
Evolution of a Time-Optimal Fly-To Controller Circuit using
Genetic Programming

John R. Koza

Computer Science Dept.
258 Gates Building
Stanford University

Stanford, California 94305-
9020

koza@cs.stanford.edu
http://www-cs-

faculty.stanford.edu/~koza/

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
forrest@evolute.com

Martin A. Keane
Martin Keane Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

David Andre
Computer Science Division

University of California
Berkeley, California

dandre@cs.berkeley.edu

ABSTRACT

Most problem-solving techniques
used by engineers involve the
introduction of analytical and
mathematical representations and
techniques that are entirely foreign to
the problem at hand. Genetic
programming offers the possibility of
solving problems in a more direct way
using the given ingredients of the
problem. This idea is explored by
considering the problem of designing an
electrical controller to implement a
solution to the time-optimal fly-to
control problem.

1. Introduction
Suppose an engineer is faced with the problem of designing
an electronic device to control the flight of an aircraft with a
constrained turning radius such that the aircraft flies to an
arbitrary destination point in minimal time.

The required end-product is an electronic device
composed of a particular topological arrangement of
transistors, diodes, power sources, and resistors of various
values. The required behavior is expressed in terms of time.
However, even though the original given ingredients of the
stated problem are electronic components and time, a
practicing engineer would not ordinarily directly work with
these original given ingredients in solving the problem.
Instead, the engineer would typically inject into the
problem-solving process a large number of additional
technologies that are entirely foreign to the problem at hand
and then try to solve the problem using those technologies.
The engineer's approach might well involve steps such as
the following three.

First, the engineer might introduce mathematics into the
problem. His goal would be to create a mathematical model
that extracts key features of the problem and represents

them as mathematical objects that can be manipulated using
mathematical methods. For example, the engineer might
draw a geometric diagram containing points representing
the aircraft and its destination, circles reflecting the
aircraft's constrained turning radius, and various vectors
representing trajectories of the aircraft. The engineer might
then use the diagram to write equations that capture certain
key relationships of the problem.

Second the engineer might solve the mathematical
problem created by his geometric and mathematical
analysis. For the version of the fly-to problem involving an
aircraft flying at constant speed and altitude, Clements
(1990) found the Hamiltonian and La grange multipliers for
this optimal control problem and then used the Pontryagin
minimization theorem to find the aircraft's optimal control
strategy.

Third, the engineer might introduce computer science
techniques and electronic design techniques into the
problem so that he could design the desired electronic
circuit for controlling the flight of an aircraft to implement
the solution to the mathematical problem.

If the engineer elected to implement the mathematical
solution with a mixed analog-digital controller, he would
use some programming language to write the computer
program embodying the mathematical steps of the optimal
control strategy. A compiler would then be used to translate
the individual instructions of the programming language
into executable machine code. This machine code would
then be executed by a digital microprocessor that would
perform, say, floating-point addition, subtraction,
multiplication, and division on binary numbers in the fixed-
size registers of the microprocessor. Finally, a digital-to-
analog converter would be used to convert the output of the
digital processor into the analog signal that will actually
control the aircraft's heading.

Alternatively, if the engineer elected to implement the
mathematical solution with a purely analog controller, he
would forego the purely digital processing and instead go
through the process of designing an analog circuit
(effectively an analog computer) that would perform the
mathematical computations with analog electrical signals
for optimally controlling the aircraft's heading.

The design of analog circuits, in general, is difficult and
has not proved to be amenable to automation. Part of the
difficulty of the analog design process stems from the fact
that the behavior of analog circuits is specified by a system
of integro-differential equations (one equation for each node
and loop in the circuit in accordance with Kirchhoff's node
and loop laws). When the circuit contains only capacitors,
inductors, and resistors, the equations in the system are
"merely" linear integro-differential equations and
mathematical techniques such as Laplace transforms can be
used to solve the equations. When the circuit contains
components such as transistors and diodes (which are
present in most electronic circuits and, in any event, are
necessary for the problem at hand), the equations are non-
linear and vexatious. Even when it is possible to solve
these equations for the behavior of a circuit, it is difficult to
design (synthesize) a circuit with that particular behavior.
In discussing the difficulty of designing analog circuits,
Aaserud and Nielsen (1995) observe,

"Analog designers are few and far between. In
contrast to digital design, most of the analog circuits
are still handcrafted by the experts or so-called 'zahs'
of analog design. The design process is characterized
by a combination of experience and intuition and
requires a thorough knowledge of the process
characteristics and the detailed specifications of the
actual product.

"Analog circuit design is known to be a knowledge-
intensive, multiphase, iterative task, which usually
stretches over a significant period of time and is
performed by designers with a large portfolio of skills.
It is therefore considered by many to be a form of art
rather than a science."
Notice that regardless of whether the engineer elects to

implement the solution as a mixed analog-digital circuit or a
purely analog circuit, he must inject into the problem-
solving process numerous representations and technologies
that are entirely foreign to the problem at hand, including

• geometry,
• mathematical equations
• Hamiltonians,
• Lagrande multipliers, and
• Pontryagin's principle

plus either
• digital microprocessors,
• programming languages,
• compilers
• digital-to-analog converters

or plus
• integro-differential equations,
• Laplace transforms, and
• analog design techniques.
This paper discusses genetic programming as a problem-

solving approach that works in a more direct way with the
original given ingredients of the problem and, specifically,
avoids or minimizes the introduction of additional
representations and technology that are foreign to the

problem at hand. This approach is applied to the problem of
building an electrical controller device to discover the
solution to the time-optimal fly-to control problem. The
approach that is used herein could be directly applied to
many other problem areas.

Section 2 presents the fly-to problem and its
mathematical solution. Section 3 presents the preparatory
steps for the solution to the fly-to problem using genetic
programming. Section 4 presents the results.

2. The Fly-To Problem
In the fly-to problem (Clements 1990), the goal is to find a
program for controlling the flight of an aircraft (flying at
constant speed and altitude) such that the aircraft flies to an
arbitrary destination point in minimal time.

The difficulty of this optimal control problem arises
from the fact that the aircraft's nonzero minimum turning
radius generally precludes flying directly to the destination.
Like other non-trivial optimal control problems, this
problem cannot be solved merely by repetitively executing a
hill-climbing action that greedily improves the distance
between the aircraft and the destination at every
intermediate point along the aircraft's trajectory. Instead,
such problems require executing various seemingly
disadvantageous actions in order to later achieve the
globally optimal result.

In figure 1, the aircraft is initially positioned at the
origin (0, 0) of the coordinate system and is headed east
(i.e., along the positive x axis). The aircraft files at a
constant air speed, A. The aircraft's maximum turn angle
Θmax defines a turning radius, R, for the aircraft. The two
circles centered at (0, +R) and (0, –R) in the figure each
have a radius equal to this turning radius. The aircraft's
constant-altitude flight is controlled by the turn angle Θ,
which controls the aircraft's change in heading. Angles are
measured in radians counterclockwise from the positive x
axis.

x

y

(x ,y)1 1

(x 3 ,y 3)

(0,–R)

R

(0,+R)

R

(x ,y)2 2

(x 4 ,y 4)

(x 5 ,y 5)
(x 6 ,y 6)

(x 7 ,y 7)

P

Figure 1 The first three cases of the fly-to problem.

Suppose the fly-to (target) point lies on the positive x
axis, such as point (x1, y1) in the figure. In this first case,
flying straight ahead (i.e., east) will bring the aircraft to the
target in minimum time. Thus, the time-optimal control
strategy for the aircraft is to fly straight ahead along the
positive x axis (i.e., with Θ = 0 radians). The aircraft's time-
optimal trajectory will be the straight line between the
origin and the target (x1, y1) along the positive x axis.

In the second case, the target point, such as (x3, y3), lies
on the circumference of the upper circle of radius R. For
this second case, the time-optimal control strategy is to turn
with a heading equal to the maximum turn angle Θ =
+Θmax (i.e., initially northeast) The aircraft's time-optimal
trajectory will be the portion of the circumference of the
circle between the origin and the target (x3, y3). By
symmetry, the minimum-time control strategy for any point,
such as (x6, y6), on the circumference of the lower circle
involves heading at the maximum turn angle of Θ = –Θmax
(i.e., initially southeast).

The remaining points can be classified into two
additional cases based on whether they are outside or inside
the circles. The strategies for these next two cases employ
portions of the aircraft trajectories used by one or both of
the above strategies.

In the third case, the target point is in the first and
second quadrants but outside the upper circle. For a point
such as (x2, y2), there is a unique first point P on the
circumference of the upper circle such that the tangent line
to the upper circle at point P passes through (x2, y2). For
this third case, the minimum-time control strategy for the
aircraft is to turn at the maximum angle Θ = +Θmax until
the aircraft reaches point P on the circumference of the
upper circle and then to fly straight ahead (i.e., with an
angle of Θ = 0) to the target. The aircraft's time-optimal
trajectory will be the portion of the circumference of the
upper circle between the origin and P combined with the
tangent line between P and the target (x2, y2). Note that
this strategy works regardless of the location of (x2, y2) in
the first or second quadrants and outside the upper circle
(including, specifically, points in the second quadrant
behind the aircraft). By symmetry, a similar strategy (of
first turning southeast at the maximum angle of Θ = –Θmax
and then flying straight) works for target points outside the
lower circle, such as (x5, y5). Points on the negative x axis
(i.e., behind the aircraft) can be reached equally well in this
manner (initially going around the circle in either direction).

In the fourth case, the target point is in the first or
second quadrants but inside the upper circle. None of the
points inside the upper circle can be reached by pursuing a
hill-climbing action that greedily improves the distance
between the aircraft and the target at every intermediate
point along the aircraft's trajectory. Such points can only
be reached by incurring a substantial temporary increasing
of the distance between the aircraft and the target. Figure 2
shows, for a point such as (x4, y4), that there is a unique
point Q to the east of the origin on the circumference of the
lower circle such that a unique circle is tangent to the lower
circle at point Q and passes through (x4, y4) of the upper
circle. For this fourth case, the minimum-time control
strategy for the aircraft is to turn at the maximum angle Θ =
–Θmax (i.e., initially turning southeast thereby increasing
the distance between the aircraft and the target) until the
aircraft reaches point Q and then to reverse directions and

turn at the maximum angle +Θmax until the aircraft reaches
the target. The aircraft's time-optimal trajectory will be the
portion of the circumference of the lower circle between the
origin and Q and the portion of the circumference of the
new tangent circle between Q and the target. Note that this
strategy works regardless of the location of (x4, y4), in the
first or second quadrants and inside the upper circle
(including, specifically, points behind the aircraft in the
second quadrant). By symmetry, a similar strategy (of first
turning northeast at the maximum angle of Θ = +Θmax and
then turning at the maximum angle of Θ = –Θmax) works
for target points inside the lower circle, such as (x7, y7).

x

y

(x ,y)1 1

(x 3 ,y 3)

(0,–R)

R

(0,+R)

R

(x ,y)2 2

(x 4 ,y 4)

(x 5 ,y 5)
(x 6 ,y 6)

(x 7 ,y 7)

Q

Figure 2 The fourth case of the fly-to problem.

The above optimal control strategies and trajectories
were described as if the state of the system were the
aircraft's changing position relative to the ground, namely
(xground(t), yground(t)). If the control variable for the
aircraft is the turn angle Θ, then the state-transition
equations for the system are

xground(t + 1) = xground(t) + A ∆t Cos Θ

yground(t + 1) = yground(t) + A ∆t Sin Θ
The more natural viewpoint for an aircraft controller is

the view from the aircraft. In this view, whenever the
aircraft travels in a particular direction, the coordinate
system is immediately adjusted so that the aircraft is
repositioned to the origin (0, 0) of the coordinate system
with the aircraft heading due east. In this view, the state of
the system is the changing location of the target (fly-to)
point.

Each of the above four optimal control strategies can be
restated in accordance with this new view from the aircraft.
For the first case, the strategy of flying straight ahead
toward a target on the positive x axis has the effect of
moving the target point west along the positive x axis until
it reaches the aircraft. For the second case, the strategy of
turning with a turn angle Θmax for a target point on the
circumference of the upper circle has the effect of moving
the target point around the circumference of the circle until
it reaches the aircraft. For the third case, the strategy for a
target point in the first or second quadrants and outside the
upper circle has the effect of first rotating the target to the
positive x axis and then moving the target west along the
positive x axis until it reaches the aircraft. For the fourth
case, the strategy for a target point inside the upper circle
has the effect of first rotating the target away from the

aircraft to the circumference and then moving the target
point around the circumference until it reaches the aircraft.

As a specific example, consider an aircraft whose
constant air speed, A, is 200 knots and whose maximum
performance rate of turn corresponds to a turn angle of
0.197 radians. The aircraft is located at the origin of a
coordinate system representing a world extending 4 nautical
miles in each of the four directions. A total of 80 time
steps of 0.001 hour each are used in simulating the
trajectory of the aircraft. The total simulation time of 0.080
hours generously permits a trajectory equivalent to the
aircraft flying twice across its world of 64 square nautical
miles.

3. Preparatory Steps
We used genetic programming (an extension of the genetic
algorithm described in Holland 1975) in which the
population consists of computer programs of varying sizes
and shapes as described in Koza 1992, 1994a, 1994b; Koza
and Rice 1992; Kinnear 1994; Angeline and Kinnear 1996,
and Koza, Goldberg, Fogel, and Riolo 1996).

We used the methods for designing analog electrical
circuits with genetic programming described in Koza,
Andre, Bennett, and Keane (1996), and Koza, Bennett,
Andre, and Keane (1996a, 1996b, 1996c, 1996d, 1997).
See also Gruau's innovative work on cellular encoding
(1996).

Before applying genetic programming to a problem of
circuit synthesis, the user must perform seven major
preparatory steps, namely (1) identifying a suitable
embryonic circuit, (2) determining the architecture of the
overall circuit-constructing program trees, (3) identifying
the terminals of the to-be-evolved programs, (4) identifying
the primitive functions contained in the to-be-evolved
programs, (5) creating the fitness measure, (6) choosing
certain control parameters (notably population size and the
maximum number of generations to be run), and (7)
determining the termination criterion and method of result
designation.

Figure 3 Two-input, one-output embryonic circuit.

The electrical circuit to solve the fly-to problem requires
two analog inputs and one analog output. The two inputs
consist of the current location (xfly-to(t), yfly-to(t)) of the
target fly-to point in relation to an aircraft heading due east
and positioned at the origin of the coordinate system. The
output is interpreted by the wrapper (output interface) to be

the aircraft's turn angle Θ. Figure 3 shows an embryonic
circuit for a two-input, one-output circuit.

The number of automatically defined functions, if any,
will emerge as a consequence of the evolutionary process
using the architecture-altering operations (Koza 1994c).
Since the embryonic circuit has three modifiable wires,
there are three writing heads and three result-producing
branches (RPB0, RPB1, RPB2) in each circuit-constructing
program tree. Each program in the initial population of
programs has a uniform architecture with no automatically
defined functions (i.e., three result-producing branches).

For this problem, the function set, Fccs, for each
construction-continuing subtree is
Fccs = {R, SERIES, PSS, PSL, FLIP, NOP,

NEW_T_GND_0, NEW_T_GND_1, NEW_T_POS_0,
NEW_T_POS_1, NEW_T_NEG_0, NEW_T_NEG_1,
PAIR_CONNECT_0, PAIR_CONNECT_1,
Q_D_NPN, Q_D_PNP, Q_3_NPN0, ...,
Q_3_NPN11, Q_3_PNP0, ..., Q_3_PNP11,
Q_POS_COLL_NPN, Q_GND_EMIT_NPN,
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP,
Q_POS_EMIT_PNP, Q_NEG_COLL_PNP}

SPICE's default npn and pnp transistor model
parameters were used.

Space does not permit a detailed description of each
component-creating and connection-modifying function.
For details, see Koza, Andre, Bennett, and Keane (1996),
and Koza, Bennett, Andre, and Keane (1996a, 1996b,
1996c, 1996d, 1997).

The terminal set, Tccs, for the construction-continuing
subtree is
Tccs = {END, SAFE_CUT}.

The function set, Faps, for each arithmetic-performing
subtree is,
Faps = {+, -}.

The terminal set, Taps, for each arithmetic-performing
subtree consists of
Taps = {←},
where ← represents floating-point random constants from –
1.0 to +1.0.

The fitness of a controller was evaluated using 72
randomly chosen fitness cases each representing a different
target (fly-to) point. Fitness was the sum, over the 72
fitness cases, of the fly-to times. A smaller sum is better.
If the aircraft came within a capture radius of 0.28 nautical
miles of its target point before the end of the 80 time steps
allowed for a particular fitness case, the contribution to
fitness for that fitness case was the actual fly-to time.
However, if the aircraft failed to come within the capture
radius during the 80 time steps, the contribution to fitness
was 0.160 hours (i.e., double the worst possible time).

The calculation of fitness requires up to 5,760
executions (72 ∞ 80) of each individual program. The
world of 64 square nautical miles was discretized into a 40
∞ 40 grid of 1,600 discrete squares (with each square being
0.2 ∞ 0.2 nautical miles). A table was computed for each

individual program in the population giving the value of the
control variable Θ as if the target points were in the center
of each of the 1,600 squares and the aircraft were at (0,0).
When an individual program was executed for a particular
one of the 80 time steps of a particular one of the 72 fitness
cases, the state of the system was computed from the above
state-transition equations using floating-point arithmetic.
However, the value of the control variable, Θ, was obtained
from the table as if the target were located in the center of
its square. In addition, if the aircraft flew outside of its
world of 64 square nautical miles or if the target point was
moved out of the world relative to the aircraft's frame of
reference, the simulation was terminated and that fitness
case was assigned the penalty value of fitness of 0.160
hours.

For this problem, the voltage VOUT is probed at node 5.
The SPICE simulator (Quarles et al. 1994) is requested to
perform a nested DC sweep. The nested DC sweep
provides a way to simulate the DC behavior of a circuit with
two inputs. A nested DC sweep resembles a nested pair of
FOR loops in a computer program in that both of the loops
have a starting value for the voltage, an increment, and an
ending value for the voltage. For each voltage value in the
outer loop, the inner loop simulates the behavior of the
circuit by stepping through its range of voltages.
Specifically, the starting value for voltage is –4 volts, the
step size is 0.2 volts, and the ending value is +4 volts.
These values correspond to the dimensions of the aircraft's
world of 64 square nautical mile extending 4 nautical miles
in each of the four directions from the origin of a coordinate
system (i.e., 1 volt equals 1 nautical mile).

When an individual program is executed, it produces a
numeric value, x, which the wrapper transforms into the
turn angle Θ. Figure 4 shows that the wrapper interprets the
numeric value, x, returned by execution of an individual
program by taking the output modulo 2π and clamping the
absolute value to be less than or equal to Θmax.

xπ

θ

−π θmax−θmax

θmax

−2π 2π

2π+θmax2π−θmax−2π+θmax−2π−θmax

−θmax
Figure 4 Wrapper for the fly-to problem.

The number of hits is defined as the number of fitness
cases (from 0 to 72) for which the aircraft reaches its
destination within 80 time steps (i.e., does not time out).

The population size, M, was 640,000. The architecture-
altering operations are used sparingly on each generation.
The percentage of operations on each generation after
generation 5 were 86.5% one-offspring crossovers; 10%
reproductions; 1% mutations; 1% branch duplications; 0.5%
branch deletions; and 1% branch creations. Since we did
not want to waste large amounts of computer time in early
generations where only a few programs have any
automatically defined functions at all, the percentage of
operations on each generation before generation 6 was

78.0% one-offspring crossovers; 10% reproductions; 1%
mutations; 5.0% branch duplications; 1% branch deletions;
and 5.0% branch creations. The maximum size, Hrpb, for
each of the three result-producing branches was 300 points.
The maximum number of automatically defined functions
was 2. The number of arguments for each automatically
defined function was 1. The maximum size, Hadf, for each
of the automatically defined functions, if any, was 300
points. The other parameters for controlling the runs were
the default values specified in Koza 1994a (appendix D).

This problem was run on a medium-grained parallel
Parsytec computer system consisting of 64 80-MHz Power
PC 601 processors arranged in a toroidal mesh with a host
PC Pentium type computer. The distributed genetic
algorithm was used with a population size of Q = 10,000 at
each of the D = 64 demes. On each generation, four
boatloads of emigrants, each consisting of B = 2% (the
migration rate) of the node's subpopulation (selected on the
basis of fitness) were dispatched to each of the four
toroidally adjacent processing nodes (Andre and Koza
1996).

4. Results
The best circuit from generation 0 scores 61 hits (out of 72)
and achieves a fitness of 3.005 hours and has seven
transistors, one diode, and one resistor (not counting the
three resistors of the embryo and those embedded in the
power supplies).

The best circuit from generation 8 scores 67 hits and
achieves a fitness of 2.57 hours and has seven transistors,
one diode, and one resistor (not counting the three resistors
of the embryo and those embedded in the power supplies).

The best circuit from generation 17 scores 69 hits and
achieves a fitness of 2.06 hours while the best circuit of
generation 20 scores 72 hits and achieves a fitness of 1.602
hours.

The best-of-run circuit (figure 5) appeared in generation
31 scores 72 hits and achieves a near-optimal fitness of
1.541 hours. This circuit has 10 transistors and four
resistors. Its circuit-constructing program tree has 24, 11,
and 54 points, respectively, in its three result-producing
branches. Its ADF0 has 12 points and is called twice.

Figure 5 Best-of-run circuit from generation 31.

In comparison, the optimal value of fitness for this
problem is known (from Clements 1990) to be 1.518 hours
(which is an average of about 21 time steps of about 0.001
hour each for each of the 72 fitness cases).

This genetically evolved result is an electronic circuit
that was created without resort to analytical or mathematical
methods. Implementation and realization of this evolved
result does not require programming of a digital processor
or the design of an analog computational circuit. In this
instance, the genetically evolved result is the final solution
to the original stated problem, namely the problem of
designing an electronic device for controlling the flight of
an aircraft such that the aircraft flies to an arbitrary
destination point in minimal time.

5. Conclusion
The problem of designing an electrical controller to
implement the solution to the time-optimal fly-to control
problem was used to illustrate that genetic programming can
solve problems in a holistic way using the original given
ingredients of the problem and without introducing non-
indigenous analytical or mathematical techniques.

References
Aaserud, O. and Nielsen, I. Ring. 1995. Trends in current

analog design: A panel debate. Analog Integrated
Circuits and Signal Processing. 7(1) 5-9.

Andre, David and Koza, John R. 1996. Parallel genetic
programming: A scalable implementation using the
transputer architecture. In Angeline, P. J. and Kinnear,
K. E. Jr. (editors). 1996. Advances in Genetic
Programming 2. Cambridge: MIT Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors).
1996. Advances in Genetic Programming 2. Cambridge,
MA: The MIT Press.

Clements, John C. 1990. Minimum-time turn trajectories
to fly-to points. Optimal Control Applications and
Methods. 11. Pages 39-50.

Gruau, Frederic. 1996. Artificial cellular development in
optimization and compilation. In Sanchez, Eduardo and
Tomassini, Marco (editors). 1996. Towards Evolvable
Hardware. Lecture Notes in Computer Science, Volume
1062. Berlin: Springer-Verlag. Pages 48 – 75.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in
Genetic Programming. Cambridge, MA: MIT Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

Koza, John R. 1994c. Architecture-altering operations for
evolving the architecture of a multi-part program in
genetic programming. Stanford University Computer
Science Department technical report STAN-CS-TR-94-
1528. October 21, 1994.

Koza, John R., Andre, David, Bennett III, Forrest H, and
Keane, Martin A. 1996. Use of automatically defined
functions and architecture-altering operations in
automated circuit synthesis using genetic programming.
In Koza, John R., Goldberg, David E., Fogel, David B.,
and Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First Annual
Conference, July 28-31, 1996, Stanford University.
Cambridge, MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996a. Toward evolution of electronic
animals using genetic programming. Artificial Life V:
Proceedings of the Fifth International Workshop on the
Synthesis and Simulation of Living Systems. Cambridge,
MA: The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996b. Four problems for which a
computer program evolved by genetic programming is
competitive with human performance. Proceedings of
the 1996 IEEE International Conference on Evolutionary
Computation. IEEE Press. Pages 1–10.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996c. Automated design of both the
topology and sizing of analog electrical circuits using
genetic programming. In Gero, John S. and Sudweeks,
Fay (editors). Artificial Intelligence in Design '96.
Dordrecht: Kluwer. Pages 151-170.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1996d. Automated WYWIWYG
design of both the topology and component values of
analog electrical circuits using genetic programming. In
Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic Programming

1996: Proceedings of the First Annual Conference, July
28-31, 1996, Stanford University. Cambridge, MA: MIT
Press.

Koza, John R., Bennett III, Forrest H, Andre, David, and
Keane, Martin A. 1997. Evolution using genetic
programming of a low-distortion 96 Decibel operational
amplifier. Proceedings of the 1997 ACM Symposium on
Applied Computing, San Jose, California, February 28 –
March 2, 1997. New York: Association for Computing
Machinery. Pages 207 - 216.

Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic Programming
1996: Proceedings of the First Annual Conference, July
28-31, 1996, Stanford University. Cambridge, MA: The
MIT Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version
3F5 User's Manual. Department of Electrical
Engineering and Computer Science, University of
California, Berkeley, CA. March 1994.

Version 2 – G-086 – 6 Pages – CAMERA-READY
- Submitted March 25, 1997 to GP-97 Conference

