit from generation 0 (figure 2) has a 
fitness of 286.2 and scores 64 hits.  It has no inductors, two 
capacitors, and two resistors (in addition to the source and 
load resistors in the embryo).   

Figure 5 shows the behavior of the best circuit of 
generation 0 in the frequency domain.  The horizontal axis 
is logarithmic and ranges between 1 and 10,000 Hz.   Notice 
that this inadequate circuit pays no special attention to the 
frequencies around 256 Hz and 2,560 Hz.   

The best circuit from generation 20 (figure 3) has a 
fitness of 129.1 and 76 hits.  Figure 6 shows its behavior.  
Notice the distinct areas around 256 and 2,560 Hz.   

The best circuit from generation 106 (figure 4) achieves 
a fitness of 21.4 and scores 101 hits.  It has seven inductors, 
15 capacitors, and four resistors.   Figure 7 shows its 
behavior in the frequency domain.  This circuit produces an 
output voltage in the correct band for incoming signals from 
the first source, the second source, and neither source.   

 
 

 
Figure 2  Best circuit of generation 0.   

 
Figure 3  Best circuit of generation 20.   

 
Figure 4  Best circuit of generation 106.   

 
 
 



 

 
Figure 5 Frequency domain behavior of the best circuit 
of generation 0.  

 

Figure 6 Frequency domain behavior of the best circuit 
of generation 20.  

 
Figure 7 Frequency domain behavior of the best circuit 
of generation 106.   

5. Preparatory Steps for the 
Changing Environment Problem 

The goal is to evolve the design for a circuit that changes its 
structure as the number of different sources increases.  
Initially the circuit classifies incoming signals into three 
categories.  Later the circuit undergoes modification so that 
it can successfully classify signals into four categories.   

During the first phase, the requirements for the desired 
circuit are similar to those for the tri-state frequency 
discriminator except that one of the desired outputs is 1/3 
volt (instead of 1/2 volt).  Specifically, the desired circuit is 
to produce an output of 1/3 volts (plus or minus 166 
millivolts) if the frequency of the incoming signal is within 
10% of 256 Hz, produce an output of 1 volt (plus or minus 
166 millivolts) if the frequency of the incoming signal is 
within 10% of 2,560 Hz, and otherwise produce an output 
of 0 volts (plus or minus 166 millivolts).    

After a circuit is evolved that performs the tri-state task, 
the requirements are changed to include an additional 
frequency band.  The run is continued with the existing 
population until a new circuit is evolved that performs the 
new task.  Specifically, during the second phase, the circuit 
is to produce an output of 2/3 volts (plus or minus 166 
millivolts) if the frequency of a signal is within 10% of 750 
Hz while still producing an output of 1/3, 1, and 0 volts 
(plus or minus 166 millivolts) for the original three signals.   

When genetic programming was called upon to adapt to 
a changing environment during the run and solve the four-
way source identification problem, we included 
automatically defined functions. Since the embryonic circuit 
has one modifiable wire (and hence one writing head), there 
is one result-producing branch in each circuit-constructing 
program tree.  Each program in the initial population of 

programs has a uniform architecture with no automatically 
defined functions. The number of automatically defined 
functions, if any, will emerge as a consequence of the 
evolutionary process using the architecture-altering 
operations.   

The set of potential new functions, Fpotential, is 
Fpotential = {ADF0, ADF1}. 

The set of potential new terminals, Tpotential, is 
Tpotential = {ARG0}.  

The architecture-altering operations change the function 
set, Fccs, for each construction-continuing subtree of the 
result-producing and function-defining branches, so  
Fccs = Fccs-initial  ≈  Fpotential. 

The architecture-altering operations change the terminal 
set, Taps-adf, for each arithmetic-performing subtree, so 
Taps-adf = Taps-initial ≈  Tpotential.   

During the first phase, there are only two frequencies of 
interest (256 Hz and 2,560 Hz); however, in the second 
phase, there are three frequencies of interest (750 Hz in 
addition to the two just mentioned).   

In the first phase, fitness is computed as follows.   
The procedure for each of the three points that are 

closest to the band located within 10% of 256 Hz is as 
follows: If the voltage equals the ideal value of 1/3 volts in 
this interval, the deviation is 0.0.  If the voltage is more than 
166 millivolts from 1/3 volts, the absolute value of the 
deviation from 1/3 volts is weighted by a factor of 20.  If 
the voltage is more than 166 millivolts from 1/3 volts, the 
absolute value of the deviation from 1/3 volts is weighted 
by a factor of 200.   

The procedure for each of the three points that are 
closest to the band located within 10% of 2,560 is as 
follows: If the voltage equals the ideal value of 1 volt in this 



 

interval, the deviation is 0.0.  If the voltage is within 166 
millivolts of 1 volt, the absolute value of the deviation from 
1 volt is weighted by a factor of 20.  If the voltage is more 
than 166 millivolts from 1 volt, the absolute value of the 
deviation from 1 volt is weighted by a factor of 200.   

The procedure for each of the remaining 95 points is as 
follows:  If the voltage equals the ideal value of 0 volts, the 
deviation is 0.0.  If the voltage is within 166 millivolts of 0 
volts, the absolute value of the deviation from 0 volts is 
weighted by a factor of 1.0.  If the voltage is more than 166 
millivolts from  0 volts, the absolute value of the deviation 
from 0 volt is weighted by a factor of 10.   

Greater weights (20 and 200) were used in the two 
passbands because they contain only 6 of the 101 points.   

In the second phase, there is a source with a frequency 
of around 750 Hz.   

The procedure for each of the three points that are 
closest to the band located within 10% of 750 Hz is as 
follows: If the voltage equals the ideal value of 2/3 volts in 
this interval, the deviation is 0.0.  If the voltage is more than 
166 millivolts from 2/3 volts, the absolute value of the 
deviation from 2/3 volts is weighted by a factor of 15.  If 
the voltage is more than 166 mV of 2/3 volts, the absolute 
value of the deviation from 2/3 volts is weighted by 150.    

In the second phase, the procedure for the six points 
nearest 256 Hz and 2,560 Hz are the same as above, except 
that the weight is 15 and 150 (instead of 20 and 200), 
respectively for the complaint and non-complaint points.  
Lesser weights (15 and 150) were used in the three 
passbands because 9 of the 101 points lie in the passbands.   

In the second phase, the procedure for each of the 
remaining 92 points is as follows:  If the voltage equals the 
ideal value of 0 volts, the deviation is 0.0.  If the voltage is 
within 166 millivolts of 0 volts, the absolute value of the 
deviation from 0 volts is weighted by a factor of 1.0.  If the 
voltage is more than 166 mV from 0 volts, the absolute 
value of the deviation from 0 is weighted by a factor of 10.   

The control parameters were the same as above, except 
for the following: The architecture-altering operations were 
used sparingly on each generation.  The percentage of 
operations on each generation after generation 5 were 
86.5% one-offspring crossovers; 10% reproductions; 1% 
mutations; 1% branch duplications; 0.5% branch deletions; 
and 1% branch creations.   Since we did not want to waste 
large amounts of computer time in early generations where 
only a few programs have any automatically functions at all, 
the percentage of operations on each generation before 
generation 6 was 78.0% one-offspring crossovers; 10% 
reproductions; 1% mutations; 5.0% branch duplications; 1% 
branch deletions; and 5.0% branch creations.  The 
maximum size, Hrpb, for the result-producing branch was 
600 points.  The maximum number of automatically defined 
functions was 2.  The number of arguments for each 
automatically defined function is 1.  The maximum size, 
Hadf, for each of the automatically defined functions, if 
any, is 300 points. 

6. Results with the Changing 
Environment 

The best circuit from generation 0 (figure 11) has a fitness 
of 200246.8 and 68 hits.  Figure 14 shows its behavior.   

The best circuit from generation 41 achieves a fitness of 
200015.5 and 100 hits.  It has 12 inductors, 13 capacitors, 
and two resistors (in addition to the source and load 
resistors in the embryo).   Because of the action of the 
architecture-altering operations, there is one automatically 
defined function in the program tree for this circuit.   ADF0 
is invoked three times by the result-producing branch.  
Figure 8 shows the best circuit from generation 41 before 
the three occurrences of ADF0 are expanded.  

 
Figure 8  Best circuit from generation 41 before 
expanding the three occurrences of ADF0.  ADF0 
develops differently in different contexts.  In figure 9, ADF0 
develops into one 326 nF capacitor in two instances (labeled  
ADF0-1 and ADF0-2 in figure 8).    

 
Figure 9  Result of developing ADF0-1 and ADF0-2 for 
the best circuit from generation 41.  As shown in figure 
10, ADF0 develops into two inductors and three capacitors 
in the third instance (labeled  ADF0-3 in figure 8).  

 
Figure 10  Result of developing ADF0 for the best circuit 
from generation 41. Figure 12 shows the best circuit from 
generation 41 after expanding the three occurrences of 
ADF0.  Figure 15 shows the behavior of the best circuit of 
generation 41 in the frequency domain.  Notice the 



 

emergence of two distinct peaks around 256 Hz and 2,560 
Hz.   

The best circuit (figure 13) from generation 85 achieves 
a fitness of 404.3.  It scores a total of 199 hits, including all 
101 hits possible from the first phase.  It has 23 inductors, 
20 capacitors, and five resistors (in addition to the source 
and load resistors in the embryo).   ADF0 is invoked twice.  
Figure 13 shows the best circuit from generation 85 after 
expanding its two automatically defined functions, ADF0 
and ADF1.  Figure 16 shows the behavior of the best circuit 
of generation 85 in the frequency domain.   

7. Computer Time 
The run for the three-way frequency discriminator described 
above took 43 hours and processed about 67,840,000 
individuals through the SPICE simulation and the other 
steps.  The 64 80 MHertz processors operate together at a 
combined rate of 5.12 giga Hertz, so that there were about 8 
∞ 1014 clock cycles in the run.  The run for the changing 
environment described above took about 48 hours (about 9 
∞ 1014 clock cycles).  We make the rough approximation 
of one clock cycle to one computer operation and round off 
both of the above numbers to 1015 operations.  

Noting that the human brain has about  1012 neurons 
operating at an approximately millisecond rate, we 
designate the gross quantity of 1015 operations as a brain 
second (1 bs) of computer operations.  Thus, both versions 
of the source identification problem used about one brain 
second (i.e., a petaflop of operations spread over two days, 
instead of one second) to produce a satisfactory circuit.  
However, as described in Enabling Technologies for 
Petaflops Computing (Sterling, Messina, and Smith 1995), 
the era of petaflops computing (in which 1015 operations 
are performed in one second) is imminent.   

Interestingly, six other problems solved with genetic 
programming and one other solved with another 
evolutionary algorithm have required approximately one 
brain second to produce a result that is arguably competitive 
with the result produced by humans on the same problem.  

Approximately 1 brain second was required to evolve a 
one-dimensional cellular automata rule for the majority 
classification task whose accuracy (82.326%) exceeds that 
of the original 1978 human-written Gacs-Kurdyumov-Levin 
(GKL) rule, all other known subsequent human-written 
rules, and all other  known rules produced by automated 
approaches for this problem (Andre, Bennett, and Koza 
1996).   

Also, the performance of four different versions of 
genetic programming (Koza 1994a, Koza and Andre 1996a, 
1996b) on the transmembrane segment identification 
problem is slightly superior to that of algorithms written by 
knowledgeable human investigators.  Approximately 1 
brain second was required to produce each of these four 
results.  

 
Figure 11  Best circuit from generation 0.  

 
Figure 12  Best circuit from generation 41 after 
expanding the three occurrences of ADF0.  

 
Figure 13  Best circuit from generation 85 after 
expanding its automatically defined functions.   

In addition, approximately 1 brain second of 
computational effort was required for the runs of genetic 
programming that successfully evolved protein motifs for 
detecting the D-E-A-D box family of proteins and for 
detecting the manganese superoxide dismutase family as 
well or better than the comparable human-written motifs 
found in the PROSITE database (Koza and Andre 1996c).   

Juille's discovery (1995), using evolutionary 
computation, of a sorting network for 13 items that was 
smaller than the best network in Knuth (1973) consumed 
approximately 0.8 brain seconds (Juillie 1997).     



 

 
Figure 14  Frequency domain behavior of the best 
circuit of generation 0.  

 
Figure 15 Frequency domain behavior of the best circuit 
of generation 41.   

 
Figure 16 Frequency domain behavior of the best circuit 
of generation 85.   8.

 Conclusion 

Genetic programming successfully evolved both the 
topology and the sizing for an analog electrical circuit that 
can perform source identification by correctly classifying an 
incoming analog electrical signal into three categories.  
Then, as the repertoire of sources was dynamically changed 
during the run, architecture-altering operations enabled 
genetic programming to adapt to a changed environment 
dynamically during a run.  Specifically, a three-way source 
identification circuit was evolved and then adapted, during 
the run, to successfully handle the additional source.  
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