
 
 
 
Automatic Programming of a Time-Optimal Robot Controller and an Analog 

Electrical Circuit to Implement the Robot Controller by Means of Genetic 
Programming 

 
 

John R. Koza 
Computer Science Dept. 

Stanford University 
Stanford, California 94305 

koza@cs.stanford.edu 
http://www-cs-

faculty.stanford.edu/~koza/ 

Forrest H Bennett III 
Visiting Scholar 

Computer Science Dept. 
Stanford University 

Stanford, California 94305 
forrest@evolute.com 

Martin A. Keane 
Martin Keane Inc. 
5733 West Grover 

Chicago, Illinois 60630 
makeane@ix.netcom.com 

David Andre 
Computer Science Division 

University of California 
Berkeley, California 

dandre@cs.berkeley.edu 

 
 

ABSTRACT 
Genetic programming is an 

automatic programming technique that 
evolves computer programs to solve, or 
approximately solve, problems.  This 
paper presents two examples in which 
genetic programming creates a 
computer program for controlling a 
robot so that the robot moves to a 
specified destination point in minimal 
time.  In the first approach, genetic 
programming evolves a computer 
program composed of ordinary 
arithmetic operations and conditional 
operations to implement a time-optimal 
control strategy.  In the second 
approach, genetic programming evolves 
the design of an analog electrical 
circuit consisting of transistors, diodes, 
resistors, and power supplies to 
implement a near-optimal control 
strategy.  

 

1. Introduction 
The solution of non-trivial control problems usually 
requires execution of momentarily disadvantageous 
actions in order to ultimately achieve the globally optimal 
result.  

This paper considers the problem of controlling the 
continuous movement of a robot such that the robot 
moves to an arbitrary destination point in minimal time.  

If the robot has a nonzero turning radius, this problem 
cannot be solved merely by executing a hill-climbing 
action that greedily improves the distance between the 
robot and the destination at every intermediate point 
along the robot's trajectory.  Instead, momentarily 
disadvantageous actions must be taken in the short term 
in order to achieve the long-term objective.   

Section 2 presents the mathematical solution for this 
time-optimal control problem.  Section 3 provides 
background on genetic programming.  Section 4 applies 
genetic programming to the problem of evolving a control 
strategy composed of ordinary arithmetic and conditional 
operations.  Section 5 applie genetic programming to 
evolve a design for an analog electrical circuit to 
implement a time-optimal control strategy.   

2. Statement of the Problem 
The problem is to create a strategy for controlling the 
movement of a robot so that the robot moves to an 
arbitrary destination point in minimal time.   

In figure 1, the robot is initially positioned at the 
origin (0, 0) of the coordinate system and is headed east 
(i.e., along the positive x axis).  The robot moves at a 
constant speed, A.    The robot's maximum turn angle 
Θmax defines a turning radius, R.   The two circles 
centered at (0, +R) and (0, –R) in the figure each have a 
radius equal to this turning radius.  The robot's movement 
is controlled by the turn angle Θ, which controls the 
robot's change in heading.  Angles are measured in 
radians counterclockwise from the positive x axis.   

Suppose the target point lies on the positive x axis, 
such as point (x1, y1)  in figure 1.  In this first case, the 
robot's time-optimal control strategy is to move straight 
ahead (east) along the positive x axis (i.e., with Θ = 0 
radians).  The time-optimal trajectory is the straight line 
between the origin and the target (x1, y1).   



 

Now suppose that the target point, such as (x3, y3), 
lies on the circumference of the upper circle of radius R.  
In this second case, the time-optimal control strategy is to 
turn with a heading equal to the maximum turn angle Θ = 
+Θmax.  The robot's time-optimal trajectory will be the 
portion of the circumference of the circle between the 
origin and the target point (x3, y3).  By symmetry, the 
strategy for any point on the lower circle, such as (x6, 
y6), is to turn at the maximum turn angle of Θ = –Θmax.  

x

y

(x ,y )1 1

(x 3 ,y 3 )

(0,–R)

R

(0,+R)

R

(x ,y )2 2

(x 4 ,y 4 )

(x 5 ,y 5 )
(x 6 ,y 6 )

(x 7 ,y 7 )

P

 
Figure 1  The robot navigation problem.   

The remaining points can be classified into two 
additional cases – outside or inside the circles.  The 
strategies employ portions of the robot trajectories used 
by one or both of the above strategies.  

In the third case, the target point is in the first or 
second quadrants but outside the upper circle.  For a point 
such as (x2, y2), there is a unique first point P on the 
circumference of the upper circle such that the tangent 
line to the upper circle at point P passes through (x2, y2).  
For this third case, the minimum-time control strategy for 
the robot is to turn at the maximum angle Θ = +Θmax 
until the robot reaches point P on the circumference of 
the upper circle and then to move straight ahead (i.e., 
with an angle of Θ = 0) to the target.  The robot's time-
optimal trajectory will be the portion of the circumference 
of the upper circle between the origin and P combined 
with the tangent line between P and the target (x2, y2).  
Note that this strategy works regardless of the location of 
(x2, y2) in the first or second quadrants and outside the 
upper circle (including, specifically, points in the second 
quadrant behind the robot).  By symmetry, a similar 
strategy (of first turning southeast at the maximum angle 
of Θ = –Θmax and then moving straight) works for target 
points outside the lower circle, such as (x5, y5).  Points 
on the negative x axis (i.e., directly behind the robot) can 
be reached equally well in this manner.  

In the fourth case, the target point is in the first or 
second quadrants but inside the upper circle.   None of 
the points inside the upper circle can be reached by 
pursuing a hill-climbing action that greedily improves the 
distance between the robot and the target at every 
intermediate point along the robot's trajectory.   Such 
points can only be reached by incurring a substantial 

temporary worsening of the distance between the robot 
and the target.  Figure 2 shows, for a point such as (x4, 
y4), that there is a unique point Q to the east of the origin 
on the circumference of the lower circle such that a 
unique circle is tangent to the lower circle at point Q and 
passes through (x4, y4) of the upper circle.   For this 
fourth case, the minimum-time control strategy for the 
robot is to turn at the maximum angle Θ = –Θmax (i.e., 
initially turning southeast thereby increasing the distance 
between the robot and the target) until the robot reaches 
point Q and then to reverse directions and turn at the 
maximum angle +Θmax until the robot reaches the target.  
The robot's time-optimal trajectory will be the portion of 
the circumference of the lower circle between the origin 
and Q and the portion of the circumference of the new 
tangent circle between Q and the target.   Note that this 
strategy works regardless of the location of (x4, y4), in 
the first or second quadrants and inside the upper circle 
(including, specifically, points behind the robot in the 
second quadrant).  By symmetry, a similar strategy (of 
first turning northeast at the maximum angle of Θ = 
+Θmax and then turning at the maximum angle of Θ = –
Θmax) works for target points inside the lower circle, 
such as (x7, y7).   

x

y

(x ,y )1 1

(x 3 ,y 3 )

(0,–R)

R

(0,+R)

R

(x ,y )2 2

(x 4 ,y 4 )

(x 5 ,y 5 )
(x 6 ,y 6 )

(x 7 ,y 7 )

Q

 
Figure 2  Target point inside upper circle.  

The above optimal control strategies and trajectories 
were described as if the state of the system were the 
robot's changing position relative to the ground.  In 
practice, the more natural viewpoint for a robot controller 
is the view from the robot.   In this view, whenever the 
robot travels in a particular direction, the coordinate 
system is immediately adjusted so that the robot is 
repositioned to the origin (0, 0) of the coordinate system 
with the robot heading due east.  In this view, the state of 
the system is the changing location of the target point.  

Each of the above four optimal control strategies can 
be restated in accordance with this new view from the 
robot.  For the first case, the strategy of moving straight 
ahead has the effect of moving the target point west along 
the positive x axis until it reaches the robot.  For the 
second case, the strategy of turning with an angle Θmax 
has the effect of moving the target point around the 
circumference of the circle until it reaches the robot.   For 
the third case, the strategy has the effect of first rotating 



 

the target to the positive x axis and then moving the target 
west along the positive x axis until it reaches the robot.  
For the fourth case, the strategy has the effect of first 
rotating the target away from the robot to the 
circumference of the circle and then moving the target 
point around the circle until it reaches the robot.  

The robot has a constant speed, A, of 200 inches per 
minute and maximum performance rate of turn 
corresponding to a turn angle of 0.197 radians.  The robot 
is located at the origin of a coordinate system 
representing a world that extends 4 inches in each of the 
four directions.   A total of 80 time steps of 0.001 minutes 
each are used to simulate the robot's trajectory.  The total 
simulation time of 0.080 minutes permits a trajectory 
equivalent to the robot moving twice across its world of 
64 square inches.   

The fitness of a controller was evaluated using 72 
randomly chosen fitness cases each representing a 
different target point.   Fitness was the sum, over the 72 
fitness cases, of the travel times.  If the robot came within 
a capture radius of 0.28 inches of its target point before 
the end of the 80 time steps allowed for a particular 
fitness case, the contribution to fitness for that fitness 
case was the actual travel time.  However, if the robot 
failed to come within the capture radius during the 80 
time steps, the contribution to fitness for that fitness case 
was 0.160 minutes (double the worst possible actual 
travel time).   

Calculating fitness requires up to 5,760 executions (72 
∞ 80) of each individual program.  For consistency with 
the later section on designing an electrical circuit where 
computer time is a major issue, the world of 64 square 
inches was discretized into a 40 ∞ 40 grid of 1,600 
discrete squares (with each square being 0.2 ∞ 0.2 
inches).  A table was computed for each individual 
program in the population giving the value of the control 
variable Θ as if the target point were in each of the 1,600 
squares and the robot were at (0,0).  When an individual 
program was executed for a particular one of the 80 time 
steps of a particular one of the 72 fitness cases, the state 
of the system was computed from the above state-
transition equations using floating-point arithmetic.  
However, the value of the control variable, Θ, was 
obtained from the table as if the target were located in the 
center of its square.   In addition, if the robot flew outside 
of its world of 64 square inches or if the target was 
moved out of the world relative to the robot's frame of 
reference, the simulation was terminated and that fitness 
case was assigned the penalty value of fitness of 0.160 
minutes.   

3. Genetic Programming 
John Holland's pioneering Adaptation in Natural and 
Artificial Systems (1975) described how an analog of the 

evolutionary process can be applied to solving problems 
using what is now called the genetic algorithm.   

The book  Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection (Koza 1992) describes an extension of the 
genetic algorithm in which the genetic population 
consists of computer programs.  See also Koza and Rice 
1992.  Genetic programming starts with a primordial ooze 
of randomly generated computer programs composed of 
the available programmatic ingredients and then applies 
the Darwinian principle of survival of the fittest and an 
analog of the naturally-occurring genetic operation of 
crossover (sexual recombination) to breed a new (and 
often improved) population of programs.   

No approach to automated programming is likely to 
be successful on non-trivial problems unless it provides 
some hierarchical mechanism to exploit, by reuse and 
parameterization, the regularities, symmetries, 
homogeneities, similarities, patterns, and modularities 
inherent in problem environments.  Subroutines do this in 
ordinary computer programs.  Accordingly, Genetic 
Programming II: Automatic Discovery of Reusable 
Programs (Koza 1994a, 1994b) describes how to evolve 
a multi-part program consisting of a main result-
producing branch and one or more reusable, 
parameterized, hierarchically-called function-defining 
branches (called automatically defined functions).   

When automatically defined functions are used, it is 
necessary to determine the architecture of the yet-to-be-
evolved programs.  The specification of the architecture 
consists of (a) the number of function-defining branches 
in the overall program, (b) the number of arguments (if 
any) possessed by each function-defining branch, and (c) 
if there is more than one function-defining branch, the 
nature of the hierarchical references (if any) allowed 
between the function-defining branches.  This 
architectural selection can be automated by architecture-
altering operations (Koza 1994c) that enable genetic 
programming to add and delete automatically defined 
functions and to add arguments and delete arguments of 
automatically defined functions dynamically during the 
run.   

Recent research on genetic programming is described 
in Kinnear (1994), Angeline and Kinnear (1996), Koza, 
Goldberg, Fogel, and Riolo (1996), and Koza et al. 
(1997).   

4. Solution using Arithmetic and 
Conditional Operations 

This section presents the preparatory steps and results for 
applying genetic programming to the problem of evolving 
a time-optimal robot control strategy composed of 
ordinary arithmetic and conditional operations.   

Before applying genetic programming to a problem, 
the user must perform five major preparatory steps, 



 

namely (1) identifying the terminals of the to-be-evolved 
programs, (2) identifying the primitive functions 
contained in the to-be-evolved programs, (3) creating the 
fitness measure, (4) choosing certain control parameters, 
and (5) determining the termination criterion and method 
of result designation.   

The terminal set for the one result-producing branch, 
T of a program in the population for the problem is 
T = {X, Y}.   

The function set, F is 
F= {+, –, *, %, IFLTE, ←}. 
The protected division function % takes two arguments 
and returns one when division by 0 is attempted 
(including 0 divided by 0), and, otherwise, returns the 
normal quotient. The four-argument conditional 
branching operator IFLTE evaluates and returns its third 
argument if its first argument is less than its second 
argument, but otherwise evaluates and returns its fourth 
argument.   ← represents floating-point random constants 
between –1.000 and +1.000.   

When a program is executed, it produces a numeric 
value which the wrapper (output interface) transforms 
into the turn angle Θ by interpreting the numeric value 
returned by the program modulo 2π and limiting its 
absolute value to be less than or equal to Θ max.   

Fitness is measured over 72 fitness cases consisting of 
72 random destinations (xi , yi) for the robot.  The xi and 
yi coordinate of each destination lies between –4.0 and 
+4.0 inches.  We regard the robot as having arrived at the 
designation when it gets to within a capture radius of 0.28 
inches of its destination.  The fitness is the sum, over the 
72 destinations, of the time for the robot to reach its 
destination.  A smaller sum is better.   

If the robot has not arrived at its destination within the 
available 80 time steps (0.080 minutes), the detrimental 
contribution to fitness for that particular fitness case is 
double the worst time for a single fitness case (i.e., 0.160 
minutes).  The worst value of fitness is 11.52 minutes and 
it occurs when all 72 fitness cases time out in this 
manner.   In comparison, the optimal value of fitness 
(without the effect of the discretization of the 40 ∞ 40 
table) for this problem is known (from Clements 1990) to 
be 1.518 minutes (an average of about 21 time steps of 
0.001 minute each for each of the 72 fitness cases).  

The number of hits is defined as the number of fitness 
cases for which the robot arrives at its destination within 
the available 80 time steps (i.e., does not time out).   

Since there is one output of the to-be-evolved 
computer program, there is one result-producing branch 
in each program tree.  Accordingly, each program in the 
initial population of programs (generation 0) has a 
uniform architecture with no automatically defined 
functions.   After generation 0, the number of 
automatically defined functions, if any, will emerge as a 

consequence of the architecture-altering operations (Koza 
1994c).   

The population size was 40,000.  The control 
parameters were the same as those in Koza 1994a, except 
(1) The percentage of operations on each generation after 
generation 5 was 86.5% one-offspring crossovers; 10% 
reproductions; 1% mutations; 1% branch duplications; 
0.5% branch deletions; and 1% branch creations.  The 
percentage of operations before generation 6 was 78% 
one-offspring crossovers; 10% reproductions; 1% 
mutations; 5% branch duplications; and 1% branch 
deletions.  (2) The maximum size, Hrpb, for the result-
producing branch is 400 points.  (3) The maximum 
number of automatically defined functions is 2.  (4) The 
maximum number of arguments for each automatically 
defined function is two.  (5) The maximum size, Hadf, for 
each automatically defined function is 200 points.  

This problem was run on a medium-grained parallel 
Parsytec computer system consisting of four 80 MHz 
Power PC 601 processors arranged in a loop with a host 
PC Pentium type computer.  The distributed genetic 
algorithm was used with a population size of Q =  10,000 
at each of the D = 4 demes.  On each generation, four 
boatloads of emigrants, each consisting of B = 2% (the 
migration rate) of the node's subpopulation (selected on 
the basis of fitness) were dispatched to each of the four 
toroidally adjacent nodes (Andre and Koza 1996).  

4.1. Results 
On generation 0 of one run, the best program in the 
population achieves a fitness of 3.01 and scores 61 hits 
(out of 72).   This program (like all programs of 
generation 0) has one result-producing branch and no 
automatically defined functions.   

4.1.1. Emergence of Automatically Defined 
Functions 

In subsequent generations, the programs became more 
complex and their fitness improved.  The first pace-
setting program containing an automatically defined 
function appeared in generation 6.  This program 
achieves a fitness of 2.03 and scores 69 hits.  The 
automatically defined function is called only once by the 
result-producing branch.   

4.1.2. Emergence of Reuse 
Numerous pace-setting programs with automatically 
defined functions appear in subsequent generations; 
however, the first pace-setting program containing a 
reused automatically defined function appeared in 
generation 15.  This program achieves a fitness of 1.520 
and scores 72 hits and calls its ADF0 twice.  As it 
happens, this program is also the first pace-setting 
program with multiple automatically defined functions; 
however, its ADF1 is called only once and performs no 
useful work. 



 

4.1.3. Emergence of Multiple Use of Multiple 
Automatically Defined Functions 

The first pace-setting program containing multiple uses of 
multiple automatically defined functions appears in 
generation 25.   This program achieves a fitness of 1.454 
and scores 72 hits and calls its ADF0 twice and its ADF1 
twice.  This fitness slightly exceeds the known optimum 
value because of the granularity of the 40 ∞ 40 grid.   

4.1.4. Best-of-Run Individual 
The best-of-run program appears in generation 70.  This 
program achieves a fitness of 1.366 and scores 72 hits.  It 
calls its lone one-argument automatically defined 
function three times.  The result-producing branch calls 
ADF0 four times and ADF1 five times.  Figure 3 shows 
the trajectory for one of the fitness cases  in the third 
quadrant but outside the lower circle, namely the point (–
2.58, –2.54).  

-2.5

-2

-1.5

-1

-0.5

0
-3 -2 -1 0 1

 
Figure 3  Evolved time-optimal trajectory for 
fitness case that is outside lower circle.  

Figure 4 shows the trajectory for one of the fitness 
cases in the fourth quadrant but inside the lower circle, 
namely the point (0.409, –0.892).   As can be seen, the 
trajectory first veers away from the target point, then 
follows a circular trajectory to the target.   

-2

-1.5

-1

-0.5

0

0.5

0 1 2 3

 
Figure 4  Evolved time-optimal trajectory for 
fitness case that is outside lower circle.  

5. Solution in the Form of an Analog 
Electrical Circuit 

This section presents the preparatory steps and results for 
the problem of evolving the design of an analog electrical 
circuit to implement a time-optimal robot controller.  

The design of analog circuits is amenable to 
automation. As Aaserud and Nielsen (1995) observe,  

"Analog designers are few and far between.  In 
contrast to digital design, most of the analog circuits 
are still handcrafted by the experts or so-called 'zahs' 
of analog design.  The design process is 
characterized by a combination of experience and 
intuition and requires a thorough knowledge of the 
process characteristics and the detailed 
specifications of the actual product.  

"Analog circuit design is known to be a 
knowledge-intensive, multiphase, iterative task, 
which usually stretches over a significant period of 
time and is performed by designers with a large 
portfolio of skills.  It is therefore considered by 
many to be a form of art rather than a science."  
Before applying genetic programming to a problem of 

circuit synthesis, the user must (in addition to performing 
the five major preparatory steps described previously) 
identify an embryonic circuit that is suitable for the 
problem and specify the method of determining the 
architecture of the to-be-evolved programs.    

The two inputs to the circuit necessary to solve the 
problem consist of the current location (expressed as two 
voltages) of the target point in the robot's frame of 
reference.  The output is interpreted by the wrapper 
(output interface) to be the robot's turn angle Θ.   Figure 5 
shows a two-input, one-output embryonic circuit.   

 
Figure 5   Two-input, one-output embryo.   

Since the embryonic circuit has three modifiable wires 
(Z1, Z2, and Z3), there are three writing heads and three 
result-producing branches (RPB0, RPB1, RPB2) in each 
circuit-constructing program tree.  The number of 
automatically defined functions, if any, will emerge as a 
consequence of the evolutionary process using the 
architecture-altering operations (Koza 1994c). Each 
program in the initial population of programs has a 
uniform architecture with no automatically defined 
functions (i.e., three result-producing branches).    



 

For this problem, the function set, Fccs, for each 
construction-continuing subtree is 
Fccs = {R, SERIES, PSS, PSL, FLIP, NOP, 

NEW_T_GND_0, NEW_T_GND_1, 
NEW_T_POS_0,  NEW_T_POS_1, 
NEW_T_NEG_0, NEW_T_NEG_1, 
PAIR_CONNECT_0, PAIR_CONNECT_1, 
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ..., 
Q_3_NPN11, Q_3_PNP0, ..., Q_3_PNP11, 
Q_POS_COLL_NPN, Q_GND_EMIT_NPN, 
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, 
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP} 

Space does not permit a detailed description of each 
component-creating and connection-modifying function. 
See Koza, Andre, Bennett, and Keane (1996), and Koza, 
Bennett, Andre, and Keane (1996a, 1996b, 1997) and 
Koza, Bennett, Lohn, Dunlap, Andre, and Keane (1997)  

The terminal set, Tccs, for the construction-continuing 
subtree is 
Tccs = {END, SAFE_CUT}.   

The function set, Faps, for each arithmetic-performing 
subtree is, 
Faps = {+, -}.  

The terminal set, Taps, for each arithmetic-performing 
subtree is 
Taps = {←},  
where ← represents floating-point random constants from 
–1.0 to +1.0.   

The fitness cases, the fitness measure, the 40 ∞ 40 
table, and the wrapper are the same as in the previous 
section.  The fitness calculation starts by executing 
individual circuit-constructing program tree.  The 
component-creating and connection-modifying functions 
in the program tree are applied to the embryonic circuit to 
create a fully developed circuit.  For this problem, the 
voltage VOUT is probed at node 5.  The SPICE simulator 
(Quarles et al. 1994) is requested to perform a nested DC 
sweep.  The nested DC sweep simulates the DC behavior 
of a circuit with two inputs.  A nested DC sweep 
resembles a nested pair of FOR loops in a computer 
program in that both of the loops have a starting value for 
the voltage, an increment, and an ending value for the 
voltage.   For each voltage value in the outer loop, the 
inner loop simulates the behavior of the circuit by 
stepping through its range of voltages.   Specifically, the 
starting value for voltage is –4 volts, the step size is 0.2 
volts, and the ending value is +4 volts.  These values 
correspond to the dimensions of the robot's world of 64 
square inches extending 4 inches in each of the four 
directions from the origin of a coordinate system (i.e., 1 
volt equals 1 inch).   

 The population size, M, was 640,000.   The 
maximum size, Hrpb, for each of the three result-
producing branches is 300 points. The maximum number 
of automatically defined functions is 2.  The number of 

arguments for each automatically defined function is 1.  
The maximum size, Hadf, for each of the automatically 
defined functions, if any, is 300 points.  

5.1. Results 
The best circuit from generation 0 (figure 6) scores 61 
hits (out of 72) and achieves a fitness of 3.005 and has 
seven transistors, one diode, and one resistor (not 
counting the three resistors of the embryo).   

The best circuit (figure 7) from generation 17 scores 
69 hits and achieves a fitness of 2.06.  The best-of-run 
circuit (figure 8) appeared in generation 31, scores 72 
hits, and achieves a near-optimal fitness of 1.541.  This 
circuit has 10 transistors and four resistors.  

6.  Conclusion 
This paper demonstrated the creation, by genetic 
programming, of a computer program composed of 
ordinary arithmetic operations and conditional operations 
for controlling a robot so that the robot moves to a 
specified destination point in minimal time.  In addition, 
genetic programming evolved the design of an analog 
electrical circuit consisting of transistors, diodes, 
resistors, and power supplies that implements a near-
optimal strategy.  

References 
Aaserud, O. and Nielsen, I. Ring.  1995. Trends in current 

analog design: A panel debate.  Analog Integrated 
Circuits and Signal Processing. 7(1) 5-9.  

Andre, David and Koza, John R.  1996.  Parallel genetic 
programming: A scalable implementation using the 
transputer architecture.  In Angeline, P.  J.  and 
Kinnear, K.  E.  Jr.  (editors).  1996.  Advances in 
Genetic Programming 2.  Cambridge: MIT Press.   

Angeline, Peter J.  and Kinnear, Kenneth E.  Jr.  (editors).  
1996.  Advances in Genetic Programming 2.  
Cambridge, MA: The MIT Press.   

Clements, John C.  1990.  Minimum-time turn trajectories 
to fly-to points.  Optimal Control Applications and 
Methods.  11. Pages 39-50. 

Holland, John H.  1975.  Adaptation in Natural and 
Artificial Systems.  Ann Arbor, MI: University of 
Michigan Press.   

Kinnear, Kenneth E.  Jr.  (editor).  1994.  Advances in 
Genetic Programming.  Cambridge, MA: MIT Press. 

Koza, John R.  1992.  Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection.  Cambridge, MA: MIT Press. 

Koza, John R.  1994a.  Genetic Programming II: 
Automatic Discovery of Reusable Programs.  
Cambridge, MA: MIT Press. 

Koza, John R.  1994b.  Genetic Programming II 
Videotape: The Next Generation.  Cambridge, MA: 
MIT Press.  



 

Koza, John R.  1994c.  Architecture-altering operations 
for evolving the architecture of a multi-part program 
in genetic programming. Stanford University 
Computer Science Department technical report STAN-
CS-TR-94-1528. October 21, 1994.  

Koza, John R., Andre, David, Bennett III, Forrest H, and 
Keane, Martin A.  1996.  Use of automatically defined 
functions and architecture-altering operations in 
automated circuit synthesis using genetic 
programming.  In Koza, John R., Goldberg, David E., 
Fogel, David B., and Riolo, Rick L.  (editors).  1996.  
Genetic Programming 1996: Proceedings of the First 
Annual Conference, July 28-31, 1996, Stanford 
University.  Cambridge, MA: MIT Press.   

Koza, John R., Bennett III, Forrest H, Andre, David, and 
Keane, Martin A.  1996a.  Four problems for which a 
computer program evolved by genetic programming is 
competitive with human performance.  Proceedings of 
the 1996 IEEE International Conference on 
Evolutionary Computation.  IEEE Press.  Pages 1–10.   

Koza, John R., Bennett III, Forrest H, Andre, David, and 
Keane, Martin A.  1996b.  Automated WYWIWYG 
design of both the topology and component values of 
analog electrical circuits using genetic programming.  
In Koza, John R., Goldberg, David E., Fogel, David 
B., and Riolo, Rick L.  (editors).  1996.  Genetic 
Programming 1996: Proceedings of the First Annual 
Conference, July 28-31, 1996, Stanford University.  
Cambridge, MA: MIT Press.   

Koza, John R., Bennett III, Forrest H, Andre, David, and 
Keane, Martin A.  1997. Evolution using genetic 
programming of a low-distortion 96 Decibel 
operational amplifier.  Proceedings of the 1997 ACM 
Symposium on Applied Computing,  New York: 
Association for Computing Machinery.  207 - 216.  

Koza, John R., Bennett III, Forrest H, Lohn, Jason, 
Dunlap, Frank, Andre, David, and Keane, Martin A.  
1997.  Automated synthesis of computational circuits 
using genetic programming.  Proceedings of the 1997 
IEEE Conference on Evolutionary Computation.  
Piscataway, NJ: IEEE Press.  447–452.   

Koza, John R., Goldberg, David E., Fogel, David B., and 
Riolo, Rick L.  (editors).  1996.  Genetic Programming 
1996: Proceedings of the First Annual Conference, 
July 28-31, 1996, Stanford University.  Cambridge, 
MA: The MIT Press.   

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, 
David B., Garzon, Max, Iba, Hitoshi, and Riolo, Rick 
L. (editors). 1997. Genetic Programming 1997: 
Proceedings of the Second Annual Conference, July 
13–16, 1997, Stanford University. San Francisco, CA: 
Morgan Kaufmann.  

Koza, John R., and Rice, James P.  1992.  Genetic 
Programming: The Movie.  Cambridge, MA: MIT 
Press.   

Quarles, Thomas, Newton, A.  R., Pederson, D.  O., and 
Sangiovanni-Vincentelli, A.  1994.  SPICE 3 Version 
3F5 User's Manual.  Department of Electrical 
Engineering and Computer Science, University of 
California, Berkeley, CA. March 1994.  

 
Figure 6  Best circuit of generation 0.    

 
Figure 7  Best circuit of generation 17.   



 

 
Figure 8  Best-of-run circuit.    

 


