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Recent work has demonstrated that genetic programming is capable of automatically 

creating complex networks (e.g., analog electrical circuits, controllers) whose behavior is 
modeled by linear and non-linear continuous-time differential equations and whose 
behavior matches prespecified output values. The concentrations of substances 
participating in networks of chemical reactions are modeled by non-linear continuous-
time differential equations. This paper demonstrates that it is possible to automatically 
create (reverse engineer) a network of chemical reactions from observed time-domain 
data. Genetic programming starts with observed time-domain concentrations of 
substances and automatically creates both the topology of the network of chemical 
reactions and the rates of each reaction of a network such that the behavior of the 
automatically created network matches the observed time-domain data.  Specifically, 
genetic programming automatically created a metabolic pathway involving four chemical 
reactions that consume glycerol and fatty acids as input, used ATP as a cofactor, and 
produced diacyl-glycerol as the final product. The metabolic pathway was created from 
270 data points. The automatically created metabolic pathway contains three key 
topological features, including an internal feedback loop, a bifurcation point where one 
substance is distributed to two different reactions, and an accumulation point where one 
substance is accumulated from two sources. The topology and sizing of the entire 
metabolic pathway was automatically created using only the time-domain concentration 
values of diacyl-glycerol (the final product).  

1. Introduction 
A living cell can be viewed as a dynamical system in which a large number of different substances react 
continuously and non-linearly with one another. In order to understand the behavior of a continuous non-linear 
dynamical system with numerous interacting parts, it is usually insufficient to study behavior of each part in 
isolation. Instead, the behavior must usually be analyzed as a whole. (Tomita, Hashimoto, Takahashi, Shimizu, 
Matsuzaki, Miyoshi, Saito, Tanida, Yugi, Venter, and Hutchison 1999).  

Considerable amounts of time-domain data are now becoming available concerning the concentration of 
biologically important chemicals in living organisms. Such data include both gene expression data (obtained from 
microarrays) and data on the concentration of substances participating in metabolic pathways (Ptashne 1992; 
McAdams. and Shapiro 1995; Loomis and Sternberg 1995; Yuh, Bolouri, and Davidson 1998).  

The concentrations of substrates, products, and catalysts (e.g., enzymes) participating in chemical reactions are 
modeled by non-linear continuous-time differential equations, such as the Michaelis-Menten equations (Voit 2000).  



The question arises as to whether it is possible to start with observed time-domain concentrations of substances 
and automatically create both the topology of the network of chemical reactions and the rates of each reaction that 
produced the observed data  that is, to automatically reverse engineer the network from the data.  

Genetic programming (Koza, Bennett, Andre, and Keane 1999) is a method for automatically creating a 
computer program whose behavior satisfies certain high-level requirements. Genetic programming starts with a 
primordial ooze of thousands of randomly created computer programs (program trees) and uses the Darwinian 
principle of natural selection, recombination (crossover), mutation, gene duplication, gene deletion, and certain 
mechanisms of developmental biology to breed a population of programs over a series of generations. 

Recent work has demonstrated that genetic programming can automatically create complex networks that exhibit 
prespecified behavior in areas where the network's behavior is governed by differential equations (both linear and 
non-linear).  

For example, genetic programming is capable of automatically creating both the topology and sizing (component 
values) for analog electrical circuits (e.g., filters, amplifiers, computational circuits) composed of transistors, 
capacitors, resistors, and other components merely by specifying the circuit's output  that is, the output data 
values that would be observed if one already had the circuit. This reverse engineering of circuits from data is 
performed by genetic programming even though there is no general mathematical method for creating the topology 
and sizing of analog electrical circuits from the circuit's desired (or observed) behavior (Koza, Bennett, Andre, and 
Keane 1999). Seven of the automatically created circuits infringe on previously issued patents. Others duplicate the 
functionality of previously patented inventions in a novel way.  

As another example, genetic programming is capable of automatically creating both the topology and sizing 
(tuning) for controllers composed of time-domain blocks such as integrators, differentiators, multipliers, adders, 
delays, leads, and lags merely by specifying the controller's effect on the to-be-controlled plant (Koza, Keane, Yu, 
Bennett, Mydlowec, and Stiffelman 1999; Koza, Keane, Yu, Bennett, and Mydlowec 2000). This reverse 
engineering of controllers from data is performed by genetic programming even though there is no general 
mathematical method for creating the topology and sizing for controllers from the controller's behavior. Two of the 
automatically created controllers infringe on previously issued patents.  

As yet another example, it is possible to automatically create antennas composed of a network of wires merely 
by specifying the antenna's high-level specifications (Comisky, Yu, and Koza 2000).  

Our approach to the problem of automatically creating both the topology and sizing of a network of chemical 
reactions involves 

(1) establishing a representation involving program trees (composed of functions and terminals) for chemical 
networks,  

(2) converting each individual program tree in the population into an electrical circuit representing a network 
of chemical reactions,  

(3) obtaining the behavior of the network of chemical reactions by simulating the electrical circuit,  
(4) defining a fitness measure that measures how well the behavior of an individual network in the population 

matches the observed data, and 
(5) applying genetic programming to breed a population of improving program trees using the fitness 

measure.  
Since the description herein of our methods and results is necessarily severely limited by space, the authors are 

simultaneously publishing a considerably longer technical report that provides additional details and explanatory 
figures (Koza, Mydlowec, Lanza, Yu, and Keane 2000).  

Section 2 states an illustrative "proof of principle" problem. Section 3 presents a method of representing 
networks of chemical reactions with program trees. Section 4 presents the preparatory steps for applying genetic 
programming to the illustrative problem. Section 5 presents the results.  

2. Statement of the Illustrative Problem 
The goal is to automatically create (reverse engineer) both the topology and sizing of a network of chemical 
reactions.  

The topology of a network of chemical reactions comprises (1) the number of substrates consumed by each 
reaction, (2) the number of products produced by each reaction, (3) the pathways supplying the substrates (either 
from external sources or other reactions) to the reactions, and (4) the pathways dispersing the reaction's products 
(either to other reactions or external outputs). The sizing of a network of chemical reactions consists of the 
numerical values representing the rates of each reaction.  

We chose, as an illustrative problem, a network that incorporates three key topological features. These features 
include an internal feedback loop, a bifurcation point (where one substance is distributed to two different reactions), 



and an accumulation point (where one substance is accumulated from two sources). The particular chosen network 
is part of a phospholipid cycle, as presented in the E-CELL cell simulation model (Tomita, Hashimoto, Takahashi, 
Shimizu, Matsuzaki, Miyoshi, Saito, Tanida, Yugi, Venter, and Hutchison 1999). The network's external inputs are 
glycerol and fatty acids. The network's final product is diacyl-glycerol. The network's four reactions are catalyzed 
by Glycerol kinase (EC2.7.1.30), Glycerol-1-phosphatase (EC3.1.3.21), Acylglycerol lipase (EC3.1.1.23), and 
Triacylglycerol lipase (EC3.1.1.3).   

3. Representation of Chemical Reaction Networks 
This section describes a method for representing a network of chemical reactions as a program tree suitable for use 
in a run of genetic programming. Each program tree represents an interconnected network of chemical reactions 
involving various substances. A chemical reaction may consume one or two substances and produce one or two 
substances. The consumed substances may be external input substances or intermediate substances produced by 
reactions. The chemical reactions, enzymes, and substances of a network may be completely represented by a 
program tree that contains  

• internal nodes representing chemical reaction functions, 
• internal nodes representing selector functions that select the reaction's first versus the reaction's second (if 

any) product,  
• external points (leaves) representing substances that are consumed and produced by a reaction, 
• external points (leaves) representing enzyme that catalyzes a reaction, and.  
• external points (leaves) representing numerical constants (reaction rates).  

Each program tree in the population is a composition of functions from the problem's function set and terminals 
from the problem's terminal set.  

3.1. Repertoire of Functions 
There are four chemical reaction functions and two selector functions. 

The first argument of each chemical reaction function identifies the enzyme that catalyzes the reaction. The 
second argument specifies the reaction's rate. In addition, there are two, three, or four arguments specifying the 
substrate(s) and product(s) of the reaction. Table 1 shows the number of substrate(s) and product(s) and overall arity 
for each of the four chemical reaction functions. The runs in this paper use a first-order and second-order rate law.  

Table 1 Four chemical reaction functions.  
Function Substrates Products Arity 
CR_1_1 1 1 4 
CR_1_2 1 2 5 
CR_2_1 2 1 5 
CR_2_2 2 2 6 

Each function returns a list composed of the reaction's one or two products. The one-argument FIRST function 
returns the first of the one or two products produced by the function designated by its argument. The one-argument 
SECOND function returns the second of the two products (or, the first product, if the reaction produces only one 
product).  

3.2. Repertoire of Terminals 
Some terminals represent input substances (input substances, intermediate substances created by reactions, and 
output substances). Other terminals represent the enzymes that catalyze the chemical reactions. Still other terminals 
represent numerical constants for the velocity of the reactions.  

3.3. Constrained Syntactic Structure 
The trees are constructed in accordance with a constrained syntactic structure. The root of every result-producing 
branch must be a chemical reaction function. The enzyme that catalyzes a reaction always appears as the first 
argument of its chemical reaction function. A numerical value representing a reaction's velocity always appears as 
the second argument of its chemical reaction function. The one or two input arguments to a chemical reaction 
function can be either a substance terminal or selector function (FIRST or SECOND). The result of having a selector 
function as an input argument is to create a cascade of reactions. The one or two output arguments to a chemical 
reaction function must be a substance terminal. The argument to a one-argument selector function (FIRST or 
SECOND) is always a chemical reaction function.   



3.4. Example 
Figure 1 shows an illustrative network of chemical reactions represented by a program tree. In fact, this illustrative 
figure is also the outcome of the run (section 5) as well as the desired network (with the desired rates of each 
reaction being in parenthesis and the genetically evolved rate outside the parenthesis).  
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Figure 1 Best of run individual from generation 225.   

Figure 2 shows the electrical circuit corresponding to the network of figure 1. The triangles in the figure 
represent integrators.  
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Figure 2 Electrical circuit corresponding to the chemical reaction network of figure 1.   

For additional details, see Koza, Mydlowec, Lanza, Yu, and Keane 2000. 

4. Preparatory Steps 
Six major preparatory steps are required before applying genetic programming: (1) determine the architecture of 

the program trees, (2) identify the functions, (3) identify the terminals, (4) define the fitness measure, (5) choose 
control parameters for the run, and (6) choose the termination criterion and method of result designation. For 
additional details, see Koza, Mydlowec, Lanza, Yu, and Keane 2000. 

4.1. Program Architecture 
Each program tree in the initial random population (generation 0) has one result-producing branch. In subsequent 
generations, the architecture-altering operations (patterned after gene duplication and gene deletion in nature) may 
insert and delete result-producing branches to particular individual program trees in the population. Each program 
tree may have four result-producing branches. 

4.2. Function Set 
The function set, F, is 
F = {CR1_1, CR1_2, CR2_1, CR2_2, FIRST, SECOND}.  



4.3. Terminal Set 
The terminal set, T, is 
T = {ℜ, C00116, C00162, C00002, C00165, INT_1, INT_2, INT_3}.  

ℜ denotes a perturbable numerical value. In the initial random generation (generation 0) of a run, each 
perturbable numerical value is set, individually and separately, to a random value in a chosen range (from 0.0 and 
2.0 here).  

In the illustrative problem herein, C00116 is the concentration of glycerol. C00162 is the concentration of 
fatty acid. These two substances are inputs to the illustrative overall network of interest herein. C00002 is the 
concentration of the cofactor ATP. C00165 is the concentration of diacyl-glycerol. This substance is the final 
product of the illustrative network herein. INT_1, INT_2, and INT_3 are the concentrations of intermediate 
substances 1, 2, and 3 (respectively).  

4.4. Fitness Measure 
Genetic programming is a probabilistic algorithm that searches the space of compositions of the available functions 
and terminals under the guidance of a fitness measure. In order to evaluate the fitness of an individual program tree 
in the population, the program tree is converted into a directed graph representing the network. The result-producing 
branches are executed from left to right. The functions in a particular result-producing branch are executed in a 
depth-first manner. One reactor (representing the concentration of the substances participating in the reaction) is 
inserted into the network for each chemical reaction function that is encountered in a branch. The reactor is labeled 
with the reaction's enzyme and velocity. A directed line entering the reactor is added for each of the reaction's one 
or two substrate(s). A directed line leaving the reactor is added for each of the reaction's one or two product(s). The 
first product of a reaction is selected whenever a FIRST function is encountered in a branch. The second product of 
a reaction is selected whenever a SECOND function is encountered in a branch.  

After the network is constructed, the pathway is converted into an electrical circuit. A SPICE netlist is then 
constructed to represent the electrical circuit. We provide SPICE with subcircuit definitions to implement all the 
Chemical reaction equations. This SPICE netlist is wrapped inside an appropriate set of SPICE commands to carry 
out analysis in the time domain (described below). The electrical circuit is then simulated using our modified 
version of the original 217,000-line SPICE3 simulator (Quarles, Newton, Pederson, and Sangiovanni-Vincentelli 
1994). We have embedded our modified version of SPICE as a submodule within our genetic programming system.  

Each individual chemical reaction network is exposed to nine time-domain signals (table 2) representing the 
time-varying concentrations of four enzymes (EC2.7.1.30, EC3.1.3.21, EC3.1.1.23, and EC3.1.1.3) over 30 half-
second time steps.  

Table 2 Variations in the levels of the four enzymes. 
Signal EC2.7.1.30 EC3.1.3.21 EC3.1.1.23 EC3.1.1.3 
1 Slope-Up Sawtooth Step-Down Step-Up 
2 Slope-Down Step-Up Sawtooth Step-Down 
3 Step-Down Slope-Up Slope-Down Step-Up 
4 Step-Up Slope-Down Step-Up Step-Down 
5 Sawtooth Step-Down Slope-Up Step-Up 
6 Sawtooth Step-Down Knock-Out Slope-Up 
7 Sawtooth Knock-Out Slope-Up Step-Down 
8 Knock-Out Step-Down Slope-Up Sawtooth 
9 Step-Down Slope-Up Sawtooth Knock-Out 

Fitness is the sum, over the 270 fitness cases, of the absolute value of the difference between the concentration 
of the end product of the individual reaction network and the observed concentration of diacyl-glycerol (C00165) 
(the data). The smaller the fitness, the better.  An individual that cannot be simulated by SPICE is assigned a high 
penalty value of fitness (10

8
). The number of hits is defined as the number of fitness cases (0 to 270) for which the 

concentration of the measured substances is within 5% of the observed data value.  

4.5. Control Parameters for the Run 
The population size, M, is 100,000.  A generous maximum size of 500 points (for functions and terminals) was 
established for each result-producing branch. The percentages of the genetic operations for each generation is 
58.5% one-offspring crossover on internal points of the program tree other than perturbable numerical value, 6.5% 
one-offspring crossover on points of the program tree other than perturbable numerical value, 1% mutation on 
points of the program tree other than perturbable numerical value, 20% mutation on perturbable numerical value, 



10% reproduction, 3% branch creation, and 2% subroutine deletion. The other parameters are the default values that 
we apply to a broad range of problems (Koza, Bennett, Andre, and Keane 1999).   

4.6. Termination 
The run was manually monitored and manually terminated when the fitness of many successive best-of-generation 
individuals appeared to have reached a plateau.  

5. Results 
The population for the initial random generation (generation 0) of a run of genetic programming is created at 
random. The fitness of the best individual (figure 3) from generation 0 is 86.4. This individual scores 126 hits (out 
of 270). Substance C00162 (fatty acid) is used as an input substance to this metabolic pathway; however, glycerol 
(C00116) and ATP (C00002) are not. Two of the four available reactions (EC 3.1.1.23 and EC 3.1.1.3) are used. 
However; a third reaction (EC 3.1.3.21) consumes a non-existent intermediate substance (INT_2) and the fourth 
reaction (EC 2.7.1.30) is not used at all. This metabolic pathway contains one important topological feature, namely 
the bifurcation of C00162 to two different reactions. However, this metabolic pathway does not contain any of the 
other important topological features of the correct metabolic pathway.  

In generation 10, the fitness of the best individual (figure 4) is 64.0. This individual scores 151 hits. This 
metabolic pathway is superior to the best individual of generation 0 in that it uses both C00162 (fatty acid) and 
glycerol (C00116) as external inputs. However, this metabolic pathway does not use ATP (C00002). This 
metabolic pathway is also defective in that it contains only two of the four reactions.  

In generation 25, the fitness of the best individual (figure 5) is 14.3. This individual scores 224 hits. This 
metabolic pathway contains all four of the available reactions. This metabolic pathway is more complex than 
previous best-of-generation individuals in that it contains two topological features not previously seen. First, this 
metabolic pathway contains an internal feedback loop in which one substance (glycerol C00116) is consumed by 
one reaction (catalyzed by enzyme EC 2.7.1.30), produced by another reaction (catalyzed by enzyme EC 3.1.3.21), 
and then supplied as substrate to the first reaction. Second, this metabolic pathway contains a place where there is 
an addition of quantities of one substance. Specifically, glycerol (C00116) comes from the reaction catalyzed by 
enzyme EC 3.1.3.21 and is also externally supplied. This metabolic pathway also contains two substances (C00116 
and C00162) where a substance is bifurcated to two different reactions.  

In generation 120, the fitness of the best individual (figure 6) is 2.33. The cofactor ATP (C00002) appears as an 
input to this metabolic pathway. This pathway has the same topology as the correct network. . However, the 
numerical values (sizing) is not yet correct and this individual scores only 255 hits.  

The best-of-run individual (figure 1) appears in generation 225. Its fitness is almost zero (0.054). This individual 
scores 270 hits (out of 270). In addition to having the same topology as the correct metabolic pathway, the velocity 
constants of three of the four reactions match the correct velocities (to three significant digits) while the fourth 
velocity differs by only about 2% from the correct velocity (i.e., the velocity of EC 3.1.3.21 is 1.17 compared with 
1.19 for the correct network).   

In the best-of-run network, the rate of the two-substrate, one-product reaction catalyzed by Triacylglycerol 
lipase (EC 3.1.1.3) (found at the very bottom of figures 1 and 3) that produces the final product diacyl-glycerol 
(C00165) is  

3.1.1.3] EC][2_][00162[45.1]00162[ INTC
dt

Cd
= . 

The rate of the two-substrate, one-product reaction catalyzed by Acylglycerol lipase (EC3.1.1.23) that produces 
intermediate substance INT_2 is  

3.1.1.3] EC][2_][00162[45.1-3.1.1.23] EC][00116][00162[95.1]2_[ INTCCC
dt

INTd
= . 

The rate of the two-substrate, one-product reaction catalyzed by Glycerol kinase (EC2.7.1.30) that produces 
intermediate substance INT_1 in the internal loop is  

3.1.3.21] EC][1_[17.1 -2.7.1.30] EC][00002][00116[69.1]1_[ INTCC
dt

INTd
= . 

The rate of supply and consumption of cofactor ATP (C00002) is  

2.7.1.30] EC][00002][00116[69.15.1][ CC
dt
ATPd

−=  
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Figure 3 Best of generation 0.   
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Figure 4 Best of generation 10.   
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Figure 5 Best of generation 25.   
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Figure 6 Best of generation 120.   



The rate of supply and consumption of fatty acids (C00162) is 

3.1.1.3] EC][2_][00162[45.1-3.1.1.23] EC][00116][00162[95.12.1]00162[ INTCCC
dt

Cd
−= . 

The rate of supply, consumption, and production of glycerol C00116 (the production being from the one-
substrate, one-product reaction catalyzed by Glycerol-1-phosphatase (EC3.1.3.21) in the internal loop) is  

3.1.1.23] EC][00116][00162[95.1-2.7.1.30] EC][00002][00116[69.1-3.1.3.21] EC][1_[17.15.0]00116[ CCCCINT
dt

Cd
+= . 

Notice that genetic programming created the entire metabolic pathway, including topological features such as 
the internal feedback loop, the bifurcation point, and the accumulation point, and including all numerical parameter 
values (sizing) in the pathway, using only the time-domain concentration values of C00165 (i.e., diacyl-glycerol, 
the final product). 

For additional details, see Koza, Mydlowec, Lanza, Yu, and Keane 2000. 

6. Conclusion 
Genetic programming automatically created a metabolic pathway involving four chemical reactions that took in 
glycerol and fatty acids as input, used ATP as a cofactor, and produced diacyl-glycerol as its final product. The 
metabolic pathway was created from 270 data points. The automatically created metabolic pathway contains three 
key topological features, including an internal feedback loop, a bifurcation point where one substance is distributed 
to two different reactions, and an accumulation point where one substance is accumulated from two sources.  
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