
Automatic Creation of both the Topology and Parameters for a
Robust Controller by Means of Genetic Programming

John R. Koza

Section on Medical Informatics
School of Medicine
Stanford University

Stanford, California 94305
koza@stanford.edu

http://www.smi.stanford.
edu/people/koza

Martin A. Keane
Econometrics Inc.
111 E. Wacker Dr.

Chicago, Illinois 60601
makeane@ix.netcom.com

Forrest H Bennett III
Genetic Programming Inc.

Box 1669
Los Altos, California 94023
forrest@evolute.com
http://www.genetic-
programming.com

Jessen Yu
Genetic Programming Inc.

Box 1669
Los Altos, California 94023
jyu@cs.stanford.edu

William Mydlowec
Genetic Programming Inc.

Box 1669
Los Altos, California 94023
myd@cs.stanford.edu

Oscar Stiffelman
Computer Science Department

Stanford University
Stanford, California 94305

ozzie@cs.stanford.edu

Abstract
The paper describes a general automated method

for synthesizing the design of both the topology and
parameter values for controllers. The automated
method automatically makes decisions concerning
the total number of processing blocks to be employed
in the controller, the type of each block, the
topological interconnections between the blocks, the
values of all parameters for the blocks, and the
existence, if any, of internal feedback between the
blocks of the overall controller. Incorporation of
time-domain, frequency-domain, and other
constraints on the control or state variables (often
analytically intractable using conventional methods)
can be readily accommodated.

The automatic method described in the paper
(genetic programming) is applied to a problem of
synthesizing the design of a robust controller for a
plant with a second-order lag. A textbook PID
compensator preceded by a lowpass pre-filter
delivers credible performance on this problem.
However, the automatically created controller
employs a second derivative processing block (in
addition to proportional, integrative, and derivative
blocks and a pre-filter). It is better than twice as
effective as the textbook controller as measured by
the integral of the time-weighted absolute error, has
only two-thirds of the rise time in response to the
reference (command) input, and is 10 times better in
terms of suppressing the effects of disturbance at the
plant input.

1 Introduction
The process of creating (synthesizing) the design of a
controller entails making decisions concerning the

total number of processing blocks to be employed in
the controller, the type of each block (e.g., lead, lag,
gain, integrator, differentiator, adder, inverter,
subtractor, and multiplier), the interconnections
between the blocks, the values of all parameters for
the blocks, and the existence, if any, of internal
feedback between the processing blocks. This process
is typically channeled along lines established by
existing mathematical techniques. For example,
existing techniques often lead to a PID-type
controller consisting of one proportional, one
integrative, and one derivative processing block.

It would be desirable to have an automatic system
for creating the design of a controller that did not
require the user to prespecify the topology of the
controller (e.g. PID), but, instead, automatically
produced both the overall topology and parameter
values directly from a high-level statement of the
requirements of the controller.

This paper describes how genetic programming
can be used to automatically create both the topology
and parameter values for a controller. The
automatically created controllers can accommodate
one or more externally supplied reference (command)
signals, external feedback of one or more plant
outputs to the controller, computations of error
between the reference signals and the corresponding
external plant outputs, one or more internal state
variables of the plant, and one or more control
variables. These automatically created controllers
can also accommodate internal feedback of one or
more signals from one part of the controller to
another part of the controller. The automatically
created controllers can be composed of processing
elements such as gain blocks, lead blocks, lag blocks,
inverter blocks, differential input integrators,

differentiators, adders and subtractors and multipliers
of time-domain signals, and adders and subtractors
and multipliers of numerical values. These controllers
can also contain conditional operators that operate on
time-domain signals.

In addition, the design process described in this
paper for automatically creating controllers can
readily accommodate time-domain, frequency-
domain, and other constraints (often analytically
intractable using conventional methods) on the
control or state variables.

Section 2 describes an illustrative control problem
involving the design of a robust controller for a plant
with a second-order lag. Section 3 provides general
background on genetic programming. Section 4
describes how genetic programming is applied to
control problems. Section 5 describes the
preparatory steps necessary to apply genetic
programming to the illustrative control problem.
Section 6 presents the results.

2 Statement of the Problem
The technique for automatically synthesizing a
controller will be illustrated by a problem calling for
the design of a robust controller for a plant with a
second-order lag. The problem (Dorf and Bishop
1998, page 707) is to create both the topology and
parameter values for a controller for a plant whose
transfer function is

2)1(
)(

s
KsG
τ+

= ,

where the internal gain K = 1 and 2 and where the
time-constant τ = 0.5 and 1.0, such that the plant
output reaches the level of the reference signal in
minimal time and such that the overshoot in the
response to a step input is less than 2%.

A textbook controller consisting of a PID
compensator and a lowpass pre-filter is presented in
Dorf and Bishop 1998. It delivers credible

performance on this problem. We added two
additional constraints of the type that are often
implicit in controller design. These added constraints
are, in fact, satisfied by the controller presented in
Dorf and Bishop 1998. The first constraint is that the
input to the plant is limited to the range between -40
and +40 volts. The second constraint is that the
closed loop frequency response of the system must
lie below a 40 dB per decade lowpass curve whose
corner is at 100 Hz.

The problem involves one reference (command)
signal, denoted by R(s), in figure 1. The plant G(s)
has one input and one output Y(s). The reference
signal R(s) is fed through pre-filter Gp(s). The plant
output Y(s) is passed through H(s) and then
subtracted, in continuous time, from the pre-filtered
reference signal and the difference (error) is fed into
the compensator Gc(s). Gc(s) has one input and one
output U(s). Disturbance D(s) may be added to the
output U(s) of Gc(s) and the sum is subject to the
limitation that it be in the range between -40 and +40
volts.

3 Background on Genetic
Programming

Genetic programming is an automatic technique for
generating computer programs to solve, or
approximately solve, problems. In particular, genetic
programming is capable of automatically creating the
design of complex structures. Genetic programming
approaches a program synthesis problem or a design
problem in terms of "what needs to be done"  as
opposed to "how to do it".

Genetic programming (Koza 1992; Koza and Rice
1992) is an extension of the genetic algorithm
(Holland 1975). Genetic programming is capable
(Koza 1994a, 1994b) of evolving reusable,
parametrized, hierarchically-called automatically
defined functions (subroutines).

Gp(s) Gc(s) G(s)
Y(s)

-
U(s)R(s) +

+

+

D(s)

-40
+40

H(s)

Figure 1 Overall model.

Architecture-altering operations (Koza, Bennett,
Andre, and Keane 1999; Koza, Bennett, Andre,
Keane, and Brave 1999) enable genetic programming

to automatically determine the number of
automatically defined functions, the number of
arguments that each possesses, and the nature of the

hierarchical references, if any, among such
automatically defined functions. Architecture-altering
operations also enable genetic programming to
automatically determine whether and how to use
internal memory, iterations, and recursion.

Genetic programming breeds computer programs
to solve problems by executing the following three
steps:

(1) Randomly create an initial population of
individual computer programs.

(2) Iteratively perform the following substeps
(called a generation) on the population of
programs until the termination criterion has
been satisfied:

(a) Assign a fitness value to each individual
program in the population using the fitness
measure.

(b) Create a new population of individual
programs by applying the following three
genetic operations. The genetic operations
are applied to one or two individuals in the
population selected with a probability based
on fitness (with reselection allowed).

(i) Reproduce a selected individual by copying
it into the new population.

(ii) Create two new individual programs from
two selected parental individuals by
genetically recombining subtrees from
each parental program using the
crossover operation at randomly chosen
crossover points in the parental
programs.

(iii) Create a new individual from a selected
parental individual by randomly mutating
one randomly chosen subtree of the
parental program.

(iv) Architecture-altering operations: Choose
an architecture-altering operation from
the repertoire of such operations
available for the run (if any) and create
one new offspring program for the new
population by applying the architecture-
altering operation to the one selected
program.

(3) Designate the individual computer program that
is identified by the method of result
designation (e.g., the best-so-far individual)
as the result of the run of genetic
programming. This result may represent a
solution (or an approximate solution) to the
problem.

Genetic Programming: Darwinian Invention and
Problem Solving (Koza, Bennett, Andre, and Keane
1999) and the accompanying videotape (Koza,
Bennett, Andre, Keane, and Brave 1999) demonstrate

that genetic programming is capable of synthesizing
the design of both the topology and sizing for a wide
variety of analog electrical circuits from a high-level
statement of the circuit's desired behavior and
characteristics. Nine of the evolved analog circuits in
that book were previously patented.

Genetic programming often creates novel designs
because it is a probabilistic process that is not
encumbered by the preconceptions that often channel
human thinking down familiar paths.

Additional information on current research in
genetic programming can be found in Banzhaf,
Nordin, Keller, and Francone 1998; Langdon 1998;
Kinnear 1994; Angeline and Kinnear 1996; Spector,
Langdon, O'Reilly, and Angeline 1999; Koza,
Goldberg, Fogel, and Riolo 1996; Koza, Deb,
Dorigo, Fogel, Garzon, Iba, and Riolo 1997; Koza,
Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon,
Goldberg, Iba, and Riolo 1998; Banzhaf, Poli,
Schoenauer, and Fogarty 1998; and in the new
journal Genetic Programming and Evolvable
Machines (from Kluwer Academic Publishers
starting in January 2000).

4 Genetic Programming and
Control

Genetic programming has been previously applied to
certain simple control problems, including discrete-
time problems where the evolved program receives
the system's current state as input and computes a
value for a control variable (Koza and Keane 1990a,
1990b; Koza 1992; Koza, Bennett, Andre, and Keane
1999, chapter 13). In addition, genetic programming
has been previously used to evolve an analog
electrical circuit for a discrete-time robotic controller
(Koza, Bennett, Andre, and Keane 1999, chapter 48).

The output of a controller causes the actual
response(s) of a process (called the plant) to match
desired response(s), called the reference signal(s).

In a closed loop controller, the difference(s)
between the actual plant response(s) and the
reference signal(s) are computed and fed back into
the controller. Controllers are often represented by
directed graphs in which the internal points represent
certain functions, in which external points represent
the controller's input(s), and in which cycles
correspond to internal feedback within the controller.

Genetic programming can be extended to the
problem of creating both the topology and parameter
values for a closed loop controller by establishing a
mapping between the program trees used in genetic
programming and the specialized type of directed
graphs with cycles germane to controllers.

Various functions and terminals may be included
in the repertoire from which controllers can be

constructed. The functions correspond to blocks in a
block diagram representing a controller. Some
terminals represent time-domain signals while others
represent numerically valued constants or variables.
Some functions operate on continuous time-domain
signals while others operate on numerically valued
constants or variables.

The number of result-producing branches in the
to-be-evolved controller equals the number of control
variables that are to be passed from the controller to
the plant. Each result-producing branch is a
composition of the functions and terminals from a
repertoire (below) of functions and terminals
appropriate for control problems.

Programs trees in the population during the initial
random generation (generation 0) consist only of
result-producing branch(es). Automatically defined
functions are introduced incrementally (and
sparingly) into the population on subsequent
generations by means of the architecture-altering
operations. Each automatically defined function is a
composition of the functions and terminals
appropriate for control problems, all existing
automatically defined functions, and (possibly)
dummy variables (formal parameters) that permit
parameterization of the automatically defined
function. In control problems, automatically defined
functions provide a mechanism for internal feedback
within the to-be-evolved controller.

Each branch of each program tree in the initial
random population is created in accordance with a
constrained syntactic structure. Each genetic
operation (crossover, mutation, reproduction, and
architecture-altering operation) produces offspring
that comply with the constrained syntactic structure.

4.1 Repertoire of Functions
The functions may include the following:

The two-argument GAIN function multiplies the
time-domain signal represented by its first argument
by a constant numerical factor represented by its
second argument.

The one-argument INVERTER function negates
the time-domain signal represented by its argument.

The DIFFERENTIAL_INPUT_INTEGRATOR
function has two arguments and integrates the time-
domain signal representing the difference between its
two arguments.

The two-argument LAG function applies the
transfer function 1 / (1 + τs), where s is the Laplace
operator and τ is a constant parameter. The first
argument is the time-domain input signal. The second
argument, τ, is a numerically valued expression that
is interpreted (in the same manner as the constants ℜ)
as a floating-point number in seconds.

The three-argument LAG2 function applies the
transfer function ω0 / (s2 + 2ζω0 + ω0

2), where s is the
Laplace operator, ζ is the damping ratio, and ω0 is the
corner frequency.

The two-argument LEAD function applies the
transfer function 1 + τs, where s is the Laplace
operator and τ is a constant parameter. The first
argument is the time-domain input signal. The second
argument, τ, is a numerically valued expression that
is interpreted (in the same manner as the constants ℜ)
as a floating-point number in seconds.

The one-argument DIFFERENTIATOR function
differentiates the time-domain signal represented by
its argument.

The two-argument ADD_SIGNAL and
SUB_SIGNAL functions perform addition or
subtraction, respectively, on the time-domain signals
represented by their two arguments.

The three-argument ADD_3_SIGNAL adds the
time-domain signals represented by its three
arguments.

The two-argument ADD_NUMERIC and
SUB_NUMERIC functions perform addition or
subtraction, respectively, on the constant numerical
values represented by their two inputs.

The three-argument IFC function (not used in
this paper) operates on three time-domain signals and
produces a time-domain signal. If, for a given time,
the value of the time-domain function in the first
argument of the IFC function is positive, the value of
the IFC function is the value of the time-domain
function in the second argument of the IFC function.
If, for a given time, the value of the time-domain
function in the first argument of the IFC function is
negative, the value of the IFC function is the value of
the time-domain function in the third argument of the
IFC function. If, for a given time, the value of the
time-domain function in the first argument of the
IFC function is exactly zero, the value of the IFC
function is the average of the value of the time-
domain functions in the second and third arguments
of the IFC function.

4.2 Repertoire of Terminals
The terminals may include the following:

The REFERENCE_SIGNAL is the time-domain
signal representing the reference signal (desired plant
response).

The PLANT_OUTPUT is the plant output.
The CONTROLLER_OUTPUT is the time-domain

signal representing the output of the controller. Note
that this signal can be used, if desired to provide
feedback of the controller's output directly back into
the controller.

The ERROR terminal is the difference between the
time-domain signal representing the reference signal

(desired plant response) and the time-domain signal
representing the actual plant response.

If the plant has internal state(s) that are available
to the controller, then STATE_0, STATE_1 , etc. are
the plant's internal state(s).

The CONSTANT_0_SIGNAL function is a time-
domain signal that is always zero.

Numerical constant terminals, ℜ, are floating-
point constants in the range -5.0 to +5.0. Numerical
constant terminals may be combined in expressions
by means of arithmetic functions (such as addition
and subtraction). A three-step process is used to
interpreting numerical expressions appearing in
programs. First, the numerical expression is
evaluated. We call the floating-point number that it
returns, X. Second, X is used to produce an
intermediate value U in the range of –5 to +5 in the
following way: If the return value X is between –5.0
and +5.0, an intermediate value U is set to the value
X returned by the subtree. If the return value X is less
than –100 or greater than +100, U is set to a
saturating value of zero. If the return value X is
between –100 and –5.0, U is found from the straight
line connecting the points (–100, 0) and (–5, -5). If
the return value X is between +5.0 and +100, U is
found from the straight line connecting (5, 5) and
(100, 0). Third, the actual value is the antilogarithm
(base 10) of the intermediate value U (i.e., 10

U
).

5 Preparatory Steps
Before applying genetic programming to a problem,
six major preparatory steps are required: (1) identify
the terminals for the program trees, (2) identify the
functions for the program trees, (3) define the fitness
measure, (4) choose control parameters for the run,
(5) determine the termination criterion and method of
result designation, and (6) determine the architecture
of the program trees.

5.1 Program Architecture
Since there is one result-producing branch in the
program tree for each output from the controller and
this problem involves a one-output controller, each
program tree in the population has one result-
producing branch. Each program tree also has up to
five automatically defined functions. Each program
tree in the initial random population (generation 0)
has no automatically defined functions. However, in
subsequent generations, architecture-altering
operations may insert and delete automatically
defined functions to particular individual program
trees in the population. The insertion of an
automatically defined function is a precondition for
the creation of internal feedback. Thus, the
architecture-altering operations that create

automatically defined functions are the vehicle by
which genetic programming can create internal
feedback within a controller.

5.2 Terminal Set
The terminal set, T, for the result-producing branch
and any automatically defined functions for this
problem is
T = {ℜ, CONSTANT_0, REFERENCE_SIGNAL,

CONTROLLER_OUTPUT,
PLANT_OUTPUT}.

5.3 Function Set
The function set, F, for the result-producing branch
and any automatically defined functions for this
problem is
F = {GAIN, INVERTER, LEAD, LAG, LAG2,

DIFFERENTIAL_INPUT_INTEGRATOR,
DIFFERENTIATOR, ADD_SIGNAL,
SUB_SIGNAL, ADD_3_SIGNAL,
ADD_NUMERIC, SUB_NUMERIC, ADF0,
ADF1, ADF2, ADF3, ADF4}.

5.4 Fitness
Genetic programming is a probabilistic search
algorithm through the space of compositions of the
available functions and terminals. The search is
guided by a fitness measure. The fitness measure is
usually couched in terms of the high-level
requirements of the problem. It expresses “what
needs to be done”  not “how to do it.”

The fitness of each individual in the population is
determined by executing the program tree (i.e., the
result-producing branch and any automatically
defined functions that may be present) to produce an
interconnected sequence of signal processing blocks
 that is, the block diagram for the controller. Each
individual controller is then evaluated by simulating
the controller using our modified version of the
SPICE simulator (Quarles, Newton, Pederson, and
Sangiovanni-Vincentelli 1994).

For this problem, the fitness of a controller is
measured using 10 components, including eight
components based on a modified ITAE ("Integral of
Time-weighted Absolute Error"), one frequency-
based component, and one time-domain-based
component.

The fitness of an individual controller is the sum
of the detrimental contributions of these 10
measurements. The smaller the fitness, the better.

The first eight components of the fitness measure
represent choices of a particular one of two different
values of the internal gain K, a particular one of two
different values of the time constant τ, and a
particular one of two different values for the height of
the reference signal (which is a step function). The

two values of K are 1.0 and 2.0. The two values of τ
are 0.5 and 1.0. The first reference signal is a step
function that rises from 0 to 1 volts at t = 100
milliseconds. Two values of K and τ are used in
order to obtain a robust controller. The second
reference signal rises from 0 to 1 microvolts at t =
100 milliseconds. We use two step functions to deal
with the system’s nonlineararity caused by the
voltage limiter. The contribution to fitness for each
of these eight components of the fitness measure is

∫
=

6.9

0
))(()(

t
dtteAtet .

Here e(t) is the difference at time t between the plant
output and the reference signal. A is an additional
weight that varies depending on the overshoot. It
heavily penalizes all unacceptable values of
overshoot (with a weight of 10) and slightly penalizes
acceptable values (with a weight of 1).

The ninth component of the fitness measure is
based on 121 fitness cases representing an AC sweep
over 20 sampled frequencies (equally spaced on a
logarithmic scale) in each of six decades of frequency
between 0.01 Hz and 10,000 Hz. A gain of 0 dB is
ideal for the 80 fitness cases in the first four decades
of frequency between 0.01 Hz and 100 Hz; however,
a gain of up to +3 dB is acceptable. The contribution
to fitness for each of these 80 fitness cases is zero if
the gain is ideal or acceptable, but 18/121 per fitness
case otherwise. The ideal gain for the 41 fitness
cases in the two decades between 100 Hz and 10,000
Hz is given by the straight line connecting (100 Hz, -
3 dB) and (10,000 Hz, -83 dB) with a logarithmic
horizontal axis and a linear vertical axis. The
contribution to fitness for each of these fitness cases
is zero if the gain is on or below this straight line, but
otherwise 18/121 per fitness case.

The tenth component of the fitness measure is
based on a time-domain analysis of the effect for 120
microseconds of a 10-nanosecond pulse that rises to
10-9 volts at time t = 0. If the absolute value of plant
output goes above 10-8 volts (i.e., a order of
magnitude greater than the pulse’s magnitude), then
the contribution to fitness is 500(120 - t), where t is
first time (in microseconds) at which the absolute
value of plant output goes above 10-8 volts, but 0
volts otherwise.

5.5 Control Parameters
The population size, M, is 66,000. The maximum size
of each result-producing branch is 150 points
(functions and terminals). The maximum size of each
automatically defined function is 100 points. The
architecture-altering operations are generally used
sparingly on each generation. The percentages of the
genetic operations on each generation on and after

generation 5 are 86% one-offspring crossover, 10%
reproduction, 1% mutation 1% subroutine creation,
1% subroutine duplication, and 1% subroutine
deletion. Since all the programs in generation 0 have
a minimalist architecture consisting of just one result-
producing branch, we accelerate the appearance of
automatically defined functions in the population by
using an increased percentage for the architecture-
altering operations prior to generation 5. Specifically,
the percentages for the genetic operations on each
generation up to and including generation 5 are 78%
one-offspring crossover, 10% reproduction, 1%
mutation, 5% subroutine creation, 5% subroutine
duplication, and 1% subroutine deletion. Other
parameters for controlling the run are those found in
Koza, Bennett, Andre, and Keane 1999.

5.6 Termination
The maximum number of generations, G, is set to an
arbitrary large number (e.g., 501) and the run was
manually monitored and manually terminated when
the fitness of many successive best-of-generation
individuals appeared to have reached a plateau. The
single best-so-far individual is harvested and
designated as the result of the run.

5.7 Parallel Implementation
This problem was run on a home-built Beowulf-style
(Sterling, Salmon, Becker, and Savarese 1999)
parallel cluster computer system consisting of 66
processing nodes (each containing a 533-MHz DEC
Alpha microprocessor and 64 megabytes of RAM)
arranged in a two-dimensional 6 × 11 toroidal mesh.
The system has a DEC Alpha type computer as host.
The processing nodes are connected with a 100
megabit-per-second Ethernet. The processing nodes
and the host use the Linux operating system. The
distributed genetic algorithm (Andre and Koza 1996)
was used with a population size of Q = 1,000 at each
of the D = 66 demes (semi-isolated subpopulations).
Generations are asynchronous on the nodes. On each
generation, four boatloads of emigrants, each
consisting of B = 2% (the migration rate) of the
node's subpopulation (selected probabilistically on
the basis of fitness) were dispatched to each of the
four adjacent processing nodes. Details are found in
Koza, Bennett, Andre, and Keane 1999 and Bennett,
Koza, Shipman, and Stiffelman 1999.

6 Results
The best individual from generation 0 of our one and
only run of this problem had a fitness of 8.26.

The best-of-run individual emerged in generation
32 and had a near-zero fitness of 0.1639. Figure 2
shows this individual controller in the form of a block

diagram. Table 1 shows the contribution of each of
the 10 components of the fitness measure.

Table 1 Fitness of best-of-run individual of
generation 32.
 Step size

(volts)
Internal
Gain

Time
constant

Fitness

1 1 1 1.0 0.0220
2 1 1 0.5 0.0205
3 1 2 1.0 0.0201
4 1 2 0.5 0.0206
5 10-6 1 1.0 0.0196
6 10-6 1 0.5 0.0204
7 10-6 2 1.0 0.0210
8 10-6 2 0.5 0.0206
9 AC sweep 0.0000
10 Pulse test 0.0000
TOTAL FITNESS 0.1639

After applying standard block diagram
manipulations, the transfer function for the pre-filter
of the best-of-run individual from generation 32 is

)17.1)(16.1)(084.1)(052.1)(038.1(
)203.1)(126.1(1)(32 sssss

sssGp +++++
++

=

The transfer function for the compensator of the
best-of-run individual from generation 32 is

s
sss

sGc
)08375.1)(05146.1)(03851.1(7487

)(32
+++

=

Note that this transfer function indicates that the
compensator consists of a second derivative
processing block in addition to proportional,
integrative, and derivative blocks.

For comparison, the transfer function for the pre-
filter of the controller presented in Dorf and Bishop
1998 is

238.1167.42
67.42)(

ss
sG dorfp

++
=−

and the transfer function for the compensator is

s
ss

sG dorfc
)38.1167.42(12

)(
2++

=− .

s0837.01+

s168.01

1

+
1−

s156.01
1

+
1−

R(s)

Y(s)
s515.01+

8.15 s0385.01+

U(s)

1
s

1− 918.8

Figure 2 Best-of-run genetically evolved controller from generation 32.

0 167m 333m 500m 667m 833m 1
0

200m

400m

600m

800m

1

1.2

Time (s)

GP

Textbook

Figure 3 Time-domain response to step input.

0 167m 333m 500m 667m 833m 1
-2m

0

2m

4m

6m

8m

10m

Time(s)

GP

Textbook

Figure 4 Time-domain response to distriburance.

The faster rising curve in figure 3 is the time-
domain response of the best-of-run controller from
generation 32 for a 1 volt unit step with K=1 and τ=1.
The slower-rising curve shows the time-domain
response of the controller presented in Dorf and
Bishop 1998. The curves for other values of K and τ
similarly favor the genetically evolved controller.

The upper curve in figure 4 is the time-domain
response to a 1-volt disturbance signal with K=1 and
τ=1 for the controller presented in Dorf and Bishop
1998. The lower curve applies to the best-of-run
controller from generation 32. The curves for other
values of K and τ are similar.

Figure 5 shows the magnitude portion of the Bode
plot of the open loop transfer function versus the
frequency of input.

0.1 1 10 100 1000
Frequency (Rad/Second)

0

20

40

60

80

0.1 1 10 100 1000

M
a
g
n
i
t
u
d
e

(
d
B
)

Figure 5 Magnitude portion of Bode plot.

Figure 6 shows the phase portion of the Bode plot
of the open loop transfer function versus the
frequency of input.

0.1 1 10 100 1000
-200

-150

-100

-50

0
0.1 1 10 100 1000

Frequency (Rad/Second)

P
h
a
s
e

(
d
e
g
)

Figure 6 Phase portion of Bode plot.

Most of the computer time was consumed by the
fitness evaluation of candidate individuals in the
population. The fitness evaluation (involving 10
SPICE simulations) averaged 2.57 × 109 computer

cycles (4.8 seconds) per individual. The best-of-run
individual from generation 32 was produced after
evaluating 2.178 × 106 individuals (66,000 times 33).
This required 44.5 hours on our 66-node parallel
computer system  that is, the expenditure of 5.6 ×
1015 computer cycles (5 peta-cycles).

7 Conclusion
Genetic programming automatically created a robust
controller for a plant with a second-order lag without
the benefit of user-supplied information concerning
the total number of processing blocks to be employed
in the controller, the type of each processing block,
the topological interconnections between the blocks,
the values of parameters for the blocks, or the
existence of internal feedback, if any. The
genetically evolved controller employs a second
derivative processing block (in addition to
proportional, integrative, and derivative blocks and a
pre-filter).

Table 2 compares the genetically evolved
controller to the controller for this problem presented
in Dorf and Bishop 1998.

Table 2 Comparison.
 PID /

Dorf
Genetically
evolved
controller

Units

ITAE 46 19 millivolt sec2
Rise time 465 296 milliseconds
Disturbance
sensitivity

5,775 644 µVolts /Volt

Bandwidth 1 1.5 Hz

The genetically evolved controller is better than

twice as effective as the textbook controller as
measured by the integral of the time-weighted
absolute error (ITAE), has only two-thirds of the rise
time in response to the reference input, and is 10
times better in terms of suppressing the effects of
disturbance at the plant input. The system
bandwidth of two controllers are comparable.

References
Andre, David and Koza, John R. 1996. Parallel

genetic programming: A scalable implementation
using the transputer architecture. In Angeline, P. J.
and Kinnear, K. E. Jr. (editors). 1996. Advances in
Genetic Programming 2. Cambridge: MIT Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr.
(editors). 1996. Advances in Genetic Programming
2. Cambridge, MA: The MIT Press.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E.,
and Francone, Frank D. 1998. Genetic
Programming – An Introduction. San Francisco,
CA: Morgan Kaufmann and Heidelberg: dpunkt.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer,
Marc, and Fogarty, Terence C. 1998. Genetic
Programming: First European Workshop.
EuroGP'98. Paris, France, April 1998
Proceedings. Paris, France. April l998. Lecture
Notes in Computer Science. Volume 1391. Berlin,
Germany: Springer-Verlag.

Bennett, Forrest H III, Koza, John R., Shipman,
James, and Stiffelman, Oscar. 1999. Building a
parallel computer system for $18,000 that performs
a half peta-flop per day. In Banzhaf, Wolfgang,
Daida, Jason, Eiben, A. E., Garzon, Max H.,
Honavar, Vasant, Jakiela, Mark, and Smith, Robert
E. (editors). 1999. GECCO-99: Proceedings of the
Genetic and Evolutionary Computation
Conference, July 13-17, 1999, Orlando, Florida
USA. San Francisco, CA: Morgan Kaufmann.

Dorf, Richard C. and Bishop, Robert H. 1998.
Modern Control Systems. Eighth edition. Menlo
Park, CA: Addison-Wesley.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in
Genetic Programming. Cambridge, MA: The MIT
Press.

Koza, John R., and Keane, Martin A. 1990a. Cart
centering and broom balancing by genetically
breeding populations of control strategy programs.
In Proceedings of International Joint Conference
on Neural Networks, Washington, January 15-19,
1990. Hillsdale, NJ: Lawrence Erlbaum. Volume I,
Pages 198-201.

Koza, John R., and Keane, Martin A. 1990b. Genetic
breeding of non-linear optimal control strategies for
broom balancing. In Proceedings of the Ninth
International Conference on Analysis and
Optimization of Systems. Antibes, France, June,
1990. Berlin: Springer-Verlag. Pages 47-56.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge, MA:
MIT Press.

Koza, John R., Banzhaf, Wolfgang, Chellapilla,
Kumar, Deb, Kalyanmoy, Dorigo, Marco, Fogel,
David B., Garzon, Max H., Goldberg, David E.,
Iba, Hitoshi, and Riolo, Rick. (editors). 1998.
Genetic Programming 1998: Proceedings of the
Third Annual Conference. San Francisco, CA:
Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1999. Genetic Programming
III: Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann. Forthcoming.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A., and Brave Scott. 1999. Genetic
Programming III Videotape. San Francisco, CA:
Morgan Kaufmann. Forthcoming.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max, Iba, Hitoshi, and
Riolo, Rick L. (editors). 1997. Genetic
Programming 1997: Proceedings of the Second
Annual Conference San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Goldberg, David E., Fogel, David B.,
and Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First
Annual Conference. Cambridge, MA: The MIT
Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT
Press.

Langdon, William B. 1998. Genetic Programming
and Data Structures: Genetic Programming + Data
Structures = Automatic Programming! Amsterdam:
Kluwer.

Quarles, Thomas, Newton, A. R., Pederson, D. O.,
and Sangiovanni-Vincentelli, A. 1994. SPICE 3
Version 3F5 User's Manual. Department of
Electrical Engineering and Computer Science,
Univ. of California. Berkeley, CA. March 1994.

Spector, Lee, Langdon, William B., O'Reilly, Una-
May, and Angeline, Peter (editors). 1999. Advances
in Genetic Programming 3. Cambridge, MA: The
MIT Press.

Sterling, Thomas L., Salmon, John, Becker, Donald
J., and Savarese, Daniel F. 1999. How to Build a
Beowulf: A Guide to Implementation and
Application of PC Clusters. Cambridge, MA: MIT
Press.

