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Abstract:  This paper demonstrates that a design for a low-distortion high-gain 96 
decibel (64,860 -to-1) operational amplifier (including both circuit topology and 
component sizing) can be evolved using genetic programming.    

1.  Introduction 
The problem of designing complex structures can be viewed as a search of the space of 
possible structures for a structure that satisfies the user's requirements and constraints.  
In nature, complex structures are designed by means of evolution and natural selection.   

The possibility of applying the techniques of evolutionary computation to design 
problems has been recognized by the pioneering work on applying evolutionary 
programming (EP) to the design of finite automata (Fogel, Owens, and Walsh 1966) 
and on applying evolution strategies (ES) to airfoil design (Rechenberg 1973).  See 
Fogel, Angeline, and Baeck 1996 for recent work on evolutionary programming and 
Davidor, Schwefel, Maenner 1994 for recent work on evolutionary strategies.  

Holland (1975) described how an analog of the naturally-occurring evolutionary 
process can be applied to solving scientific and engineering problems using what is 
now called the genetic algorithm (GA).  Koza (1992) described an extension of 



Holland's genetic algorithm in which the population consists of computer programs.  
See also Koza and Rice 1992.  Koza (1994a, 1994b) describes a way to evolve multi-
part programs consisting of a main program and one or more reusable, parameterized, 
hierarchically-called subprograms (called automatically defined functions).  
Architecture-altering operations provide a way to automatically determine the number 
of such subprograms, the number of arguments that each possesses, and the nature of 
the hierarchical references, if any, among such subprograms (Koza 1995).  Recent 
research papers on genetic programming can be found in Kinnear (1994), Angeline 
and Kinnear (1996), and Koza, Goldberg, Fogel, and Riolo (1996).   

The problem of circuit synthesis involves designing an electrical circuit that 
satisfies user-specified design goals.  The design of analog circuits and mixed analog-
digital circuits has not proved to be amenable to automation (Aaserud and Nielsen 
1995).  Thompson (1996) used a genetic algorithm to evolve a frequency discriminator 
on a Xilinx 6216 reconfigurable gate array in analog mode.  CMOS operational 
amplifier (op amp) circuits have been designed using a version of the genetic 
algorithm (Kruiskamp and Leenaerts 1995); however, the topology of each op amp 
was one of 24 topologies based on the conventional human-designed stages of an op 
amp.  Gruau's cellular encoding (1996) is an innovative technique in which genetic 
programming is used to concurrently evolve the architecture, weights, thresholds, and 
biases of neurons in a neural network.   

This paper demonstrates that the design for analog electrical circuits can be 
evolved using genetic programming.  Specifically, designs will be evolved for a low-
distortion 96 decibel (dB) op amp (including both the circuit topology and component 
sizing) as well as several other circuits.  The problem-specific information that the user 
must supply in order to apply genetic programming to a problem of analog circuit 
synthesis is minimal; it primarily consists of a fitness measure for the operating 
characteristics of the desired circuit.  The user must also specify certain additional 
basic information such as the number of inputs and outputs of the desired circuit, the 
set of parts that are to be available to the circuit, and the repertoire of circuit-
constructing functions.   

2. Development of Circuits from an Embryonic Circuit Using 
Circuit-Constructing Program Trees 

Genetic programming can be applied to circuits if a mapping is established between 
the kind of rooted, point-labeled trees with ordered branches found in genetic 
programming and the line-labeled cyclic graphs germane to circuits.   

The principles of developmental biology suggest a way to map program trees into 
circuits.  The starting point of the growth process is a very simple embryonic electrical 
circuit.  The embryonic circuit contains certain fixed parts appropriate to the problem 
at hand and certain wires that are capable of subsequent modification.  An electrical 
circuit is progressively developed by applying the functions in a circuit-constructing 
program tree to the modifiable wires of the embryonic circuit (and, later, to both the 
modifiable wires and other components of the successor circuits).   

The functions in the circuit-constructing program trees include (1) connection-
modifying functions that modify the topology of the circuit, (2) component-creating 



functions that insert components into the circuit, (3) arithmetic-performing functions 
that appear in arithmetic-performing subtrees as argument(s) to the component-
creating functions and that specify the numerical value of the component, and possibly 
(4) calls to automatically defined functions (if used).   

Each branch of the program tree is created in accordance with a constrained 
syntactic structure.  Branches are composed from construction-continuing subtrees that 
continue the developmental process and arithmetic-performing subtrees that determine 
the numerical value of components.  Connection-modifying functions have one or 
more construction-continuing subtrees, but no arithmetic-performing subtrees.  
Component-creating functions have one construction-continuing subtree and typically 
have one arithmetic-performing subtree.  This constrained syntactic structure is 
preserved by using structure-preserving crossover with point typing (Koza 1994a).   

The developmental process for converting a program tree into an electrical circuit 
begins with an embryonic circuit. 

Figure 1 shows a one-input, one-output embryonic circuit that serves as a test 
harness for evolving op amp circuits.  VSOURCE is the input signal.  VOUT is the 
output signal.  There is a fixed 100 Ohm load resistor RLOAD and a fixed 100 Ohm 
source resistor RSOURCE.  Because we are evolving an amplifier, there is also a 
fixed 100,000,000 Ohm feedback resistor RFEEDBACK, a fixed 100 Ohm balancing 
source resistor RBALANCE_SOURCE, and a fixed 100,000,000 Ohm balancing 
feedback resistor RBALANCE_FEEDBACK.  This arrangement limits the possible 
amplification of the evolving circuit to 1,000,000-to-1 ratio (120 dB).   

 
Figure 1  Feedback embryo for an amplifier. All of the above elements (except Z0, Z1, 

and Z2) are fixed and not modified during the developmental process.  At the 
beginning of the developmental process, there is a writing head pointing to 
(highlighting) each of the three modifiable wires.  All development occurs at wires or 
components to which a writing head points.   

Each circuit-constructing program tree in the population contains component-
creating functions and connection-modifying functions.  Each connection-modifying 
function in a program tree points to an associated highlighted component and modifies 
the topology of the developing circuit.  Each branch of the program tree is created in 



accordance with a constrained syntactic structure.  Branches are composed from 
construction-continuing subtrees that continue the developmental process and 
arithmetic-performing subtrees that determine the numerical value of components.  
Connection-modifying functions have one or more construction-continuing subtrees, 
but no arithmetic-performing subtrees.  Component-creating functions have one 
construction-continuing subtree and typically have one arithmetic-performing subtree.  
This constrained syntactic structure is preserved by using structure-preserving 
crossover with point typing.   

Component-creating functions insert a component into the developing circuit and 
assigns component value(s) to the component.  Each component-creating function has 
a writing head that points to an associated highlighted component in the developing 
circuit and modifies the highlighted component in a specified way. The construction-
continuing subtree of each component-creating function points to a successor function 
or terminal in the circuit-constructing program tree.   

The arithmetic-performing subtree of a component-creating function consists of a 
composition of arithmetic functions (addition and subtraction) and random constants 
(in the range –1.000 to +1.000) and specify the numerical value of a component.  

 Space does not permit a detailed description of each component-creating and 
connection-modifying function.  For details, see Koza, Andre, Bennett, and Keane 
(1996), and Koza, Bennett, Andre, and Keane (1996a, 1996b, 1996c, 1996d).   

3. Preparatory Steps 
Our goal is to evolve the design of a high-gain amplifier.  Before applying genetic 
programming to a problem of circuit synthesis, the user must perform seven major 
preparatory steps, namely (1) identifying the embryonic circuit that is suitable for the 
problem,  (2) determining the architecture of the overall circuit-constructing program 
trees, (3) identifying the terminals of the to-be-evolved programs, (4) identifying the 
primitive functions contained in the to-be-evolved programs, (5) creating the fitness 
measure, (6) choosing certain control parameters (notably population size and the 
maximum number of generations to be run), and (7) determining the termination 
criterion and method of result designation.   

The feedback embryo for the one-input, one-output amplifier circuit of figure 1 is 
suitable for this problem.   

The embryonic circuit has a writing head associated with each of the three result-
producing branches and there are three result-producing branches in each program 
tree. The number of automatically defined functions, if any, will emerge as a 
consequence of the evolutionary process using the architecture-altering operations.  
Each program in the initial population of programs has a uniform architecture with no 
automatically defined functions (i.e., three result-producing branches).   

The terminal sets are identical for all three result-producing branches of the 
program trees.  The function sets are identical for all three result-producing branches.  

The initial function set, Fccs-initial, for each construction-continuing subtree is 
Fccs-initial = {R, C, SERIES, PSS, PSL, FLIP, NOP, NEW_T_GND_0, 

NEW_T_GND_1, NEW_T_POS_0,  NEW_T_POS_1, NEW_T_NEG_0, 
NEW_T_NEG_1, PAIR_CONNECT_0, PAIR_CONNECT_1, Q_D_NPN, 



Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11, Q_3_PNP0, ..., Q_3_PNP11, 
Q_POS_COLL_NPN, Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN, 
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, Q_NEG_COLL_PNP} 

For the npn transistors, the Q2N3904 model was used.  For pnp transistors, the 
Q2N3906 model was used.  

The initial terminal set, Tccs-initial, for each construction-continuing subtree is 
Tccs-initial = {END, SAFE_CUT}.   

The set of potential new functions, Fpotential, is 
Fpotential = {ADF0, ADF1, ADF2, ADF3}.  

The set of potential new terminals, Tpotential, is 
Tpotential = {ARG0}.  

The architecture-altering operations change the function set, Fccs for each 
construction-continuing subtree of all three result-producing branches and the 
function-defining branches, so  
Fccs = Fccs-initial  ≈  Fpotential. 

The terminal set, Taps, for each arithmetic-performing subtree consists of 
Taps = {←}, 
where ← represents floating-point random constants from –1.0 to +1.0.   

The function set, Faps, for each arithmetic-performing subtree is, 
Faps = {+, -}. 

The evaluation of fitness for each individual circuit-constructing program tree in 
the population begins with its execution.  This execution applies the functions in the 
program tree to the embryonic circuit, thereby developing the embryonic circuit into a 
fully developed circuit.  A netlist describing the fully developed circuit is then created.  
The netlist identifies each component of the circuit, the nodes to which that component 
is connected, and the value of that component.  Each circuit is then simulated to 
determine its behavior.  The 217,000-line SPICE (Simulation Program with Integrated 
Circuit Emphasis) simulation program (Quarles et al. 1994) was modified to run as a 
submodule within the genetic programming system. 

The starting point for evaluating the fitness of a circuit is its response to a DC 
input. An ideal inverting amplifier circuit would receive a DC input, invert it, and 
multiply it by the amplification factor.  A circuit is flawed to the extent that it does not 
achieve the desired amplification; to the extent that the output signal is not centered on 
0 Volts; and to the extent that the DC response is not linear.   

Thus, for this problem, we used a fitness measure based on SPICE's DC sweep.  
The DC sweep analysis measures the DC response of the circuit at several different 
DC input voltages.  The circuits were analyzed with a 5 point DC sweep ranging from 
–10 millvolts to +10 mV, with input points at –10 mV, –5 mV, 0 mV, +5 mV, and +10 
mV.  SPICE then produced the circuit's output for each of these five DC voltages.   

Fitness is then calculated from four penalties (i.e., an amplification penalty, a bias 
penalty, and two non-linearity penalties) derived from these five DC output values.   



First, the amplification factor of the circuit is measured by the slope of the straight 
line between the output for –10 mV and the output for +10 mV (i.e., between the 
outputs for the endpoints of the DC sweep).  If the amplification factor is less than the 
maximum allowed by the feedback resistor (120 dB for this problem), there is a 
penalty equal to the shortfall in amplification.   

Second, the bias is computed using the DC output associated with a DC input of 0 
Volts.  The penalty is equal to the bias times a weight.  For this problem, a weight of 
0.1 is used.   

Third, the linearity is measured by the deviation between the slope of each of two 
line segments and the overall amplification factor of the circuit.   The first line 
segment spans the output values associated with inputs of –10 mv through –5 mv.  The 
second line segment spans the output values associated with inputs of +5 mv and 
through +10 mv.  The penalty for each of these line segments is equal to the absolute 
value of the difference in slope between the respective line segment and amplification 
factor of the circuit. 

Many of the circuits that are created in the initial random population and many that 
are created by the crossover and mutation operations cannot be simulated by SPICE.  
Such circuits are assigned a high penalty value of fitness (108).   

The population size, M, was 640,000.  The architecture-altering operations are used 
sparingly on each generation.  The percentage of operations on each generation after 
generation 5 was 86.5% one-offspring crossovers; 10% reproductions; 1% mutations; 
1% branch duplications; 0% argument duplications; 0.5% branch deletions; 0.0% 
argument deletions; 1% branch creations; and 0% argument creations.  Since we do 
not want to waste large amounts of computer time in early generations where only a 
few programs have any automatically functions at all, the percentage of operations on 
each generation before generation 6 was 78.0% one-offspring crossovers; 10% 
reproductions; 1% mutations; 5.0% branch duplications; 1% branch deletions; 5.0% 
branch creations; and 0% argument creations.   

The maximum size, Hrpb, for each of the three result-producing branches in each 
overall program is 300 points. The maximum number of automatically defined 
functions is 4.  The number of arguments for each automatically defined function is 
one. The maximum size, Hadf, for each of the automatically defined functions, if any, 
is 200 points.  The other parameters for controlling the runs of genetic programming 
were the default values specified in Koza 1994a (appendix D). 

This problem was run on a medium-grained parallel Parsytec computer system 
consisting of 64 80 MHz Power PC 601 processors arranged in a toroidal mesh with a 
host PC Pentium type computer.  The distributed genetic algorithm was used with a 
population size of Q =  10,000 at each of the D = 64 demes.  On each generation, four 
boatloads of emigrants, each consisting of B = 2% (the migration rate) of the node's 
subpopulation (selected on the basis of fitness) were dispatched to each of the four 
toroidally adjacent processing nodes.  See Andre and Koza 1996 for details.    



4. Results for the 96 dB Operational Amplifier 
As the run proceeds from generation to generation, the fitness of the best-of-generation 
individual tends to improve.   

The best circuit from generation 50 has 33 transistors, no diodes, eight capacitors, 
and five resistors (in addition to the five resistors of the feedback embryo).  It achieves 
a fitness of 971,076.4.  No automatically defined functions are present in this 
particular circuit.  Figure 2 shows this best circuit from generation 50.  

 
Figure 2  Best circuit from generation 50. 

The performance of this best of generation circuit from generation 50 was 
determined using SPICE.  The DC sweep shows that the circuit has an amplification of 
89.7 dB  (30,545-to-1) and a bias of 9.77 Volts.  Based on the time domain behavior 
for a 20 microvolt sinusoidal 1,000 Hz input signal, the amplification is 89.7 dB 
(30,500-to-1) for the best circuit from generation 50; the bias is 9.76 Volts; and the 
distortion is 6.29%.  Based on the AC sweep for the best circuit of generation 50, the 3 
dB bandwidth is 2,300 Hz. The circuit has a flatband gain is 89.7 dB.  

The best-of-run circuit (figure 3) appeared in generation 86 and achieves a fitness 
of 938,427.3.  The program tree has two automatically defined functions.   ADF0 is 
called once; but ADF1 is not called.  Figure 4 shows automatically defined function 
ADF0 of the best circuit from generation 86 (which has 12 transistors, no diodes, one 



capacitor, and two resistors).  The DC sweep for this best of generation circuit from 
generation 86 shows that the circuit has an amplification of 96.2 dB (64,860 -to-1) and 
a bias of 7.44 Volts.  Based on the time domain behavior for a 20 microvolt sinusoidal 
1,000 Hz signal as input, the amplification is 94.1 for the best circuit from generation 
86; the bias is 7.46 Volts; and the distortion is 7.07%.  Figure 5 shows the frequency 
response of this circuit as shown by an AC sweep. The horizontal axis shows 
frequency on a logarithmic scale from 1 Hz to 1,000,000 Hz. The vertical axis shows 
gain and ranges from 0 to 100 dB.  The 3 dB bandwidth is 1078.4 Hz.  The circuit has 
a flatband gain of 96.3 dB.   

 
Figure 3  Best circuit from generation 86.  

 
Figure 4  ADF0 for best circuit from generation 86.   



 
Figure 5  AC sweep for the best circuit from generation 86.  5. Other Circuits 

Designed with Genetic Programming 
Genetic programming has also been successfully applied to a variety of other problems 
of analog circuit design.   
5.1 Lowpass Filter 
Genetic programming has successfully evolved a design for a lowpass filter with 
passband below 1,000 Hz and a stopband above 2,000 Hz with requirements 
equivalent to that of a fifth order elliptic filter (Koza, Bennett, Andre, and Keane 
1996a, 1996c).  

Numerous runs produced lowpass filters having a topology that is similar to that 
employed by human engineers.  For example, in one run, a 100% compliant evolved 
circuit had the recognizable ladder topology of a Butterworth or Chebychev filter (i.e., 
a composition of series inductors horizontally with capacitors as vertical shunts).   
5.2 A Crossover Filter 
A design for a crossover (woofer and tweeter) filter was reported in Koza, Bennett, 
Andre, and Keane 1996b. This problem requires a one-input, two-output embryonic 
circuit.  The lowpass part of the genetically evolved best-of-run circuit has the 
Butterworth topology.  Except for one additional capacitor, the highpass part of this 
circuit also has the Butterworth topology.   This circuit is slightly better than the 
combination of lowpass and highpass Butterworth filters of order 7.  
5.3 Asymmetric Bandpass Filter 
A design for an asymmetric bandpass filter with requirements equivalent to a tenth-
order elliptic filter was successfully evolved (Koza, Bennett, Andre, and Keane 
1996d).  
5.4 Cube Root Circuit 
Analog electrical circuits that perform mathematical functions (e.g., logarithm, square, 
cube root) are called computational circuits.      The design of computational circuits is 
difficult even for mundane mathematical functions and often relies on the clever 
exploitation of some aspect of the underlying device physics of the components.  
Moreover, implementation of each mathematical function typically requires an entirely 
different clever insight.  A design for a computational circuit for the cube root function 
has been successfully evolved (figure 6).   



6. Conclusion 
We demonstrated that genetic programming is capable of successfully evolving an op 
amp circuit that delivers a DC gain of 96 dB (64,860 -to-1).   
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Figure 6  Genetically evolved cube root circuit.   
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