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Abstract 

This paper describes how the process of synthesizing the design of both 
the topology and the numerical parameter values (tuning) for a controller 
can be automated by using genetic programming. Genetic programming 
can be used to automatically make the decisions concerning the total 
number of signal processing blocks to be employed in a controller, the type 
of each block, the topological interconnections between the blocks, and the 
values of all parameters for all blocks requiring parameters. In 
synthesizing the design of controllers, genetic programming can 
simultaneously optimize prespecified performance metrics (such as 
minimizing the time required to bring the plant output to the desired 
value), satisfy time-domain constraints (such as overshoot and disturbance 
rejection), and satisfy frequency domain constraints. Evolutionary methods 
have the advantage of not being encumbered by preconceptions that limit 
its search to well-traveled paths. Genetic programming is applied to an 
illustrative problem involving the design of a controller for a three-lag 
plant with a significant (five-second) time delay in the external feedback 
from the plant to the controller. A delay in the feedback makes the design 
of an effective controller especially difficult.  
 



1 Introduction 
The process of creating (synthesizing) the design of a controller entails making 
decisions concerning the total number of processing blocks to be employed in the 
controller, the type of each signal processing block (e.g., lead, lag, gain, integrator, 
differentiator, adder, inverter, subtractor, and multiplier), the values of all parameters 
for all blocks requiring parameters, and the topological interconnections between the 
signal processing blocks.  The latter includes the question of whether or not to 
employ internal feedback (i.e., feedback inside the controller).  

The problem of synthesizing a controller to satisfy prespecified requirements is 
sometimes solvable by analytic techniques (often oriented toward producing 
conventional PID controllers). However, as Boyd and Barratt stated in Linear 
Controller Design: Limits of Performance (1991), 

"The challenge for controller design is to productively use the enormous 
computing power available. Many current methods of computer-aided 
controller design simply automate procedures developed in the 1930's 
through the 1950's …" 

This paper describes how genetic programming can be used to automatically 
create both the topology and the numerical parameter values (i.e., the tuning) for a 
controller directly from a high-level statement of the requirements of the controller. 
Genetic programming can, if desired, simultaneously optimize prespecified 
performance metrics (such as minimizing the time required to bring the plant output 
to the desired value as measured by, say, the integral of the time-weighted absolute 
error), satisfy time-domain constraints (involving, say, overshoot and disturbance 
rejection), and satisfy frequency domain constraints.  Evolutionary methods have the 
advantage of not being encumbered by preconceptions that limit their search to well-
traveled paths.  

Section 2 describes an illustrative problem of controller synthesis. Section 3 
provides general background on genetic programming. Section 4 describes how 
genetic programming is applied to control problems. Section 5 describes the 
preparatory steps necessary to apply genetic programming to the illustrative control 
problem. Section 6 presents the results.  

2 Illustrative Problem 
The illustrative problem entails creation of both the topology and parameter values 
for a controller for a three-lag plant with a significant (five-second) time delay in the 
external feedback from the plant output to the controller such that plant output 
reaches the level of the reference signal in minimal time (as measured by the integral 
of the time-weighted absolute error), such that the overshoot in response to a step 
input is less than 2%, and such that the controller is robust in the face of disturbance 
(added into the controller output).  The delay in the feedback makes the design of an 
effective controller especially difficult (Astrom and Hagglund 1995). The transfer 
function of the plant is 
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A controller presented in Astrom and Hagglund 1995 (page 225) delivers credible 
performance on this problem for values of K = 1 and τ = 1.  

To make the problem more realistic, we added an additional constraint (satisfied 
by the controller presented in Astrom and Hagglund 1995) that the input to the plant 
is limited to the range between -40 and +40 volts. The plant in this paper operates 
over several different combinations of values for K and τ (whereas the controller 
designed by Astrom and Hagglund was intended only for K = 1 and τ = 1).  

3 Background on Genetic Programming 
Genetic programming is an automatic technique for generating computer programs to 
solve, or approximately solve, problems.  

Genetic programming (Koza 1992; Koza and Rice 1992) is an extension of the 
genetic algorithm (Holland 1975). Genetic programming is capable (Koza 1994a, 
1994b) of evolving reusable, parametrized, hierarchically-called automatically 
defined functions (ADFs) so that an overall program consists of a main result-
producing branch and one or more reusable and parameterizable automatically 
defined functions (function-defining branches). In addition, architecture-altering 
operations (Koza, Bennett, Andre, and Keane 1999; Koza, Bennett, Andre, Keane, 
and Brave 1999) enable genetic programming to automatically determine the number 
of automatically defined functions, the number of arguments that each possesses, and 
the nature of the hierarchical references, if any, among such automatically defined 
functions.  

Genetic programming often creates novel designs because it is a probabilistic 
process that is not encumbered by the preconceptions that often channel human 
thinking down familiar paths. For example, genetic programming is capable of 
synthesizing the design of both the topology and sizing for a wide variety of analog 
electrical circuits from a high-level statement of the circuit's desired behavior and 
characteristics (Koza, Bennett, Andre, and Keane 1999; Koza, Bennett, Andre, 
Keane, and Brave 1999). Five of the evolved analog circuits in that book infringe on 
previously issued patents while five others deliver the same functionality as 
previously patented inventions in a novel way.  

Additional information on current research in genetic programming can be found 
in Banzhaf, Nordin, Keller, and Francone 1998; Langdon 1998; Ryan 1999; Kinnear 
1994; Angeline and Kinnear 1996; Spector, Langdon, O'Reilly, and Angeline 1999; 
Koza, Goldberg, Fogel, and Riolo 1996; Koza, Deb, Dorigo, Fogel, Garzon, Iba, and 
Riolo 1997; Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, 
and Riolo 1998; Banzhaf, Poli, Schoenauer, and Fogarty 1998; Banzhaf, Daida, 
Eiben, Garzon, Honavar, Jakiela, and Smith 1999; Poli, Nordin, Langdon, and 
Fogarty 1999; at web sites such as www.genetic-programming.org; and in 
the Genetic Programming and Evolvable Machines journal (from Kluwer Academic 
Publishers).   

4 Genetic Programming and Control 
Controllers can be represented by block diagrams in which the blocks represent signal 
processing functions, in which external points represent the controller's input(s) and 
output(s), and in which cycles in the block diagram correspond to internal feedback 



inside the controller. Genetic programming can be extended to the problem of 
creating both the topology and parameter values for a controller by establishing a 
mapping between the program trees used in genetic programming and the block 
diagrams germane to controllers.   

The number of result-producing branches in the to-be-evolved controller equals 
the number of control variables that are to be passed from the controller to the plant. 
Each result-producing branch is a composition of the functions and terminals from a 
repertoire (below) of functions and terminals. 

Program trees in the population during the initial random generation (generation 
0) consist only of result-producing branch(es). Automatically defined functions are 
introduced incrementally (and sparingly) into the population on subsequent 
generations by means of the architecture-altering operations. Each automatically 
defined function is a composition of the functions and terminals appropriate for 
control problems, references to existing automatically defined functions, and 
(possibly) dummy variables (formal parameters) that permit parameterization of the 
automatically defined function.  Automatically defined functions provide a 
mechanism for internal feedback (recursion) within the to-be-evolved controller. 
Automatically defined functions also provide a mechanism for reusing useful 
substructures.   

Each branch of each program tree in the initial random population is created in 
accordance with a constrained syntactic structure. Each genetic operation executed by 
genetic programming (crossover, mutation, reproduction, or architecture-altering 
operation) produces offspring that comply with the constrained syntactic structure.   

Genetic programming has recently been used to create a controller for a particular 
two-lag plant and a three-lag plant (Koza, Keane, Yu, Bennett, and Mydlowec 2000).  
Both of these genetically evolved controllers outperformed the controllers designed 
by experts in the field of control using the criteria originally specified by the experts. 

5 Preparatory Steps 
Six major preparatory steps are required before applying genetic programming: (1) 
determine the architecture of the program trees, (2) identify the terminals, (3) identify 
the functions, (4) define the fitness measure, (5) choose control parameters for the 
run, and (6) choose the termination criterion and method of result designation.  
5.1 Program Architecture 
Since there is one result-producing branch in the program tree for each output from 
the controller and this problem involves a one-output controller, each program tree 
has one result-producing branch. Each program tree in the initial random generation 
(generation 0) has no automatically defined functions. However, in subsequent 
generations, architecture-altering operations may insert and delete automatically 
defined functions (up to a maximum of five per program tree).  
5.2 Terminal Set 
A constrained syntactic structure permits only a single perturbable numerical value to 
appear as the argument for establishing each numerical parameter value for each 
signal processing block requiring a parameter value. These numerical values initially 
range from -5.0 to +5.0. These numerical values are perturbed during the run by a 
Gaussian mutation operation that operates only on numerical values. Numerical 



constants are later interpreted on a logarithmic scale so that they represent values in a 
range of 10 orders of magnitude (Koza, Bennett, Andre, and Keane 1999).   

The remaining terminals are time-domain signals. The terminal set, T, for the 
result-producing branch and any automatically defined functions (except for the 
perturbable numerical values mentioned above) is 
T = {REFERENCE_SIGNAL, CONTROLLER_OUTPUT, PLANT_OUTPUT, 

CONSTANT_0}.  
Space does not permit a detailed description of the various terminals used herein 

(although the meaning of the above terminals should be clear from their names). See 
Koza, Keane, Yu, Bennett, and Mydlowec 2000 for details.  
5.3 Function Set 
The functions are signal processing functions that operate on time-domain signals 
(the terminals in T). The function set, F, for the result-producing branch and any 
automatically defined functions is 
F = {GAIN, INVERTER, LEAD, LAG, LAG2, 

DIFFERENTIAL_INPUT_INTEGRATOR, DIFFERENTIATOR, 
ADD_SIGNAL, SUB_SIGNAL, ADD_3_SIGNAL, DELAY, ADF0, …, 
ADF4}.  

ADF0, …, ADF4 denote automatically defined functions added during the run by 
architecture-altering operations.  

The functionality of each of the above signal processing functions is suggested by 
their names and is described in detail in Koza, Keane, Yu, Bennett, and Mydlowec 
2000.  
5.4 Fitness 
Genetic programming is a probabilistic algorithm that searches the space of 
compositions of the available functions and terminals. The search is guided by a 
fitness measure. The fitness measure is a mathematical implementation of the high-
level requirements of the problem. The fitness measure is couched in terms of “what 
needs to be done”  not “how to do it.”  

The fitness measure may incorporate any measurable, observable, or calculable 
behavior or characteristic or combination of behaviors or characteristics. The fitness 
measure for most problems of controller design is multi-objective in the sense that 
there are several different (usually conflicting) requirements for the controller.  

The fitness of each individual is determined by executing the program tree (i.e., 
the result-producing branch and any automatically defined functions that may be 
invoked) to produce an interconnected sequence of signal processing blocks  that 
is, a block diagram for the controller. A SPICE netlist is then constructed from the 
block diagram. The SPICE netlist for the resulting controller is wrapped inside an 
appropriate set of SPICE commands.  The controller is then simulated using our 
modified version of the SPICE simulator. The 217,000-line SPICE3 simulator 
(Quarles, Newton, Pederson, and Sangiovanni-Vincentelli 1994) is an industrial-
strength simulator. It is run as a submodule within our genetic programming system. 
The SPICE simulator returns tabular output and other information from which the 
fitness of the individual is then computed.  



The fitness of a controller is measured using 13 elements consisting of 12 time-
domain-based elements based on a modified integral of time-weighted absolute error 
(ITAE) and one time-domain-based element measuring disturbance rejection.  

The fitness of an individual controller is the sum (i.e., linear combination) of the 
detrimental contributions of these 13 elements of the fitness measure. The smaller the 
sum, the better.  

The first 12 elements of the fitness measure evaluate how quickly the controller 
causes the plant to reach the reference signal and the controller's success in avoiding 
overshoot.  Two reference signals are used.  The first reference signal is a step 
function that rises from 0 to 1 volts at t = 100 milliseconds while the second rises 
from 0 to 1 microvolts at t = 100 milliseconds.  The two step functions are used to 
deal with the non-linearity caused by the limiter.  Two values of the time constant, τ, 
are used (namely 0.5 and 1.0).  Three values of K are used, namely 0.9, 1.0, and 1.1.  
Exposing genetic programming to different combinations of values of step size, K, 
and τ produces a robust controllers and also prevents genetic programming from 
engaging in pole elimination.  For each of these 12 fitness cases, a transient analysis 
is performed in the time domain using the SPICE simulator. Table 1 shows the 
elements of the fitness measure in its left-most four columns.   

The contribution to fitness for each of these 12 elements of the fitness measure is 
based on the integral of time-weighted absolute error (ITAE) 
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Because of the built-in five-second time delay, the integration runs from time t = 5 
seconds to t = 36 seconds. Here e(t) is the difference (error) at time t between the 
delayed plant output and the reference signal. The integral of time-weighted absolute 
error penalizes differences that occur later more heavily than differences that occur 
earlier.   

We modified the integral of time-weighted absolute error in four ways.  First, we 
used a discrete approximation to the integral by considering 120 300-millisecond time 
steps between t = 5 to t = 36 seconds. Second, we multiplied each fitness case by the 
reciprocal of the amplitude of the reference signals so that both reference signals (1 
microvolt and 1 volt) are equally influential. Specifically, B is a factor that is used to 
normalize the contributions associated with the two step functions. B multiplies the 
difference e(t) associated with the 1-volt step function by 1 and multiplies the 
difference e(t) associated with the 1-microvolt step function by 106. Third, the 
integral contains an additional weight, A, that varies with e(t). The function A weights 
all variation up to 102% of the reference signal by a factor of 1.0, and heavily 
penalizes overshoots over 2% by a factor 10.0. Fourth, the integral contains a special 
weight, C, which is 5.0 for the two fitness cases for which K = 1 and τ = 1, and 1.0 
otherwise. 

The 13th element of the fitness measure is based on disturbance rejection. The 
penalty is computed based on a time-domain analysis for 36.0 seconds. In this 
analysis, the reference signal is held at a value of 0. A disturbance signal consisting 
of a unit step is added to the CONTROLLER_OUTPUT at time t = 0 and the resulting 
disturbed signal is provided as input to the plant. The detrimental contribution to 
fitness is 500/36 times the time required to bring the plant output to within 20 
millivolts of the reference signal of 0 volts (i.e., to reduce the effect to within 2% of 



the 1-volt disturbance signal) assuming that the plant settles to within this range 
within 36 seconds. If the plant does not settle to within this range within 36 seconds, 
the detrimental contribution to fitness is 500 plus the absolute value of the plant 
output in volts times 500. For example, if the effect of the disturbance was never 
reduced below 1 volts, the detrimental contribution to fitness would be 1000.  

A controller that cannot be simulated by SPICE is assigned a high penalty value 
of fitness (108).  
5.5 Control Parameters 
The population size, M, was 500,000.  A maximum size of 150 points (functions and 
terminals) was established for each result-producing branch and a maximum size of 
100 points was established for each automatically defined function.  The other 
parameters for controlling the runs are the default values that we apply to a broad 
range of problems (Koza, Bennett, Andre, and Keane 1999).  
5.6 Termination 
The run was manually monitored and manually terminated when the fitness of many 
successive best-of-generation individuals appeared to have reached a plateau. The 
single best-so-far individual is harvested and designated as the result of the run.  
5.7 Parallel Implementation 
This problem was run on a home-built Beowulf-style (Sterling, Salmon, Becker, and 
Savarese 1999; Bennett, Koza, Shipman, and Stiffelman 1999) parallel cluster 
computer system consisting of 1,000 350 MHz Pentium II processors (each 
accompanied by 64 megabytes of RAM). The system has a 350 MHz Pentium II 
computer as host. The processing nodes are connected with a 100 megabit-per-second 
Ethernet. The processing nodes and the host use the Linux operating system. The 
distributed genetic algorithm with unsynchronized generations and semi-isolated 
subpopulations was used with a subpopulation size of Q = 500 at each of D = 1,000 
demes. Two processors are housed in each of the 500 physical boxes of the system. 
As each processor (asynchronously) completes a generation, four boatloads of 
emigrants from each subpopulation (selected probabilistically based on fitness) are 
dispatched to each of the four toroidally adjacent processors. The migration rate is 
2% (but 10% if the toroidally adjacent node is in the same physical box).   

6 Results 
The best individual in generation 0 has a fitness of 1926.498.  

The best-of-run controller emerged in generation 129 (figure 1).  This best-of-run 
controller has a fitness of 522.605. The result-producing branch of this best-of-run 
individual has 119 points (functions and terminals) and 95, 93, and 70 points, 
respectively, in its three automatically defined functions.  Note that genetic 
programming employed a 4.8 second delay (comparable to the five-second plant 
delay) in the transfer function of the evolved pre-filter.  This best-of-run controller 
from generation 129 has a better value of fitness for a step size of 1 volt, an internal 
gain, K, of 1.0, and a time-constant, τ,of 1.0 (the specific case considered by Astrom 
and Hagglund 1995).   

Figure 2 compares the time-domain response to step input of the best-of-run 
controller from generation 129 (triangles) with the controller in Astrom and 



Hagglund 1995 (squares) for a step size of 1 volt, an internal gain, K, of 1.0, and a 
time-constant, τ,of 1.0.   

Figure 3 compares the disturbance rejection of the best-of-run controller from 
generation 129 (triangles) with the controller in Astrom and Hagglund 1995 (squares) 
for a step size of 1 volt, an internal gain, K, of 1.0, and a time-constant, τ,of 1.0.   

 
Reference

Signal

)00106.11)(308.41(80531.4282.0)274.1600.71(718.0 sssess       

-
+

Plant

Control
Variable

)01669.01)(0317.01(
1215.0

sss   

)20837.0238.01)(2205.496.31( ssss     

++

++++

++++ -

Plant
Output

+

 
Figure 1 Best-of-run controller from generation 129 for three-lag plant with five-second delay.  

 
Table 1 compares the fitness of the best-of-run controller from generation 129 and 

the Astrom and Hagglund 1995.  Two of the entries are divided by the special weight 
C = 5.0.  All 13 entries are better for the genetically evolved controller than for the 
Astrom and Hagglund 1995 controller.   

 
Table 1 Fitness of two controllers for three-lag plant with five-second delay.  
Element Step 

size 
(volts) 

Plant 
internal 
Gain, K 

Time 
constan
t, τ 

Best-of-run 
generation 
129 

Astrom and 
Hagglund 
controller 

0 1 0.9 1.0 13.7 27.4 
1 1 0.9 0.5 25.6 38.2 
2 1 1.0 1.0 34.0 / 5 = 6.8 22.9 
3 1 1.0 0.5 18.6 29.3 
4 1 1.1 1.0  4.4 25.4 
5 1 1.1 0.5 16.3 22.7 
6 10-6 0.9 1.0 13.2 27.4 
7 10-6 0.9 0.5 25.5 38.2 
8 10-6 1.0 1.0 30.7 / 5 = 6.1 22.9 
9 10-6 1.0 0.5 18.5 29.3 
10 10-6 1.1 1.0 4.3 25.4 
11 10-6 1.1 0.5 16.2 22.7 
Disturbance 1 1 1 302 373 
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Figure 2 Comparison for step input.   
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Figure 3 Comparison for disturbance rejection.   


