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Abstract 
The paper describes a general automated method 

for synthesizing the design of both the topology and 
parameter values for controllers.  The automated 
method automatically makes decisions concerning 
the total number of processing blocks to be employed 
in the controller, the type of each block, the 
topological interconnections between the blocks, the 
values of all parameters for the blocks, and the 
existence, if any, of internal feedback between the 
blocks of the overall controller.  Incorporation of 
time-domain, frequency-domain, and other 
constraints on the control or state variables (often 
analytically intractable using conventional methods) 
can be readily accommodated.   

The automatic method described in the paper 
(genetic programming) is applied to a problem of 
synthesizing the design of a robust controller for a 
plant with a second-order lag.  A textbook PID 
compensator preceded by a lowpass pre-filter 
delivers credible performance on this problem.  
However, the automatically created controller 
employs a second derivative processing block (in 
addition to proportional, integrative, and derivative 
blocks and a pre-filter).  It is better than twice as 
effective as the textbook controller as measured by 
the integral of the time-weighted absolute error, has 
only two-thirds of the rise time in response to the 
reference (command) input, and is 10 times better in 
terms of suppressing the effects of disturbance at the 
plant input.  

1 Introduction 
The process of creating (synthesizing) the design of a 
controller entails making decisions concerning the 

total number of processing blocks to be employed in 
the controller, the type of each block (e.g., lead, lag, 
gain, integrator, differentiator, adder, inverter, 
subtractor, and multiplier), the interconnections 
between the blocks, the values of all parameters for 
the blocks, and the existence, if any, of internal 
feedback between the processing blocks. This process 
is typically channeled along lines established by 
existing mathematical techniques.  For example, 
existing techniques often lead to a PID-type 
controller consisting of one proportional, one 
integrative, and one derivative processing block. 

It would be desirable to have an automatic system 
for creating the design of a controller that did not 
require the user to prespecify the topology of the 
controller (e.g. PID), but, instead, automatically 
produced both the overall topology and parameter 
values directly from a high-level statement of the 
requirements of the controller.   

This paper describes how genetic programming 
can be used to automatically create both the topology 
and parameter values for a controller. The 
automatically created controllers can accommodate 
one or more externally supplied reference (command) 
signals, external feedback of one or more plant 
outputs to the controller, computations of error 
between the reference signals and the corresponding 
external plant outputs, one or more internal state 
variables of the plant, and one or more control 
variables.  These automatically created controllers 
can also accommodate internal feedback of one or 
more signals from one part of the controller to 
another part of the controller.  The automatically 
created controllers can be composed of processing 
elements such as gain blocks, lead blocks, lag blocks, 
inverter blocks, differential input integrators, 



differentiators, adders and subtractors and multipliers 
of time-domain signals, and adders and subtractors 
and multipliers of numerical values. These controllers 
can also contain conditional operators that operate on 
time-domain signals.   

In addition, the design process described in this 
paper for automatically creating controllers can 
readily accommodate time-domain, frequency-
domain, and other constraints (often analytically 
intractable using conventional methods) on the 
control or state variables.   

Section 2 describes an illustrative control problem 
involving the design of a robust controller for a plant 
with a second-order lag.  Section 3 provides general 
background on genetic programming. Section 4 
describes how genetic programming is applied to 
control problems.  Section 5 describes the 
preparatory steps necessary to apply genetic 
programming to the illustrative control problem.  
Section 6 presents the results.   

2 Statement of the Problem 
The technique for automatically synthesizing a 
controller will be illustrated by a problem calling for 
the design of a robust controller for a plant with a 
second-order lag.  The problem (Dorf and Bishop 
1998, page 707) is to create both the topology and 
parameter values for a controller for a plant whose 
transfer function is  
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where the internal gain K = 1 and 2 and where the 
time-constant τ = 0.5 and 1.0, such that the plant 
output reaches the level of the reference signal in 
minimal time and such that the overshoot in the 
response to a step input is less than 2%.   

A textbook controller consisting of a PID 
compensator and a lowpass pre-filter is presented in 
Dorf and Bishop 1998. It delivers credible 

performance on this problem.  We added two 
additional constraints of the type that are often 
implicit in controller design.  These added constraints 
are, in fact, satisfied by the controller presented in 
Dorf and Bishop 1998.  The first constraint is that the 
input to the plant is limited to the range between -40 
and +40 volts.  The second constraint is that the 
closed loop frequency response of the system must 
lie below a 40 dB per decade lowpass curve whose 
corner is at 100 Hz.   

The problem involves one reference (command) 
signal, denoted by R(s), in figure 1.  The plant G(s) 
has one input and one output Y(s). The reference 
signal R(s) is fed through pre-filter Gp(s). The plant 
output Y(s) is passed through H(s) and then 
subtracted, in continuous time, from the pre-filtered 
reference signal and the difference (error) is fed into 
the compensator Gc(s).  Gc(s) has one input and one 
output U(s).  Disturbance D(s) may be added to the 
output U(s) of Gc(s) and the sum is subject to the 
limitation that it be in the range between -40 and +40 
volts.  

3 Background on Genetic 
Programming 

Genetic programming is an automatic technique for 
generating computer programs to solve, or 
approximately solve, problems.  In particular, genetic 
programming is capable of automatically creating the 
design of complex structures.  Genetic programming 
approaches a program synthesis problem or a design 
problem in terms of "what needs to be done"  as 
opposed to "how to do it".   

Genetic programming (Koza 1992; Koza and Rice 
1992) is an extension of the genetic algorithm 
(Holland 1975). Genetic programming is capable 
(Koza 1994a, 1994b) of evolving reusable, 
parametrized, hierarchically-called automatically 
defined functions (subroutines).  
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Figure 1 Overall model. 

Architecture-altering operations (Koza, Bennett, 
Andre, and Keane 1999; Koza, Bennett, Andre, 
Keane, and Brave 1999) enable genetic programming 

to automatically determine the number of 
automatically defined functions, the number of 
arguments that each possesses, and the nature of the 



hierarchical references, if any, among such 
automatically defined functions. Architecture-altering 
operations also enable genetic programming to 
automatically determine whether and how to use 
internal memory, iterations, and recursion. 

Genetic programming breeds computer programs 
to solve problems by executing the following three 
steps:  

(1) Randomly create an initial population of 
individual computer programs. 

(2) Iteratively perform the following substeps 
(called a generation) on the population of 
programs until the termination criterion has 
been satisfied:  

(a) Assign a fitness value to each individual 
program in the population using the fitness 
measure. 

(b) Create a new population of individual 
programs by applying the following three 
genetic operations.  The genetic operations 
are applied to one or two individuals in the 
population selected with a probability based 
on fitness (with reselection allowed).   

(i) Reproduce a selected individual by copying 
it into the new population. 

(ii) Create two new individual programs from 
two selected parental individuals by 
genetically recombining subtrees from 
each parental program using the 
crossover operation at randomly chosen 
crossover points in the parental 
programs.  

(iii) Create a new individual from a selected 
parental individual by randomly mutating 
one randomly chosen subtree of the 
parental program.   

(iv) Architecture-altering operations: Choose 
an architecture-altering operation from 
the repertoire of such operations 
available for the run (if any) and create 
one new offspring program for the new 
population by applying the architecture-
altering operation to the one selected 
program.   

(3) Designate the individual computer program that 
is identified by the method of result 
designation (e.g., the best-so-far individual) 
as the result of the run of genetic 
programming.  This result may represent a 
solution (or an approximate solution) to the 
problem.   

Genetic Programming: Darwinian Invention and 
Problem Solving (Koza, Bennett, Andre, and Keane 
1999) and the accompanying videotape (Koza, 
Bennett, Andre, Keane, and Brave 1999) demonstrate 

that genetic programming is capable of synthesizing 
the design of both the topology and sizing for a wide 
variety of analog electrical circuits from a high-level 
statement of the circuit's desired behavior and 
characteristics. Nine of the evolved analog circuits in 
that book were previously patented.   

Genetic programming often creates novel designs 
because it is a probabilistic process that is not 
encumbered by the preconceptions that often channel 
human thinking down familiar paths.  

Additional information on current research in 
genetic programming can be found in Banzhaf, 
Nordin, Keller, and Francone 1998; Langdon 1998; 
Kinnear 1994; Angeline and Kinnear 1996; Spector, 
Langdon, O'Reilly, and Angeline 1999; Koza, 
Goldberg, Fogel, and Riolo 1996; Koza, Deb, 
Dorigo, Fogel, Garzon, Iba, and Riolo 1997; Koza, 
Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon, 
Goldberg, Iba, and Riolo 1998; Banzhaf, Poli, 
Schoenauer, and Fogarty 1998; and in the new 
journal Genetic Programming and Evolvable 
Machines (from Kluwer Academic Publishers 
starting in January 2000). 

4 Genetic Programming and 
Control 

Genetic programming has been previously applied to 
certain simple control problems, including discrete-
time problems where the evolved program receives 
the system's current state as input and computes a 
value for a control variable (Koza and Keane 1990a, 
1990b; Koza 1992; Koza, Bennett, Andre, and Keane 
1999, chapter 13).  In addition, genetic programming 
has been previously used to evolve an analog 
electrical circuit for a discrete-time robotic controller 
(Koza, Bennett, Andre, and Keane 1999, chapter 48).   

The output of a controller causes the actual 
response(s) of a process (called the plant) to match 
desired response(s), called the reference signal(s).  

In a closed loop controller, the difference(s) 
between the actual plant response(s) and the 
reference signal(s) are computed and fed back into 
the controller.  Controllers are often represented by 
directed graphs in which the internal points represent 
certain functions, in which external points represent 
the controller's input(s), and in which cycles 
correspond to internal feedback within the controller.  

Genetic programming can be extended to the 
problem of creating both the topology and parameter 
values for a closed loop controller by establishing a 
mapping between the program trees used in genetic 
programming and the specialized type of directed 
graphs with cycles germane to controllers.  

Various functions and terminals may be included 
in the repertoire from which controllers can be 



constructed.  The functions correspond to blocks in a 
block diagram representing a controller.  Some 
terminals represent time-domain signals while others 
represent numerically valued constants or variables. 
Some functions operate on continuous time-domain 
signals while others operate on numerically valued 
constants or variables.  

The number of result-producing branches in the 
to-be-evolved controller equals the number of control 
variables that are to be passed from the controller to 
the plant.  Each result-producing branch is a 
composition of the functions and terminals from a 
repertoire (below) of functions and terminals 
appropriate for control problems.   

Programs trees in the population during the initial 
random generation (generation 0) consist only of 
result-producing branch(es).  Automatically defined 
functions are introduced incrementally (and 
sparingly) into the population on subsequent 
generations by means of the architecture-altering 
operations. Each automatically defined function is a 
composition of the functions and terminals 
appropriate for control problems, all existing 
automatically defined functions, and (possibly) 
dummy variables (formal parameters) that permit 
parameterization of the automatically defined 
function.  In control problems, automatically defined 
functions provide a mechanism for internal feedback 
within the to-be-evolved controller.   

Each branch of each program tree in the initial 
random population is created in accordance with a 
constrained syntactic structure.  Each genetic 
operation (crossover, mutation, reproduction, and 
architecture-altering operation) produces offspring 
that comply with the constrained syntactic structure.  

4.1 Repertoire of Functions 
The functions may include the following: 

The two-argument GAIN function multiplies the 
time-domain signal represented by its first argument 
by a constant numerical factor represented by its 
second argument.  

The one-argument INVERTER function negates 
the time-domain signal represented by its argument.  

The DIFFERENTIAL_INPUT_INTEGRATOR 
function has two arguments and integrates the time-
domain signal representing the difference between its 
two arguments.  

The two-argument LAG function applies the 
transfer function 1 / (1 + τs), where s is the Laplace 
operator and τ is a constant parameter. The first 
argument is the time-domain input signal. The second 
argument, τ, is a numerically valued expression that 
is interpreted (in the same manner as the constants ℜ) 
as a floating-point number in seconds.   

The three-argument LAG2 function applies the 
transfer function ω0 / (s2 + 2ζω0 + ω0

2), where s is the 
Laplace operator, ζ is the damping ratio, and ω0 is the 
corner frequency.   

The two-argument LEAD function applies the 
transfer function 1 + τs, where s is the Laplace 
operator and τ is a constant parameter. The first 
argument is the time-domain input signal. The second 
argument, τ, is a numerically valued expression that 
is interpreted (in the same manner as the constants ℜ) 
as a floating-point number in seconds. 

The one-argument DIFFERENTIATOR function 
differentiates the time-domain signal represented by 
its argument.   

The two-argument ADD_SIGNAL and 
SUB_SIGNAL functions perform addition or 
subtraction, respectively, on the time-domain signals 
represented by their two arguments.  

The three-argument ADD_3_SIGNAL adds the 
time-domain signals represented by its three 
arguments.  

The two-argument ADD_NUMERIC and 
SUB_NUMERIC functions perform addition or 
subtraction, respectively, on the constant numerical 
values represented by their two inputs.  

The three-argument IFC function (not used in 
this paper) operates on three time-domain signals and 
produces a time-domain signal. If, for a given time, 
the value of the time-domain function in the first 
argument of the IFC function is positive, the value of 
the IFC function is the value of the time-domain 
function in the second argument of the IFC function. 
If, for a given time, the value of the time-domain 
function in the first argument of the IFC function is 
negative, the value of the IFC function is the value of 
the time-domain function in the third argument of the 
IFC function. If, for a given time, the value of the 
time-domain function in the first argument of the 
IFC function is exactly zero, the value of the IFC 
function is the average of the value of the time-
domain functions in the second and third arguments 
of the IFC function.   

4.2 Repertoire of Terminals 
The terminals may include the following: 

The REFERENCE_SIGNAL is the time-domain 
signal representing the reference signal (desired plant 
response). 

The PLANT_OUTPUT is the plant output.   
The CONTROLLER_OUTPUT is the time-domain 

signal representing the output of the controller.  Note 
that this signal can be used, if desired to provide 
feedback of the controller's output directly back into 
the controller.   

The ERROR terminal is the difference between the 
time-domain signal representing the reference signal 



(desired plant response) and the time-domain signal 
representing the actual plant response.  

If the plant has internal state(s) that are available 
to the controller, then STATE_0, STATE_1 , etc. are 
the plant's internal state(s).   

The CONSTANT_0_SIGNAL function is a time-
domain signal that is always zero.  

Numerical constant terminals, ℜ, are floating-
point constants in the range -5.0 to +5.0. Numerical 
constant terminals may be combined in expressions 
by means of arithmetic functions (such as addition 
and subtraction). A three-step process is used to 
interpreting numerical expressions appearing in 
programs. First, the numerical expression is 
evaluated. We call the floating-point number that it 
returns, X. Second, X is used to produce an 
intermediate value U in the range of –5 to +5 in the 
following way: If the return value X is between –5.0 
and +5.0, an intermediate value U is set to the value 
X returned by the subtree. If the return value X is less 
than –100 or greater than +100, U is set to a 
saturating value of zero. If the return value X is 
between –100 and –5.0, U is found from the straight 
line connecting the points (–100, 0) and (–5, -5). If 
the return value X is between +5.0 and +100, U is 
found from the straight line connecting (5, 5) and 
(100, 0). Third, the actual value is the antilogarithm 
(base 10) of the intermediate value U (i.e., 10

U
).   

5 Preparatory Steps 
Before applying genetic programming to a problem, 
six major preparatory steps are required: (1) identify 
the terminals for the program trees, (2) identify the 
functions for the program trees, (3) define the fitness 
measure, (4) choose control parameters for the run, 
(5) determine the termination criterion and method of 
result designation, and (6) determine the architecture 
of the program trees.   

5.1 Program Architecture 
Since there is one result-producing branch in the 
program tree for each output from the controller and 
this problem involves a one-output controller, each 
program tree in the population has one result-
producing branch. Each program tree also has up to 
five automatically defined functions. Each program 
tree in the initial random population (generation 0) 
has no automatically defined functions.  However, in 
subsequent generations, architecture-altering 
operations may insert and delete automatically 
defined functions to particular individual program 
trees in the population.  The insertion of an 
automatically defined function is a precondition for 
the creation of internal feedback.  Thus, the 
architecture-altering operations that create 

automatically defined functions are the vehicle by 
which genetic programming can create internal 
feedback within a controller.  

5.2 Terminal Set 
The terminal set, T, for the result-producing branch 
and any automatically defined functions for this 
problem is 
T = {ℜ, CONSTANT_0, REFERENCE_SIGNAL, 

CONTROLLER_OUTPUT, 
PLANT_OUTPUT}.  

5.3 Function Set 
The function set, F, for the result-producing branch 
and any automatically defined functions for this 
problem is 
F = {GAIN, INVERTER, LEAD, LAG, LAG2, 

DIFFERENTIAL_INPUT_INTEGRATOR, 
DIFFERENTIATOR, ADD_SIGNAL, 
SUB_SIGNAL, ADD_3_SIGNAL, 
ADD_NUMERIC, SUB_NUMERIC, ADF0, 
ADF1, ADF2, ADF3, ADF4}.  

5.4 Fitness 
Genetic programming is a probabilistic search 
algorithm through the space of compositions of the 
available functions and terminals.  The search is 
guided by a fitness measure.  The fitness measure is 
usually couched in terms of the high-level 
requirements of the problem. It expresses “what 
needs to be done”  not “how to do it.”  

The fitness of each individual in the population is 
determined by executing the program tree (i.e., the 
result-producing branch and any automatically 
defined functions that may be present) to produce an 
interconnected sequence of signal processing blocks 
 that is, the block diagram for the controller.  Each 
individual controller is then evaluated by simulating 
the controller using our modified version of the 
SPICE simulator (Quarles, Newton, Pederson, and 
Sangiovanni-Vincentelli 1994).   

For this problem, the fitness of a controller is 
measured using 10 components, including eight 
components based on a modified ITAE ("Integral of 
Time-weighted Absolute Error"), one frequency-
based component, and one time-domain-based 
component.   

The fitness of an individual controller is the sum 
of the detrimental contributions of these 10 
measurements.  The smaller the fitness, the better.   

The first eight components of the fitness measure 
represent choices of a particular one of two different 
values of the internal gain K, a particular one of two 
different values of the time constant τ, and a 
particular one of two different values for the height of 
the reference signal (which is a step function).  The 



two values of K are 1.0 and 2.0.  The two values of τ 
are 0.5 and 1.0.  The first reference signal is a step 
function that rises from 0 to 1 volts at t = 100 
milliseconds.  Two values of K and τ  are used in 
order to obtain a robust controller.  The second 
reference signal rises from 0 to 1 microvolts at t = 
100 milliseconds.  We use two step functions to deal 
with the system’s nonlineararity caused by the 
voltage limiter.  The contribution to fitness for each 
of these eight components of the fitness measure is 

∫
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Here e(t) is the difference at time t between the plant 
output and the reference signal.  A is an additional 
weight that varies depending on the overshoot.  It 
heavily  penalizes all unacceptable values of 
overshoot (with a weight of 10) and slightly penalizes 
acceptable values (with a weight of 1).  

The ninth component of the fitness measure is 
based on 121 fitness cases representing an AC sweep 
over 20 sampled frequencies (equally spaced on a 
logarithmic scale) in each of six decades of frequency 
between 0.01 Hz and 10,000 Hz.  A gain of 0 dB is 
ideal for the 80 fitness cases in the first four decades 
of frequency between 0.01 Hz and 100 Hz; however, 
a gain of up to +3 dB is acceptable.  The contribution 
to fitness for each of these 80 fitness cases is zero if 
the gain is ideal or acceptable, but 18/121 per fitness 
case otherwise.  The ideal gain for the 41 fitness 
cases in the two decades between 100 Hz and 10,000 
Hz is given by the straight line connecting (100 Hz, -
3 dB) and (10,000 Hz, -83 dB) with a logarithmic 
horizontal axis and a linear vertical axis.  The 
contribution to fitness for each of these fitness cases 
is zero if the gain is on or below this straight line, but 
otherwise 18/121 per fitness case.   

The tenth component of the fitness measure is 
based on a time-domain analysis of the effect for 120 
microseconds of a 10-nanosecond pulse that rises to 
10-9 volts at time t = 0.  If the absolute value of plant 
output goes above 10-8 volts (i.e., a order of 
magnitude greater than the pulse’s magnitude), then 
the contribution to fitness is 500(120 - t), where t is 
first time (in microseconds) at which the absolute 
value of plant output goes above 10-8 volts, but 0 
volts otherwise.   

5.5 Control Parameters 
The population size, M, is 66,000. The maximum size 
of each result-producing branch is 150 points 
(functions and terminals). The maximum size of each 
automatically defined function is 100 points.  The 
architecture-altering operations are generally used 
sparingly on each generation. The percentages of the 
genetic operations on each generation on and after 

generation 5 are 86% one-offspring crossover, 10% 
reproduction, 1% mutation 1% subroutine creation, 
1% subroutine duplication, and 1% subroutine 
deletion.  Since all the programs in generation 0 have 
a minimalist architecture consisting of just one result-
producing branch, we accelerate the appearance of 
automatically defined functions in the population by 
using an increased percentage for the architecture-
altering operations prior to generation 5. Specifically, 
the percentages for the genetic operations on each 
generation up to and including generation 5 are 78% 
one-offspring crossover, 10% reproduction, 1% 
mutation, 5% subroutine creation, 5% subroutine 
duplication, and 1% subroutine deletion. Other 
parameters for controlling the run are those found in 
Koza, Bennett, Andre, and Keane 1999.  

5.6 Termination 
The maximum number of generations, G, is set to an 
arbitrary large number (e.g., 501) and the run was 
manually monitored and manually terminated when 
the fitness of many successive best-of-generation 
individuals appeared to have reached a plateau.  The 
single best-so-far individual is harvested and 
designated as the result of the run.  

5.7 Parallel Implementation 
This problem was run on a home-built Beowulf-style 
(Sterling, Salmon, Becker, and Savarese 1999) 
parallel cluster computer system consisting of 66 
processing nodes (each containing a 533-MHz DEC 
Alpha microprocessor and 64 megabytes of RAM) 
arranged in a two-dimensional 6 × 11 toroidal mesh. 
The system has a DEC Alpha type computer as host. 
The processing nodes are connected with a 100 
megabit-per-second Ethernet. The processing nodes 
and the host use the Linux operating system. The 
distributed genetic algorithm (Andre and Koza 1996) 
was used with a population size of Q = 1,000 at each 
of the D = 66 demes (semi-isolated subpopulations). 
Generations are asynchronous on the nodes. On each 
generation, four boatloads of emigrants, each 
consisting of B = 2% (the migration rate) of the 
node's subpopulation (selected probabilistically on 
the basis of fitness) were dispatched to each of the 
four adjacent processing nodes. Details are found in 
Koza, Bennett, Andre, and Keane 1999 and Bennett, 
Koza, Shipman, and Stiffelman 1999.   

6 Results 
The best individual from generation 0 of our one and 
only run of this problem had a fitness of 8.26.   

The best-of-run individual emerged in generation 
32 and had a near-zero fitness of 0.1639.  Figure 2 
shows this individual controller in the form of a block 



diagram.  Table 1 shows the contribution of each of 
the 10 components of the fitness measure.   

Table 1  Fitness of best-of-run individual of 
generation 32.   
 Step size 

(volts) 
Internal 
Gain 

Time 
constant 

Fitness 

1 1 1 1.0 0.0220 
2 1 1 0.5 0.0205 
3 1 2 1.0 0.0201 
4 1 2 0.5 0.0206 
5 10-6 1 1.0 0.0196 
6 10-6 1 0.5 0.0204 
7 10-6 2 1.0 0.0210 
8 10-6 2 0.5 0.0206 
9 AC sweep 0.0000 
10 Pulse test 0.0000 
TOTAL FITNESS 0.1639 

After applying standard block diagram 
manipulations, the transfer function for the pre-filter 
of the best-of-run individual from generation 32 is  
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The transfer function for the compensator of the 
best-of-run individual from generation 32 is 

s
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)08375.1)(05146.1)(03851.1(7487

)(32
+++

=  

Note that this transfer function indicates that the 
compensator consists of a second derivative 
processing block in addition to  proportional, 
integrative, and derivative blocks.  

For comparison, the transfer function for the pre-
filter of the controller presented in Dorf and Bishop 
1998 is 
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and the transfer function for the compensator is 
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Figure 2  Best-of-run genetically evolved controller from generation 32.  
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Figure 3 Time-domain response to step input.  



0 167m 333m 500m 667m 833m 1
-2m

0

2m

4m

6m

8m

10m

Time(s)

GP

Textbook

 
Figure 4 Time-domain response to distriburance.  

The faster rising curve in figure 3 is the time-
domain response of the best-of-run controller from 
generation 32 for a 1 volt unit step with K=1 and τ=1.  
The slower-rising curve shows the time-domain 
response of the controller presented in Dorf and 
Bishop 1998. The curves for other values of K and τ 
similarly favor the genetically evolved controller.  

The upper curve in figure 4 is the time-domain 
response to a 1-volt disturbance signal with K=1 and 
τ=1 for the controller presented in Dorf and Bishop 
1998.  The lower curve applies to the best-of-run 
controller from generation 32. The curves for other 
values of K and τ are similar.  

Figure 5 shows the magnitude portion of the Bode 
plot of the open loop transfer function versus the 
frequency of input.   
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Figure 5  Magnitude portion of Bode plot.  

Figure 6 shows the phase portion of the Bode plot 
of the open loop transfer function versus the 
frequency of input.   
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Figure 6 Phase portion of Bode plot.   

Most of the computer time was consumed by the 
fitness evaluation of candidate individuals in the 
population.  The fitness evaluation (involving 10 
SPICE simulations) averaged 2.57 × 109 computer 

cycles (4.8 seconds) per individual.  The best-of-run 
individual from generation 32 was produced after 
evaluating 2.178 × 106 individuals (66,000 times 33).  
This required 44.5 hours on our 66-node parallel 
computer system  that is, the expenditure of 5.6 × 
1015 computer cycles (5 peta-cycles).   

7 Conclusion 
Genetic programming automatically created a robust 
controller for a plant with a second-order lag without 
the benefit of user-supplied information concerning 
the total number of processing blocks to be employed 
in the controller, the type of each processing block, 
the topological interconnections between the blocks, 
the values of parameters for the blocks, or the 
existence of internal feedback, if any.  The 
genetically evolved controller employs a second 
derivative processing block (in addition to 
proportional, integrative, and derivative blocks and a 
pre-filter).  

Table 2 compares the genetically evolved 
controller to the controller for this problem presented 
in Dorf and Bishop 1998.  

Table 2  Comparison.   
 PID / 

Dorf 
Genetically 
evolved 
controller 

Units 

ITAE 46 19 millivolt sec2 
Rise time 465 296 milliseconds 
Disturbance 
sensitivity 

5,775 644 µVolts /Volt 

Bandwidth 1 1.5 Hz 
 
The genetically evolved controller is better than 

twice as effective as the textbook controller as 
measured by the integral of the time-weighted 
absolute error (ITAE), has only two-thirds of the rise 
time in response to the reference input, and is 10 
times better in terms of suppressing the effects of 
disturbance at the plant  input.  The system 
bandwidth of two controllers are comparable.  
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