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Abstract 
The concentrations of substances 
participating in networks of chemical 
reactions are modeled by non-linear 
continuous-time differential equations. 
Recent work has demonstrated that genetic 
programming is capable of automatically 
creating complex networks (e.g., analog 
electrical circuits, controllers) whose 
behavior is modeled by linear and non-
linear continuous-time differential 
equations and whose behavior matches 
prespecified output values. This paper 
describes how genetic programming can be 
used to automatically synthesize (reverse 
engineer) both the topology of the network 
of chemical reactions and the rates (sizing) 
of each reaction of a network such that the 
behavior of the automatically created 
network matches the observed time-
domain data. Genetic programming has 
automatically created metabolic pathways 
that contain noteworthy topological 
features, such as an internal feedback loop, 
a bifurcation point where one substance is 
distributed to two different reactions, and 
an accumulation point where one substance 
is accumulated from two sources.  
 

1 INTRODUCTION 
Considerable amounts of time-domain data are now 
becoming available concerning the concentration of 
biologically important chemicals in living organisms. 
Such data include both gene expression data (obtained 
from microarrays) and data on the concentration of 
substances participating in metabolic pathways 
(Ptashne 1992; McAdams and Shapiro 1995; Loomis 
and Sternberg 1995; Arkin, Shen, and Ross 1997; Yuh, 
Bolouri, and Davidson 1998; Laing, Fuhrman, and 
Somogyi 1998; Mendes and Kell 1998; D'haeseleer, 

Wen, Fuhrman, and Somogyi 1999; Bower and Bolouri 
2000).  

A living cell can be viewed as a dynamical system 
in which a large number of different substances react 
continuously and non-linearly with one another. In 
order to understand the behavior of a continuous non-
linear dynamical system with numerous interacting 
parts, it is usually insufficient to study behavior of each 
part in isolation. Instead, the behavior must usually be 
analyzed as a whole (Tomita et al. 1999). The 
concentrations of substrates, products, and catalysts 
(e.g., enzymes) participating in chemical reactions are 
modeled by non-linear continuous-time differential 
equations, such as the Michaelis-Menten equations 
(Voit 2000).  

The question arises as to whether it is possible to 
start with observed time-domain concentrations of 
substances and automatically create both the topology 
of the network of chemical reactions and the rates of 
each reaction that produced the observed data  that 
is, to automatically reverse engineer the network.  

Recent work (Koza, Bennett, Andre, and Keane 
1999; Koza, Bennett, Andre, Keane, and Brave 1999) 
has demonstrated that genetic programming can 
automatically create complex networks that exhibit 
prespecified behavior in fields where the network's 
behavior is governed by differential equations (both 
linear and non-linear). For example, genetic 
programming is capable of automatically creating both 
the topology and sizing (component values) for analog 
electrical circuits (e.g., filters, amplifiers, 
computational circuits) composed of transistors, 
capacitors, resistors, and other components merely by 
specifying the circuit's output  that is, the output data 
values that would be observed if one already had the 
circuit. This reverse engineering of circuits from data is 
performed by genetic programming even though there 
is no general mathematical method for creating the 
topology and sizing of analog electrical circuits from 
the circuit's desired (or observed) behavior (Koza, 
Bennett, Andre, and Keane 1999). Seven of these 
circuits infringe on previously issued patents. Others 



duplicate the functionality of previously patented 
inventions in a novel way.  

As another example, genetic programming is 
capable of automatically creating both the topology and 
sizing (tuning) for controllers composed of time-
domain blocks such as integrators, differentiators, 
multipliers, adders, delays, leads, and lags merely by 
specifying the controller's effect on the to-be-controlled 
plant (Koza, Keane, Yu, Bennett, and Mydlowec 2000). 
This reverse engineering of controllers from data is 
performed by genetic programming even though there 
is no general mathematical method for creating the 
topology and sizing for controllers from the controller's 
behavior. Two of the automatically created controllers 
infringe on previously issued patents.  

As yet another example, it is possible to 
automatically create antennas composed of a network 
of wires merely by specifying the antenna's high-level 
specifications (Comisky, Yu, and Koza 2000).  

Our approach to the problem of automatically 
creating both the topology and sizing of a network of 
chemical reactions involves 

(1) establishing a representation involving program 
trees (composed of functions and terminals) for 
chemical networks,  
(2) converting each individual program tree in the 
population into an electrical circuit representing a 
network of chemical reactions,  
(3) obtaining the behavior of the network of 
chemical reactions by simulating the electrical 
circuit,  
(4) defining a fitness measure that measures how 
well the behavior of an individual network in the 
population matches the observed data, and 

(5) applying genetic programming to breed a 
population of improving program trees using the 
fitness measure.  

2 STATEMENT OF PROBLEM 
The goal is to automatically create both the topology 
and sizing of a network of chemical reactions.  

The topology of a network of chemical reactions 
comprises (1) the number of substrates consumed by 
each reaction, (2) the number of products produced by 
each reaction, (3) the pathways supplying the substrates 
(either from external sources or other reactions) to the 
reactions, and (4) the pathways dispersing the reaction's 
products (either to other reactions or external outputs). 
The sizing of a network of chemical reactions consists 
of the numerical values representing the rates of each 
reaction.  

We chose, as an illustrative problem, a network 
(figure 1) that incorporates three noteworthy 
topological features. These features include an internal 
feedback loop, a bifurcation point (where one substance 
is distributed to two different reactions), and an 
accumulation point (where one substance is 
accumulated from two sources). The particular chosen 
network is part of a phospholipid cycle, as presented in 
the E-CELL cell simulation model (Tomita et al. 1999). 
The network's external inputs are glycerol and fatty 
acid. The network's final product is diacyl-glycerol. 
The network's four reactions are catalyzed by the 
enzyme Glycerol kinase (called EC2.7.1.30 by the 
Enzyme Nomenclature Commission), Glycerol-1-
phosphatase (EC3.1.3.21), Acylglycerol lipase 
(EC3.1.1.23), and Triacylglycerol lipase (EC3.1.1.3).  
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Figure 1 Best of run individual from generation 225.   
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Figure 2 Program tree corresponding to network of chemical reactions of figure 1.   
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Figure 3 Electrical circuit corresponding to the chemical reaction network of figure 1.   

 
 

3 REPRESENTATION OF A 
NETWORK OF CHEMICAL 
REACTIONS 

Each program tree represents an interconnected 
network of chemical reactions involving various 
substances. A chemical reaction may consume one or 
two substances and may produce one or two 
substances. The consumed substances may be 
external input substances or may be intermediate 

substances produced by reactions. The reactions, 
enzymes, and substances of a network may be 
completely represented by a program tree that 
contains  

• internal nodes representing reaction functions, 
• internal nodes representing selector functions 
that select the reaction's first versus the reaction's 
second product (if any),  



• external points (leaves) representing substances 
that are consumed and produced by a reaction, 
• external points representing enzymes that 
catalyze a reaction, and.  
• external points representing numerical constants 
(reaction rates).  

3.1 REPERTOIRE OF FUNCTIONS 
The first argument of each chemical reaction function 
identifies the enzyme that catalyzes the reaction. The 
second argument is a numerical value that specifies 
the reaction's rate. In addition, there are two, three, or 
four arguments specifying the substrate(s) and 
product(s) of the reaction. Table 1 shows the number 
of substrate(s) and product(s) and overall arity for 
each of the four chemical reaction functions. The 
functions are first-order and second-order rate laws. 

Table 1 Four chemical reaction functions.  
Function Substrates Products Arity 
CR_1_1 1 1 4 
CR_1_2 1 2 5 
CR_2_1 2 1 5 
CR_2_2 2 2 6 

 
Each function returns a list composed of the 

reaction's one or two products. The one-argument 
FIRST function returns the first of the one or two 
products produced by the function designated by its 
argument. The one-argument SECOND function 
returns the second of the two products (or the first 
product, if the reaction produces only one product).  
3.2 REPERTOIRE OF TERMINALS 
Some terminals represent substances (input 
substances, intermediate substances created by 
reactions, or output substances). Other terminals 
represent the enzymes that catalyze the chemical 
reactions. Still other terminals represent numerical 
constants for the rate of the reactions.  
3.3 CONSTRAINED SYNTACTIC 

STRUCTURE 
The trees are constructed in accordance with a 
constrained syntactic structure. The root of every 
result-producing branch must be a chemical reaction 
function. The enzyme that catalyzes a reaction 
always appears as the first argument of its chemical 
reaction function. A numerical value representing a 
reaction's rate always appears as the second argument 
of its chemical reaction function. The one or two 
input arguments to a chemical reaction function can 
be either a substance terminal or selector function 
(FIRST or SECOND). The result of having a selector 
function as an input argument is to create a cascade 
of reactions. The one or two output arguments to a 
chemical reaction function must be substance 
terminals. The argument to a one-argument selector 

function (FIRST or SECOND) is always a chemical 
reaction function.  
3.4 EXAMPLE 
Figure 1 shows an illustrative network of chemical 
reactions represented by a program tree. In fact, this 
figure is the outcome of the run (section 5) as well as 
the desired network (with the desired rates of each 
reaction being in parenthesis and the genetically 
evolved rate outside the parenthesis).  

Figure 2 is a program tree corresponding to 
network of chemical reactions of figure 1. Figure 3 
shows the electrical circuit corresponding to the 
network of figure 1 (where triangles represent 
integrators). For additional details, see Koza, 
Mydlowec, Lanza, Yu, and Keane 2000.  
4 PREPARATORY STEPS 
4.1 PROGRAM ARCHITECTURE 
Each program tree in the initial random population 
(generation 0) has one result-producing branch. In 
subsequent generations, the architecture-altering 
operations (patterned after gene duplication and gene 
deletion in nature) may insert and delete result-
producing branches to particular individual program 
trees in the population. Each program tree may have 
four result-producing branches. 
4.2 FUNCTION SET 
The function set, F, is 
F = {CR1_1, CR1_2, CR2_1, CR2_2, FIRST, 

SECOND}.  

4.3 TERMINAL SET 
The terminal set, T, is 
T = {ℜ, C00116, C00162, C00002, C00165, 

INT_1, INT_2, INT_3, EC2_7_1_30, 
EC3_1_3_21, EC3_1_1_23, 
EC3_1_1_3}.  

ℜ denotes a perturbable numerical value. In 
generation 0, each perturbable numerical value is set, 
individually and separately, to a random value in a 
chosen range (from 0.0 and 2.0 here).  

C00116 (following the notation of the E-CELL 
cell simulation model) is the concentration of 
glycerol. C00162 is the concentration of fatty acid. 
These two substances are inputs to the illustrative 
overall network of interest herein. C00002 is the 
concentration of the cofactor ATP. C00165 is the 
concentration of diacyl-glycerol. This substance is 
the final product of the illustrative network herein. 
INT_1, INT_2, and INT_3 are the concentrations 
of intermediate substances 1, 2, and 3 (respectively).  

EC2_7_1_30, EC3_1_3_21, EC3_1_1_23, 
and EC3_1_1_3 are enzymes.  



4.4 FITNESS MEASURE 
Genetic programming is a probabilistic algorithm that 
searches the space of compositions of the available 
functions and terminals under the guidance of a 
fitness measure. In order to evaluate the fitness of an 
individual program tree in the population, the 
program tree is converted into a directed graph 
representing the network. The result-producing 
branches are executed from left to right. The 
functions in a particular result-producing branch are 
executed in a depth-first manner. One reactor 
(representing the concentration of the substances 
participating in the reaction) is inserted into the 
network for each chemical reaction function that is 
encountered in a branch. The reactor is labeled with 
the reaction's enzyme and rate. A directed line 
entering the reactor is added for each of the reaction's 
one or two substrate(s). A directed line leaving the 
reactor is added for each of the reaction's one or two 
product(s). The reaction's first product is selected 
whenever a FIRST function is encountered in a 
branch. The reaction's second product is selected 
whenever a SECOND function is encountered in a 
branch.  

After the network of chemical reactions is 
constructed, its behavior in the time-domain must be 
ascertained. Our approach is to convert the network 
into an electrical circuit. A SPICE netlist is 
constructed to represent the circuit. We provide 
SPICE with subcircuit definitions to implement the 
chemical reaction equations. The SPICE netlist is 
wrapped inside an appropriate set of SPICE 
commands and the circuit is simulated using our 
modified version of the original 217,000-line 
SPICE3 simulator (Quarles, Newton, Pederson, and 
Sangiovanni-Vincentelli 1994). We have embedded 
SPICE as a submodule within our genetic 
programming system.  

Each individual chemical reaction network is 
exposed to nine time-domain signals (table 2) 
representing the time-varying concentrations of four 
enzymes (EC2.7.1.30, EC3.1.3.21, EC3.1.1.23, and 
EC3.1.1.3) over 30 half-second time steps. There are 
270 fitness cases (9 test cases, each consisting of 30 
time steps). Each of these time series patterns has 
been structured so as to vary the concentrations 
between 0 and 2.0 in a pattern to which a living cell 
might conceivably be exposed. None are extreme. 
Each of the nine test cases is constructed by choosing 
four different time series from a set of six time series 
as the concentration for the four enzymes. For 
example, the slope-up time series starts at a 
concentration of 0.5 at time step 0 and increases 
linearly to a concentration of 1.75 at time step 30.  

Fitness is the sum, over the 270 fitness cases, of 
the absolute value of the difference between the 

concentration of the end product of the individual 
reaction network and the observed concentration of 
diacyl-glycerol (C00165). The smaller the fitness, 
the better.  An individual that cannot be simulated by 
SPICE is assigned a high penalty value of fitness 
(10

8
). The number of hits is defined as the number of 

fitness cases (0 to 270) for which the concentration 
of the measured substances is within 5% of the 
observed data value.  

Table 2 Variations in levels of the four enzymes. 
 EC2.7.1.30 EC3.1.3.21 EC3.1.1.23 EC3.1.1.3 
1 Slope-Up Sawtooth Step-Down Step-Up 
2 Slope-

Down 
Step-Up Sawtooth Step-Down 

3 Step-Down Slope-Up Slope-
Down 

Step-Up 

4 Step-Up Slope-
Down 

Step-Up Step-Down 

5 Sawtooth Step-Down Slope-Up Step-Up 
6 Sawtooth Step-Down Knock-Out Slope-Up 
7 Sawtooth Knock-Out Slope-Up Step-Down 
8 Knock-Out Step-Down Slope-Up Sawtooth 
9 Step-Down Slope-Up Sawtooth Knock-Out 

 
4.5 CONTROL PARAMETERS 
The population size, M, is 100,000.  A generous 
maximum size of 500 points (for functions and 
terminals) was established for each result-producing 
branch. The percentages of the genetic operations for 
each generation is 58.5% one-offspring crossover on 
internal points of the program tree other than 
perturbable numerical values, 6.5% one-offspring 
crossover on points of the program tree other than 
perturbable numerical values, 1% mutation on points 
of the program tree other than perturbable numerical 
values, 20% mutation on perturbable numerical 
values, 10% reproduction, 3% branch creation, and 
2% subroutine deletion. The other parameters are 
default values that have been used on a broad range 
of problems (Koza, Bennett, Andre, and Keane 
1999).  
5 RESULTS 
The population for the initial random generation 
(generation 0) of a run of genetic programming is 
created at random. The fitness of the best individual 
(figure 4) from generation 0 is 86.4. This individual 
scores 126 hits (out of 270). Substance C00162 
(fatty acid) is used as an input substance to this 
metabolic pathway; however, glycerol (C00116) and 
ATP (C00002) are not. Two of the four available 
reactions (EC 3.1.1.23 and EC 3.1.1.3) are used. 
However; a third reaction (EC 3.1.3.21) consumes a 
non-existent intermediate substance (INT_2) and the 
fourth reaction (EC 2.7.1.30) is not used at all. This 
metabolic pathway contains one important 
topological feature, namely the bifurcation of 
C00162 to two different reactions. However, this 



metabolic pathway does not contain any of the other 
important topological features of the correct 
metabolic pathway.  

In generation 10, the fitness of the best individual 
(figure 5) is 64.0. This individual scores 151 hits. 
This metabolic pathway is superior to the best 
individual of generation 0 in that it uses both 
C00162 (fatty acid) and glycerol (C00116) as 
external inputs. However, this metabolic pathway 
does not use ATP (C00002). This metabolic 
pathway is also defective in that it contains only two 
of the four reactions.  

In generation 25, the fitness of the best individual 
(figure 6) is 14.3. This individual scores 224 hits. 
This metabolic pathway contains all four of the 
available reactions. This metabolic pathway is more 
complex than previous best-of-generation individuals 
in that it contains two topological features not 
previously seen. First, this metabolic pathway 
contains an internal feedback loop in which one 
substance (glycerol C00116) is consumed by one 
reaction (catalyzed by enzyme EC 2.7.1.30), 
produced by another reaction (catalyzed by enzyme 
EC 3.1.3.21), and then supplied as a substrate to the 
first reaction. Second, this metabolic pathway 
contains a place where there is an addition of 
quantities of one substance. Specifically, glycerol 
(C00116) comes from the reaction catalyzed by 
enzyme EC 3.1.3.21 and is also externally supplied. 
This metabolic pathway also contains two substances 
(C00116 and C00162) which are each bifurcated 
to two different reactions.  

In generation 120, the fitness of the best 
individual (figure 7) is 2.33. The cofactor ATP 
(C00002) appears as an input to this metabolic 
pathway. This pathway has the same topology as the 
correct network. However, the numerical values 
(sizing) is not yet correct and this individual scores 
only 255 hits.  

The best-of-run individual (figure 1) appears in 
generation 225. Its fitness is almost zero (0.054). 
This individual scores 270 hits (out of 270). In 
addition to having the same topology as the correct 
metabolic pathway, the rate constants of three of the 
four reactions match the correct rates (to three 
significant digits) while the fourth rate differs by 
only about 2% from the correct rate (i.e., the rate of 
EC 3.1.3.21 is 1.17 compared with 1.19 for the 
correct network).   

In the best-of-run network from generation 225, 
the rate of production of the network's final product, 
diacyl-glycerol (C00165), is given by [1].  

Note that genetic programming has correctly 
determined that the reaction that produces the 
network's final product diacyl-glycerol (C00165) 
has two substrates and one product. It has correctly 

identified enzyme EC3.1.1.3 as the catalyst for this 
final reaction.  
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Figure 4 Best of generation 0.   
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Figure 5 Best of generation 10.   
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Figure 6 Best of generation 25.   
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Figure 7 Best of generation 120.   

It has correctly determined the rate of this final 
reaction as 1.45. It has correctly identified the 
externally supplied substance, fatty acid (C00162), as 
one of the two substrates for this final reaction. None 



of this information was supplied a priori to genetic 
programming.  

Of course, genetic programming has no way of 
knowing that biochemists call the intermediate 
substance (INT_2) by the name Monoacyl-glycerol 
(C01885) (as indicated in figure 1). It has, however, 
correctly determined that an intermediate substance is 
needed as one of the two substrates of the network's 
final reaction and that this intermediate substance 
should, in turn, be produced by a particular other 
reaction (described next).  

In the best-of-run network from generation 225, 
the rate of production and consumption of the 
intermediate substance INT_2 is given by [2]. 
Again, genetic programming has correctly 
determined that the reaction that produces the 
intermediate substance (INT_2) has two substrates 
and one product; it has correctly identified enzyme 
EC3.1.1.23 as the catalyst for this reaction; it has 
correctly determined the rate of this reaction as 1.95; 
it has correctly identified two externally supplied 
substances, fatty acid (C00162) and glycerol 
(C00116), as the two substrates for this reaction.  

In the best-of-run network from generation 225, 
the rate of production and consumption of the 
intermediate substance INT_1 in the internal 
feedback loop is given by [3]. Note that the 
numerical rate constant of 1.17 in the above equation 
is slightly different from the correct rate (as shown in 
Figure 1).  

Here again, genetic programming has correctly 
determined that the reaction that produces the 
intermediate substance (INT_1) has two substrates 
and one product; it has correctly identified enzyme 
EC2.7.1.30 as the catalyst for this reaction; it has 
almost correctly determined the rate of this reaction 
to be 1.17 (whereas the correct rate is 1.19, as shown 
in figure 1); it has correctly identified two externally 
supplied substances, glycerol (C00116) and the 
cofactor ATP (C00002), as the two substrates for 
this reaction.  

Genetic programming has no way of knowing 
that biochemists call the intermediate substance 
(INT_1) by the name sn-Glycerol-3-Phosphate 
(C00093) (as indicated in figure 1). Genetic 
programming has, however, correctly determined that 
an intermediate substance is needed as the single 
substrate of the reaction catalyzed by Glycerol-1-
phosphatase (EC3.1.3.21) and that this intermediate 
substance should, in turn, be produced by the 
reaction catalyzed by Glycerol kinase (EC2.7.1.30).  

In the best-of-run network from generation 225, 
the rate of supply and consumption of ATP 
(C00002) is given by [4].  

The rate of supply and consumption of fatty acid 
(C00162) in the best-of-run network is given by [5]. 

The rate of supply, consumption, and production 
of glycerol (C00116) in the best-of-run network is 
given by [6]. Again, note that the numerical rate 
constant of 1.17 in the above equation is slightly 
different from the correct rate (as shown in Figure 1).  

In summary, driven only by the time-domain 
concentration values of the final product C00165 
(diacyl-glycerol), genetic programming created both 
the topology and sizing for an entire metabolic 
pathway whose time-domain behavior closely 
matches that of the naturally occurring pathway, 
including  

• the total number of reactions in the network,  
• the number of substrate(s) consumed by each 
reaction,  
• the number of product(s) produced by each 
reaction,  
• an indication of which enzyme (if any) acts as a 
catalyst for each reaction,  
• the pathways supplying the substrate(s) (either 
from external sources or other reactions in the 
network) to each reaction,  
• the pathways dispersing each reaction's 
product(s) (either to other reactions or external 
outputs),  
• the number of intermediate substances in the 
network,  
• emergent topological features such as 

• internal feedback loops,  
• bifurcation points,  
• accumulation points, and 

• numerical rates (sizing) for all reactions.  
Genetic programming did this using only the 270 

time-domain concentration values of the final 
product C00165 (diacyl-glycerol).  

This example demonstrates the principle that it is 
possible to reverse engineer a metabolic pathway 
using only observed data for the concentration values 
of the pathway's final product.  
6 CONCLUSION 
Genetic programming automatically created (from 
270 data points) a metabolic pathway involving four 
chemical reactions that took in two substances and 
produced another substance as the final product.  
7 FUTURE WORK 
7.1 IMPROVED REPRESENTATION 
Although the representation herein yielded the 
desired results, the authors believe that alternative 
representations for the program tree would 
significantly improve efficiency of the search. The 
authors are currently working on this.  



7.2 DESIGNING ALTERNATIVE 
METABOLISMS 

Mittenthal, Ao Yuan, and Scheeline (1998) presented 
a method for generating alternative biochemical 
pathways.  

 

3.1.1.3] EC][2_][00162[45.1
]00165[

INTC
dt

Cd
=     [1] 

 

3.1.1.3] EC][2_][00162[45.1-3.1.1.23] EC][00116][00162[95.1]2_[ INTCCC
dt

INTd
=     [2] 

 

3.1.3.21] EC][1_[17.1 -2.7.1.30] EC][00002][00116[69.1]1_[ INTCC
dt

INTd
=     [3] 

 

2.7.1.30] EC][00002][00116[69.15.1][ CC
dt
ATPd

−=     [4] 

 

3.1.1.3] EC][2_][00162[45.1-3.1.1.23] EC][00116][00162[95.12.1]00162[ INTCCC
dt

Cd
−=     [5] 

 
3.1.1.23] EC][00116][00162[95.1-2.7.1.30] EC][00002][00116[69.1-3.1.3.21] EC][1_[17.15.0]00116[ CCCCINT

dt
Cd

+=     [6] 

 
 
 
They observed that the naturally occurring pathway 

for the non-oxidative stage of the pentose phosphate is 
especially favorable in several respects to the 
alternatives that they generated. Specifically, the 
naturally occurring pathway has a comparatively small 
number of steps, does not use any reducing or oxidizing 
compounds, and requires only one ATP in one 
direction of flux.  

Mendes and Kell (1998) have also suggested that 
novel pathways might be artificially constructed.  

Conceivably, genetic programming could also be 
used to generate realizable and advantageous 
alternatives to naturally occurring pathways.  

In one approach, the fitness measure might be 
oriented toward duplicating the final output(s) of the 
naturally occurring pathway (as was done in this 
paper). However, instead of harvesting only the 
individual from the population with the very best value 
of fitness, individuals that are slightly inferior could be 
examined to see if they simultaneously possess other 
desirable characteristics.  

In a second approach, the fitness measure might be 
specifically oriented to factors such as the pathway's 
efficiency or use or non-use of certain specified 
reactants or enzymes.  

In a third approach, the fitness measure might be 
specifically oriented toward achieving novelty. Genetic 
programming has previously been used as an invention 
machine by employing a two-part fitness measure that 
incorporates both the degree to which an individual 
satisfies performance requirements and the degree to 
which the individual does not possess the key 

characteristics of previously known solutions (Koza, 
Bennett, Andre, and Keane 1999).  
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