
Automatic Synthesis of Both the Topology and
Parameters for a Controller for a Three-Lag Plant with a

Five-Second Delay using Genetic Programming

John R. Koza
Stanford University, Stanford, California

koza@stanford.edu

Martin A. Keane
Econometrics Inc., Chicago, Illinois
makeane@ix.netcom.com

Jessen Yu

Genetic Programming Inc., Los Altos, California
jyu@cs.stanford.edu

William Mydlowec

Genetic Programming Inc., Los Altos, California
myd@cs.stanford.edu

Forrest H Bennett III
Genetic Programming Inc.

(Currently, FX Palo Alto Laboratory, Palo Alto, California)
forrest@evolute.com

Abstract

This paper describes how the process of synthesizing the design of both
the topology and the numerical parameter values (tuning) for a controller
can be automated by using genetic programming. Genetic programming
can be used to automatically make the decisions concerning the total
number of signal processing blocks to be employed in a controller, the type
of each block, the topological interconnections between the blocks, and the
values of all parameters for all blocks requiring parameters. In
synthesizing the design of controllers, genetic programming can
simultaneously optimize prespecified performance metrics (such as
minimizing the time required to bring the plant output to the desired
value), satisfy time-domain constraints (such as overshoot and disturbance
rejection), and satisfy frequency domain constraints. Evolutionary methods
have the advantage of not being encumbered by preconceptions that limit
its search to well-traveled paths. Genetic programming is applied to an
illustrative problem involving the design of a controller for a three-lag
plant with a significant (five-second) time delay in the external feedback
from the plant to the controller. A delay in the feedback makes the design
of an effective controller especially difficult.

1 Introduction
The process of creating (synthesizing) the design of a controller entails making
decisions concerning the total number of processing blocks to be employed in the
controller, the type of each signal processing block (e.g., lead, lag, gain, integrator,
differentiator, adder, inverter, subtractor, and multiplier), the values of all parameters
for all blocks requiring parameters, and the topological interconnections between the
signal processing blocks. The latter includes the question of whether or not to
employ internal feedback (i.e., feedback inside the controller).

The problem of synthesizing a controller to satisfy prespecified requirements is
sometimes solvable by analytic techniques (often oriented toward producing
conventional PID controllers). However, as Boyd and Barratt stated in Linear
Controller Design: Limits of Performance (1991),

"The challenge for controller design is to productively use the enormous
computing power available. Many current methods of computer-aided
controller design simply automate procedures developed in the 1930's
through the 1950's …"

This paper describes how genetic programming can be used to automatically
create both the topology and the numerical parameter values (i.e., the tuning) for a
controller directly from a high-level statement of the requirements of the controller.
Genetic programming can, if desired, simultaneously optimize prespecified
performance metrics (such as minimizing the time required to bring the plant output
to the desired value as measured by, say, the integral of the time-weighted absolute
error), satisfy time-domain constraints (involving, say, overshoot and disturbance
rejection), and satisfy frequency domain constraints. Evolutionary methods have the
advantage of not being encumbered by preconceptions that limit their search to well-
traveled paths.

Section 2 describes an illustrative problem of controller synthesis. Section 3
provides general background on genetic programming. Section 4 describes how
genetic programming is applied to control problems. Section 5 describes the
preparatory steps necessary to apply genetic programming to the illustrative control
problem. Section 6 presents the results.

2 Illustrative Problem
The illustrative problem entails creation of both the topology and parameter values
for a controller for a three-lag plant with a significant (five-second) time delay in the
external feedback from the plant output to the controller such that plant output
reaches the level of the reference signal in minimal time (as measured by the integral
of the time-weighted absolute error), such that the overshoot in response to a step
input is less than 2%, and such that the controller is robust in the face of disturbance
(added into the controller output). The delay in the feedback makes the design of an
effective controller especially difficult (Astrom and Hagglund 1995). The transfer
function of the plant is

3

5

)1(
)(

s
KesG

s

τ+
=

−

A controller presented in Astrom and Hagglund 1995 (page 225) delivers credible
performance on this problem for values of K = 1 and τ = 1.

To make the problem more realistic, we added an additional constraint (satisfied
by the controller presented in Astrom and Hagglund 1995) that the input to the plant
is limited to the range between -40 and +40 volts. The plant in this paper operates
over several different combinations of values for K and τ (whereas the controller
designed by Astrom and Hagglund was intended only for K = 1 and τ = 1).

3 Background on Genetic Programming
Genetic programming is an automatic technique for generating computer programs to
solve, or approximately solve, problems.

Genetic programming (Koza 1992; Koza and Rice 1992) is an extension of the
genetic algorithm (Holland 1975). Genetic programming is capable (Koza 1994a,
1994b) of evolving reusable, parametrized, hierarchically-called automatically
defined functions (ADFs) so that an overall program consists of a main result-
producing branch and one or more reusable and parameterizable automatically
defined functions (function-defining branches). In addition, architecture-altering
operations (Koza, Bennett, Andre, and Keane 1999; Koza, Bennett, Andre, Keane,
and Brave 1999) enable genetic programming to automatically determine the number
of automatically defined functions, the number of arguments that each possesses, and
the nature of the hierarchical references, if any, among such automatically defined
functions.

Genetic programming often creates novel designs because it is a probabilistic
process that is not encumbered by the preconceptions that often channel human
thinking down familiar paths. For example, genetic programming is capable of
synthesizing the design of both the topology and sizing for a wide variety of analog
electrical circuits from a high-level statement of the circuit's desired behavior and
characteristics (Koza, Bennett, Andre, and Keane 1999; Koza, Bennett, Andre,
Keane, and Brave 1999). Five of the evolved analog circuits in that book infringe on
previously issued patents while five others deliver the same functionality as
previously patented inventions in a novel way.

Additional information on current research in genetic programming can be found
in Banzhaf, Nordin, Keller, and Francone 1998; Langdon 1998; Ryan 1999; Kinnear
1994; Angeline and Kinnear 1996; Spector, Langdon, O'Reilly, and Angeline 1999;
Koza, Goldberg, Fogel, and Riolo 1996; Koza, Deb, Dorigo, Fogel, Garzon, Iba, and
Riolo 1997; Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon, Goldberg, Iba,
and Riolo 1998; Banzhaf, Poli, Schoenauer, and Fogarty 1998; Banzhaf, Daida,
Eiben, Garzon, Honavar, Jakiela, and Smith 1999; Poli, Nordin, Langdon, and
Fogarty 1999; at web sites such as www.genetic-programming.org; and in
the Genetic Programming and Evolvable Machines journal (from Kluwer Academic
Publishers).

4 Genetic Programming and Control
Controllers can be represented by block diagrams in which the blocks represent signal
processing functions, in which external points represent the controller's input(s) and
output(s), and in which cycles in the block diagram correspond to internal feedback

inside the controller. Genetic programming can be extended to the problem of
creating both the topology and parameter values for a controller by establishing a
mapping between the program trees used in genetic programming and the block
diagrams germane to controllers.

The number of result-producing branches in the to-be-evolved controller equals
the number of control variables that are to be passed from the controller to the plant.
Each result-producing branch is a composition of the functions and terminals from a
repertoire (below) of functions and terminals.

Program trees in the population during the initial random generation (generation
0) consist only of result-producing branch(es). Automatically defined functions are
introduced incrementally (and sparingly) into the population on subsequent
generations by means of the architecture-altering operations. Each automatically
defined function is a composition of the functions and terminals appropriate for
control problems, references to existing automatically defined functions, and
(possibly) dummy variables (formal parameters) that permit parameterization of the
automatically defined function. Automatically defined functions provide a
mechanism for internal feedback (recursion) within the to-be-evolved controller.
Automatically defined functions also provide a mechanism for reusing useful
substructures.

Each branch of each program tree in the initial random population is created in
accordance with a constrained syntactic structure. Each genetic operation executed by
genetic programming (crossover, mutation, reproduction, or architecture-altering
operation) produces offspring that comply with the constrained syntactic structure.

Genetic programming has recently been used to create a controller for a particular
two-lag plant and a three-lag plant (Koza, Keane, Yu, Bennett, and Mydlowec 2000).
Both of these genetically evolved controllers outperformed the controllers designed
by experts in the field of control using the criteria originally specified by the experts.

5 Preparatory Steps
Six major preparatory steps are required before applying genetic programming: (1)
determine the architecture of the program trees, (2) identify the terminals, (3) identify
the functions, (4) define the fitness measure, (5) choose control parameters for the
run, and (6) choose the termination criterion and method of result designation.
5.1 Program Architecture
Since there is one result-producing branch in the program tree for each output from
the controller and this problem involves a one-output controller, each program tree
has one result-producing branch. Each program tree in the initial random generation
(generation 0) has no automatically defined functions. However, in subsequent
generations, architecture-altering operations may insert and delete automatically
defined functions (up to a maximum of five per program tree).
5.2 Terminal Set
A constrained syntactic structure permits only a single perturbable numerical value to
appear as the argument for establishing each numerical parameter value for each
signal processing block requiring a parameter value. These numerical values initially
range from -5.0 to +5.0. These numerical values are perturbed during the run by a
Gaussian mutation operation that operates only on numerical values. Numerical

constants are later interpreted on a logarithmic scale so that they represent values in a
range of 10 orders of magnitude (Koza, Bennett, Andre, and Keane 1999).

The remaining terminals are time-domain signals. The terminal set, T, for the
result-producing branch and any automatically defined functions (except for the
perturbable numerical values mentioned above) is
T = {REFERENCE_SIGNAL, CONTROLLER_OUTPUT, PLANT_OUTPUT,

CONSTANT_0}.
Space does not permit a detailed description of the various terminals used herein

(although the meaning of the above terminals should be clear from their names). See
Koza, Keane, Yu, Bennett, and Mydlowec 2000 for details.
5.3 Function Set
The functions are signal processing functions that operate on time-domain signals
(the terminals in T). The function set, F, for the result-producing branch and any
automatically defined functions is
F = {GAIN, INVERTER, LEAD, LAG, LAG2,

DIFFERENTIAL_INPUT_INTEGRATOR, DIFFERENTIATOR,
ADD_SIGNAL, SUB_SIGNAL, ADD_3_SIGNAL, DELAY, ADF0, …,
ADF4}.

ADF0, …, ADF4 denote automatically defined functions added during the run by
architecture-altering operations.

The functionality of each of the above signal processing functions is suggested by
their names and is described in detail in Koza, Keane, Yu, Bennett, and Mydlowec
2000.
5.4 Fitness
Genetic programming is a probabilistic algorithm that searches the space of
compositions of the available functions and terminals. The search is guided by a
fitness measure. The fitness measure is a mathematical implementation of the high-
level requirements of the problem. The fitness measure is couched in terms of “what
needs to be done” not “how to do it.”

The fitness measure may incorporate any measurable, observable, or calculable
behavior or characteristic or combination of behaviors or characteristics. The fitness
measure for most problems of controller design is multi-objective in the sense that
there are several different (usually conflicting) requirements for the controller.

The fitness of each individual is determined by executing the program tree (i.e.,
the result-producing branch and any automatically defined functions that may be
invoked) to produce an interconnected sequence of signal processing blocks that
is, a block diagram for the controller. A SPICE netlist is then constructed from the
block diagram. The SPICE netlist for the resulting controller is wrapped inside an
appropriate set of SPICE commands. The controller is then simulated using our
modified version of the SPICE simulator. The 217,000-line SPICE3 simulator
(Quarles, Newton, Pederson, and Sangiovanni-Vincentelli 1994) is an industrial-
strength simulator. It is run as a submodule within our genetic programming system.
The SPICE simulator returns tabular output and other information from which the
fitness of the individual is then computed.

The fitness of a controller is measured using 13 elements consisting of 12 time-
domain-based elements based on a modified integral of time-weighted absolute error
(ITAE) and one time-domain-based element measuring disturbance rejection.

The fitness of an individual controller is the sum (i.e., linear combination) of the
detrimental contributions of these 13 elements of the fitness measure. The smaller the
sum, the better.

The first 12 elements of the fitness measure evaluate how quickly the controller
causes the plant to reach the reference signal and the controller's success in avoiding
overshoot. Two reference signals are used. The first reference signal is a step
function that rises from 0 to 1 volts at t = 100 milliseconds while the second rises
from 0 to 1 microvolts at t = 100 milliseconds. The two step functions are used to
deal with the non-linearity caused by the limiter. Two values of the time constant, τ,
are used (namely 0.5 and 1.0). Three values of K are used, namely 0.9, 1.0, and 1.1.
Exposing genetic programming to different combinations of values of step size, K,
and τ produces a robust controllers and also prevents genetic programming from
engaging in pole elimination. For each of these 12 fitness cases, a transient analysis
is performed in the time domain using the SPICE simulator. Table 1 shows the
elements of the fitness measure in its left-most four columns.

The contribution to fitness for each of these 12 elements of the fitness measure is
based on the integral of time-weighted absolute error (ITAE)

∫ −
=

36

5
))(()()5(

t
BCdtteAtet .

Because of the built-in five-second time delay, the integration runs from time t = 5
seconds to t = 36 seconds. Here e(t) is the difference (error) at time t between the
delayed plant output and the reference signal. The integral of time-weighted absolute
error penalizes differences that occur later more heavily than differences that occur
earlier.

We modified the integral of time-weighted absolute error in four ways. First, we
used a discrete approximation to the integral by considering 120 300-millisecond time
steps between t = 5 to t = 36 seconds. Second, we multiplied each fitness case by the
reciprocal of the amplitude of the reference signals so that both reference signals (1
microvolt and 1 volt) are equally influential. Specifically, B is a factor that is used to
normalize the contributions associated with the two step functions. B multiplies the
difference e(t) associated with the 1-volt step function by 1 and multiplies the
difference e(t) associated with the 1-microvolt step function by 106. Third, the
integral contains an additional weight, A, that varies with e(t). The function A weights
all variation up to 102% of the reference signal by a factor of 1.0, and heavily
penalizes overshoots over 2% by a factor 10.0. Fourth, the integral contains a special
weight, C, which is 5.0 for the two fitness cases for which K = 1 and τ = 1, and 1.0
otherwise.

The 13th element of the fitness measure is based on disturbance rejection. The
penalty is computed based on a time-domain analysis for 36.0 seconds. In this
analysis, the reference signal is held at a value of 0. A disturbance signal consisting
of a unit step is added to the CONTROLLER_OUTPUT at time t = 0 and the resulting
disturbed signal is provided as input to the plant. The detrimental contribution to
fitness is 500/36 times the time required to bring the plant output to within 20
millivolts of the reference signal of 0 volts (i.e., to reduce the effect to within 2% of

the 1-volt disturbance signal) assuming that the plant settles to within this range
within 36 seconds. If the plant does not settle to within this range within 36 seconds,
the detrimental contribution to fitness is 500 plus the absolute value of the plant
output in volts times 500. For example, if the effect of the disturbance was never
reduced below 1 volts, the detrimental contribution to fitness would be 1000.

A controller that cannot be simulated by SPICE is assigned a high penalty value
of fitness (108).
5.5 Control Parameters
The population size, M, was 500,000. A maximum size of 150 points (functions and
terminals) was established for each result-producing branch and a maximum size of
100 points was established for each automatically defined function. The other
parameters for controlling the runs are the default values that we apply to a broad
range of problems (Koza, Bennett, Andre, and Keane 1999).
5.6 Termination
The run was manually monitored and manually terminated when the fitness of many
successive best-of-generation individuals appeared to have reached a plateau. The
single best-so-far individual is harvested and designated as the result of the run.
5.7 Parallel Implementation
This problem was run on a home-built Beowulf-style (Sterling, Salmon, Becker, and
Savarese 1999; Bennett, Koza, Shipman, and Stiffelman 1999) parallel cluster
computer system consisting of 1,000 350 MHz Pentium II processors (each
accompanied by 64 megabytes of RAM). The system has a 350 MHz Pentium II
computer as host. The processing nodes are connected with a 100 megabit-per-second
Ethernet. The processing nodes and the host use the Linux operating system. The
distributed genetic algorithm with unsynchronized generations and semi-isolated
subpopulations was used with a subpopulation size of Q = 500 at each of D = 1,000
demes. Two processors are housed in each of the 500 physical boxes of the system.
As each processor (asynchronously) completes a generation, four boatloads of
emigrants from each subpopulation (selected probabilistically based on fitness) are
dispatched to each of the four toroidally adjacent processors. The migration rate is
2% (but 10% if the toroidally adjacent node is in the same physical box).

6 Results
The best individual in generation 0 has a fitness of 1926.498.

The best-of-run controller emerged in generation 129 (figure 1). This best-of-run
controller has a fitness of 522.605. The result-producing branch of this best-of-run
individual has 119 points (functions and terminals) and 95, 93, and 70 points,
respectively, in its three automatically defined functions. Note that genetic
programming employed a 4.8 second delay (comparable to the five-second plant
delay) in the transfer function of the evolved pre-filter. This best-of-run controller
from generation 129 has a better value of fitness for a step size of 1 volt, an internal
gain, K, of 1.0, and a time-constant, τ,of 1.0 (the specific case considered by Astrom
and Hagglund 1995).

Figure 2 compares the time-domain response to step input of the best-of-run
controller from generation 129 (triangles) with the controller in Astrom and

Hagglund 1995 (squares) for a step size of 1 volt, an internal gain, K, of 1.0, and a
time-constant, τ,of 1.0.

Figure 3 compares the disturbance rejection of the best-of-run controller from
generation 129 (triangles) with the controller in Astrom and Hagglund 1995 (squares)
for a step size of 1 volt, an internal gain, K, of 1.0, and a time-constant, τ,of 1.0.

Reference

Signal

)00106.11)(308.41(80531.4282.0)274.1600.71(718.0 sssess

-
+

Plant

Control
Variable

)01669.01)(0317.01(
1215.0

sss

)20837.0238.01)(2205.496.31(ssss

++

++++

++++ -

Plant
Output

+

Figure 1 Best-of-run controller from generation 129 for three-lag plant with five-second delay.

Table 1 compares the fitness of the best-of-run controller from generation 129 and

the Astrom and Hagglund 1995. Two of the entries are divided by the special weight
C = 5.0. All 13 entries are better for the genetically evolved controller than for the
Astrom and Hagglund 1995 controller.

Table 1 Fitness of two controllers for three-lag plant with five-second delay.
Element Step

size
(volts)

Plant
internal
Gain, K

Time
constan
t, τ

Best-of-run
generation
129

Astrom and
Hagglund
controller

0 1 0.9 1.0 13.7 27.4
1 1 0.9 0.5 25.6 38.2
2 1 1.0 1.0 34.0 / 5 = 6.8 22.9
3 1 1.0 0.5 18.6 29.3
4 1 1.1 1.0 4.4 25.4
5 1 1.1 0.5 16.3 22.7
6 10-6 0.9 1.0 13.2 27.4
7 10-6 0.9 0.5 25.5 38.2
8 10-6 1.0 1.0 30.7 / 5 = 6.1 22.9
9 10-6 1.0 0.5 18.5 29.3
10 10-6 1.1 1.0 4.3 25.4
11 10-6 1.1 0.5 16.2 22.7
Disturbance 1 1 1 302 373

References
Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in Genetic

Programming 2. Cambridge, MA: The MIT Press.
Astrom, Karl J. and Hagglund, Tore. 1995. PID Controllers: Theory, Design, and

Tuning. 2nd Edition. Research Triangle Park, NC: Instrument Society of America.
Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E., Garzon, Max H., Honavar, Vasant,

Jakiela, Mark, and Smith, Robert E. (editors). 1999. GECCO-99: Proceedings of

the Genetic and Evolutionary Computation Conference, July 13-17, 1999,
Orlando, Florida USA. San Francisco, CA: Morgan Kaufmann.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D. 1998.
Genetic Programming – An Introduction. San Francisco, CA: Morgan Kaufmann
and Heidelberg: dpunkt.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C.
1998. Genetic Programming: First European Workshop. EuroGP'98. Paris,
France, April 1998 Proceedings. Paris, France. April l998. Lecture Notes in
Computer Science. Volume 1391. Berlin, Germany: Springer-Verlag.

Bennett, Forrest H III, Koza, John R., Shipman, James, and Stiffelman, Oscar. 1999.
Building a parallel computer system for $18,000 that performs a half peta-flop per
day. In Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E., Garzon, Max H., Honavar,
Vasant, Jakiela, Mark, and Smith, Robert E. (editors). 1999. GECCO-99:
Proceedings of the Genetic and Evolutionary Computation Conference, July 13-
17, 1999, Orlando, Florida USA. San Francisco, CA: Morgan Kaufmann. 1484 -
1490.

Boyd, S. P. and Barratt, C. H. 1991. Linear Controller Design: Limits of
Performance. Englewood Cliffs, NJ: Prentice Hall.

Holland, John H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
University of Michigan Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming.
Cambridge, MA: The MIT Press.

Koza, John R. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II Videotape: The Next Generation.
Cambridge, MA: MIT Press.

Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo,
Marco, Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and
Riolo, Rick. (editors). 1998. Genetic Programming 1998: Proceedings of the Third
Annual Conference. San Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1999.
Genetic Programming III: Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann. Forthcoming.

Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A., and Brave
Scott. 1999. Genetic Programming III Videotape: Human-Competitive Machine
Intelligence. San Francisco, CA: Morgan Kaufmann.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba,
Hitoshi, and Riolo, R. L. (editors). 1997. Genetic Programming 1997: Proceedings
of the Second Annual Conference San Francisco, CA: Morgan Kaufmann.

Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors).
1996. Genetic Programming 1996: Proceedings of the First Annual Conference.
Cambridge, MA: MIT Press.

Koza, John R., Keane, Martin A., Yu, Jessen, Bennett, Forrest H III, and Mydlowec,
William. 2000. Automatic creation of human-competitive programs and controllers
by means of genetic programming. Genetic Programming and Evolvable
Machines. (1) 121 - 164.

Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie.
Cambridge, MA: MIT Press.

Langdon, William B. 1998. Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming! Amsterdam: Kluwer.

Poli, Riccardo, Nordin, Peter, Langdon, William B., and Fogarty, Terence C. 1999.
Genetic Programming: Second European Workshop. EuroGP'99. Proceedings.
Lecture Notes in Computer Science. Volume 1598. Berlin: Springer-Verlag.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and Sangiovanni-Vincentelli, A.
1994. SPICE 3 Version 3F5 User's Manual. Department of Electrical Engineering
and Computer Science, Univ. of California. Berkeley, CA. March 1994.

Ryan, Conor. 1999. Automatic Re-engineering of Software Using Genetic
Programming. Amsterdam: Kluwer Academic Publishers.

Spector, Lee, Langdon, William B., O'Reilly, Una-May, and Angeline, Peter
(editors). 1999. Advances in Genetic Programming 3. Cambridge, MA: MIT Press.

Sterling, Thomas L., Salmon, John, Becker, D. J., and Savarese, D. F. 1999. How to
Build a Beowulf: A Guide to Implementation and Application of PC Clusters.
Cambridge, MA: MIT Press.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

Time

Vo
lt

ag
e

Figure 2 Comparison for step input.

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

Time

Vo
lt

ag
e

Figure 3 Comparison for disturbance rejection.

