
Automatic Synthesis of Both the Topology and Sizing of Metabolic
Pathways using Genetic Programming

John R. Koza

Stanford University
Stanford, California

koza@stanford.edu

William Mydlowec
Genetic Programming Inc.

Los Altos, California
bill@pharmix.com

Guido Lanza
Genetic Programming Inc.

Los Altos, California
guido@pharmix.com

 Jessen Yu

Genetic Programming Inc.
Los Altos, California

jyu@cs.stanford.edu

Martin A. Keane
Econometrics Inc.
Chicago, Illinois

makeane@ix.netcom.com

Abstract
The concentrations of substances
participating in networks of chemical
reactions are modeled by non-linear
continuous-time differential equations.
Recent work has demonstrated that genetic
programming is capable of automatically
creating complex networks (e.g., analog
electrical circuits, controllers) whose
behavior is modeled by linear and non-
linear continuous-time differential
equations and whose behavior matches
prespecified output values. This paper
describes how genetic programming can be
used to automatically synthesize (reverse
engineer) both the topology of the network
of chemical reactions and the rates (sizing)
of each reaction of a network such that the
behavior of the automatically created
network matches the observed time-
domain data. Genetic programming has
automatically created metabolic pathways
that contain noteworthy topological
features, such as an internal feedback loop,
a bifurcation point where one substance is
distributed to two different reactions, and
an accumulation point where one substance
is accumulated from two sources.

1 INTRODUCTION
Considerable amounts of time-domain data are now
becoming available concerning the concentration of
biologically important chemicals in living organisms.
Such data include both gene expression data (obtained
from microarrays) and data on the concentration of
substances participating in metabolic pathways
(Ptashne 1992; McAdams and Shapiro 1995; Loomis
and Sternberg 1995; Arkin, Shen, and Ross 1997; Yuh,
Bolouri, and Davidson 1998; Laing, Fuhrman, and
Somogyi 1998; Mendes and Kell 1998; D'haeseleer,

Wen, Fuhrman, and Somogyi 1999; Bower and Bolouri
2000).

A living cell can be viewed as a dynamical system
in which a large number of different substances react
continuously and non-linearly with one another. In
order to understand the behavior of a continuous non-
linear dynamical system with numerous interacting
parts, it is usually insufficient to study behavior of each
part in isolation. Instead, the behavior must usually be
analyzed as a whole (Tomita et al. 1999). The
concentrations of substrates, products, and catalysts
(e.g., enzymes) participating in chemical reactions are
modeled by non-linear continuous-time differential
equations, such as the Michaelis-Menten equations
(Voit 2000).

The question arises as to whether it is possible to
start with observed time-domain concentrations of
substances and automatically create both the topology
of the network of chemical reactions and the rates of
each reaction that produced the observed data that
is, to automatically reverse engineer the network.

Recent work (Koza, Bennett, Andre, and Keane
1999; Koza, Bennett, Andre, Keane, and Brave 1999)
has demonstrated that genetic programming can
automatically create complex networks that exhibit
prespecified behavior in fields where the network's
behavior is governed by differential equations (both
linear and non-linear). For example, genetic
programming is capable of automatically creating both
the topology and sizing (component values) for analog
electrical circuits (e.g., filters, amplifiers,
computational circuits) composed of transistors,
capacitors, resistors, and other components merely by
specifying the circuit's output that is, the output data
values that would be observed if one already had the
circuit. This reverse engineering of circuits from data is
performed by genetic programming even though there
is no general mathematical method for creating the
topology and sizing of analog electrical circuits from
the circuit's desired (or observed) behavior (Koza,
Bennett, Andre, and Keane 1999). Seven of these
circuits infringe on previously issued patents. Others

duplicate the functionality of previously patented
inventions in a novel way.

As another example, genetic programming is
capable of automatically creating both the topology and
sizing (tuning) for controllers composed of time-
domain blocks such as integrators, differentiators,
multipliers, adders, delays, leads, and lags merely by
specifying the controller's effect on the to-be-controlled
plant (Koza, Keane, Yu, Bennett, and Mydlowec 2000).
This reverse engineering of controllers from data is
performed by genetic programming even though there
is no general mathematical method for creating the
topology and sizing for controllers from the controller's
behavior. Two of the automatically created controllers
infringe on previously issued patents.

As yet another example, it is possible to
automatically create antennas composed of a network
of wires merely by specifying the antenna's high-level
specifications (Comisky, Yu, and Koza 2000).

Our approach to the problem of automatically
creating both the topology and sizing of a network of
chemical reactions involves

(1) establishing a representation involving program
trees (composed of functions and terminals) for
chemical networks,
(2) converting each individual program tree in the
population into an electrical circuit representing a
network of chemical reactions,
(3) obtaining the behavior of the network of
chemical reactions by simulating the electrical
circuit,
(4) defining a fitness measure that measures how
well the behavior of an individual network in the
population matches the observed data, and

(5) applying genetic programming to breed a
population of improving program trees using the
fitness measure.

2 STATEMENT OF PROBLEM
The goal is to automatically create both the topology
and sizing of a network of chemical reactions.

The topology of a network of chemical reactions
comprises (1) the number of substrates consumed by
each reaction, (2) the number of products produced by
each reaction, (3) the pathways supplying the substrates
(either from external sources or other reactions) to the
reactions, and (4) the pathways dispersing the reaction's
products (either to other reactions or external outputs).
The sizing of a network of chemical reactions consists
of the numerical values representing the rates of each
reaction.

We chose, as an illustrative problem, a network
(figure 1) that incorporates three noteworthy
topological features. These features include an internal
feedback loop, a bifurcation point (where one substance
is distributed to two different reactions), and an
accumulation point (where one substance is
accumulated from two sources). The particular chosen
network is part of a phospholipid cycle, as presented in
the E-CELL cell simulation model (Tomita et al. 1999).
The network's external inputs are glycerol and fatty
acid. The network's final product is diacyl-glycerol.
The network's four reactions are catalyzed by the
enzyme Glycerol kinase (called EC2.7.1.30 by the
Enzyme Nomenclature Commission), Glycerol-1-
phosphatase (EC3.1.3.21), Acylglycerol lipase
(EC3.1.1.23), and Triacylglycerol lipase (EC3.1.1.3).

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.95 (1.95)

Glycerol
kinase

Glycerol

Glycerol-1-
phosphatase

INT-2C00162

C00116

INT-1

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K =1.45 (1.45)

EC3.1.3.21
K = 1.17 (1.19)

EC2.7.1.30
K = 1.69 (1.69)

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

ATP

C00002

Figure 1 Best of run individual from generation 225.

EC3.1.1.23 1.95 C00162 C00116 C01885

CR_2_1

EC3.1.1.3 1.45 C00162 C00165

RPB0

CR_1_2

C00093 C00009C00116

FIRST-PRODUCT

CR_2_2

EC2.7.1.30 1.69 C00002 C00093C00008

RPB1

EC3.1.3.21 1.19

PROGN

Acylglycerol
Lipase

Triacylglycerol
Lipase

Glycerol-1-
phosphatase

Glycerol
Kinease

sn-glycerol-3-
phosphate

Glycerol Orthophosphate

sn-glycerol-3-
phosphate

ADPATPFatty
Acid

Diacyl-glycerol

Fatty
Acid

Glycerol Monoacyl-
glycerol

CR_2_1

FIRST-PRODUCT

Figure 2 Program tree corresponding to network of chemical reactions of figure 1.

V
+-

Substrate A

Substrate B

Rate

Enzyme

1.69V

K

Glycerol Kinase

1.17V
V

+-

Glycerol-1-phosphatase

Substrate Rate

Enzyme K

V
+-

1.95V

Substrate A

Substrate B

Rate

Enzyme K

Acylglycerol lipase

1.45V

Substrate A

Substrate B

Rate

Enzyme K

V
+-

Triacylglycerol lipase

Glycerol

ATP

Intermediate 1

Fatty Acid

Intermediate 2

Diacyl glycerol

Adder

Adder

Adder

0.5V

1.5V

1.2V

Figure 3 Electrical circuit corresponding to the chemical reaction network of figure 1.

3 REPRESENTATION OF A
NETWORK OF CHEMICAL
REACTIONS

Each program tree represents an interconnected
network of chemical reactions involving various
substances. A chemical reaction may consume one or
two substances and may produce one or two
substances. The consumed substances may be
external input substances or may be intermediate

substances produced by reactions. The reactions,
enzymes, and substances of a network may be
completely represented by a program tree that
contains

• internal nodes representing reaction functions,
• internal nodes representing selector functions
that select the reaction's first versus the reaction's
second product (if any),

• external points (leaves) representing substances
that are consumed and produced by a reaction,
• external points representing enzymes that
catalyze a reaction, and.
• external points representing numerical constants
(reaction rates).

3.1 REPERTOIRE OF FUNCTIONS
The first argument of each chemical reaction function
identifies the enzyme that catalyzes the reaction. The
second argument is a numerical value that specifies
the reaction's rate. In addition, there are two, three, or
four arguments specifying the substrate(s) and
product(s) of the reaction. Table 1 shows the number
of substrate(s) and product(s) and overall arity for
each of the four chemical reaction functions. The
functions are first-order and second-order rate laws.

Table 1 Four chemical reaction functions.
Function Substrates Products Arity
CR_1_1 1 1 4
CR_1_2 1 2 5
CR_2_1 2 1 5
CR_2_2 2 2 6

Each function returns a list composed of the

reaction's one or two products. The one-argument
FIRST function returns the first of the one or two
products produced by the function designated by its
argument. The one-argument SECOND function
returns the second of the two products (or the first
product, if the reaction produces only one product).
3.2 REPERTOIRE OF TERMINALS
Some terminals represent substances (input
substances, intermediate substances created by
reactions, or output substances). Other terminals
represent the enzymes that catalyze the chemical
reactions. Still other terminals represent numerical
constants for the rate of the reactions.
3.3 CONSTRAINED SYNTACTIC

STRUCTURE
The trees are constructed in accordance with a
constrained syntactic structure. The root of every
result-producing branch must be a chemical reaction
function. The enzyme that catalyzes a reaction
always appears as the first argument of its chemical
reaction function. A numerical value representing a
reaction's rate always appears as the second argument
of its chemical reaction function. The one or two
input arguments to a chemical reaction function can
be either a substance terminal or selector function
(FIRST or SECOND). The result of having a selector
function as an input argument is to create a cascade
of reactions. The one or two output arguments to a
chemical reaction function must be substance
terminals. The argument to a one-argument selector

function (FIRST or SECOND) is always a chemical
reaction function.
3.4 EXAMPLE
Figure 1 shows an illustrative network of chemical
reactions represented by a program tree. In fact, this
figure is the outcome of the run (section 5) as well as
the desired network (with the desired rates of each
reaction being in parenthesis and the genetically
evolved rate outside the parenthesis).

Figure 2 is a program tree corresponding to
network of chemical reactions of figure 1. Figure 3
shows the electrical circuit corresponding to the
network of figure 1 (where triangles represent
integrators). For additional details, see Koza,
Mydlowec, Lanza, Yu, and Keane 2000.
4 PREPARATORY STEPS
4.1 PROGRAM ARCHITECTURE
Each program tree in the initial random population
(generation 0) has one result-producing branch. In
subsequent generations, the architecture-altering
operations (patterned after gene duplication and gene
deletion in nature) may insert and delete result-
producing branches to particular individual program
trees in the population. Each program tree may have
four result-producing branches.
4.2 FUNCTION SET
The function set, F, is
F = {CR1_1, CR1_2, CR2_1, CR2_2, FIRST,

SECOND}.

4.3 TERMINAL SET
The terminal set, T, is
T = {ℜ, C00116, C00162, C00002, C00165,

INT_1, INT_2, INT_3, EC2_7_1_30,
EC3_1_3_21, EC3_1_1_23,
EC3_1_1_3}.

ℜ denotes a perturbable numerical value. In
generation 0, each perturbable numerical value is set,
individually and separately, to a random value in a
chosen range (from 0.0 and 2.0 here).

C00116 (following the notation of the E-CELL
cell simulation model) is the concentration of
glycerol. C00162 is the concentration of fatty acid.
These two substances are inputs to the illustrative
overall network of interest herein. C00002 is the
concentration of the cofactor ATP. C00165 is the
concentration of diacyl-glycerol. This substance is
the final product of the illustrative network herein.
INT_1, INT_2, and INT_3 are the concentrations
of intermediate substances 1, 2, and 3 (respectively).

EC2_7_1_30, EC3_1_3_21, EC3_1_1_23,
and EC3_1_1_3 are enzymes.

4.4 FITNESS MEASURE
Genetic programming is a probabilistic algorithm that
searches the space of compositions of the available
functions and terminals under the guidance of a
fitness measure. In order to evaluate the fitness of an
individual program tree in the population, the
program tree is converted into a directed graph
representing the network. The result-producing
branches are executed from left to right. The
functions in a particular result-producing branch are
executed in a depth-first manner. One reactor
(representing the concentration of the substances
participating in the reaction) is inserted into the
network for each chemical reaction function that is
encountered in a branch. The reactor is labeled with
the reaction's enzyme and rate. A directed line
entering the reactor is added for each of the reaction's
one or two substrate(s). A directed line leaving the
reactor is added for each of the reaction's one or two
product(s). The reaction's first product is selected
whenever a FIRST function is encountered in a
branch. The reaction's second product is selected
whenever a SECOND function is encountered in a
branch.

After the network of chemical reactions is
constructed, its behavior in the time-domain must be
ascertained. Our approach is to convert the network
into an electrical circuit. A SPICE netlist is
constructed to represent the circuit. We provide
SPICE with subcircuit definitions to implement the
chemical reaction equations. The SPICE netlist is
wrapped inside an appropriate set of SPICE
commands and the circuit is simulated using our
modified version of the original 217,000-line
SPICE3 simulator (Quarles, Newton, Pederson, and
Sangiovanni-Vincentelli 1994). We have embedded
SPICE as a submodule within our genetic
programming system.

Each individual chemical reaction network is
exposed to nine time-domain signals (table 2)
representing the time-varying concentrations of four
enzymes (EC2.7.1.30, EC3.1.3.21, EC3.1.1.23, and
EC3.1.1.3) over 30 half-second time steps. There are
270 fitness cases (9 test cases, each consisting of 30
time steps). Each of these time series patterns has
been structured so as to vary the concentrations
between 0 and 2.0 in a pattern to which a living cell
might conceivably be exposed. None are extreme.
Each of the nine test cases is constructed by choosing
four different time series from a set of six time series
as the concentration for the four enzymes. For
example, the slope-up time series starts at a
concentration of 0.5 at time step 0 and increases
linearly to a concentration of 1.75 at time step 30.

Fitness is the sum, over the 270 fitness cases, of
the absolute value of the difference between the

concentration of the end product of the individual
reaction network and the observed concentration of
diacyl-glycerol (C00165). The smaller the fitness,
the better. An individual that cannot be simulated by
SPICE is assigned a high penalty value of fitness
(10

8
). The number of hits is defined as the number of

fitness cases (0 to 270) for which the concentration
of the measured substances is within 5% of the
observed data value.

Table 2 Variations in levels of the four enzymes.
 EC2.7.1.30 EC3.1.3.21 EC3.1.1.23 EC3.1.1.3
1 Slope-Up Sawtooth Step-Down Step-Up
2 Slope-

Down
Step-Up Sawtooth Step-Down

3 Step-Down Slope-Up Slope-
Down

Step-Up

4 Step-Up Slope-
Down

Step-Up Step-Down

5 Sawtooth Step-Down Slope-Up Step-Up
6 Sawtooth Step-Down Knock-Out Slope-Up
7 Sawtooth Knock-Out Slope-Up Step-Down
8 Knock-Out Step-Down Slope-Up Sawtooth
9 Step-Down Slope-Up Sawtooth Knock-Out

4.5 CONTROL PARAMETERS
The population size, M, is 100,000. A generous
maximum size of 500 points (for functions and
terminals) was established for each result-producing
branch. The percentages of the genetic operations for
each generation is 58.5% one-offspring crossover on
internal points of the program tree other than
perturbable numerical values, 6.5% one-offspring
crossover on points of the program tree other than
perturbable numerical values, 1% mutation on points
of the program tree other than perturbable numerical
values, 20% mutation on perturbable numerical
values, 10% reproduction, 3% branch creation, and
2% subroutine deletion. The other parameters are
default values that have been used on a broad range
of problems (Koza, Bennett, Andre, and Keane
1999).
5 RESULTS
The population for the initial random generation
(generation 0) of a run of genetic programming is
created at random. The fitness of the best individual
(figure 4) from generation 0 is 86.4. This individual
scores 126 hits (out of 270). Substance C00162
(fatty acid) is used as an input substance to this
metabolic pathway; however, glycerol (C00116) and
ATP (C00002) are not. Two of the four available
reactions (EC 3.1.1.23 and EC 3.1.1.3) are used.
However; a third reaction (EC 3.1.3.21) consumes a
non-existent intermediate substance (INT_2) and the
fourth reaction (EC 2.7.1.30) is not used at all. This
metabolic pathway contains one important
topological feature, namely the bifurcation of
C00162 to two different reactions. However, this

metabolic pathway does not contain any of the other
important topological features of the correct
metabolic pathway.

In generation 10, the fitness of the best individual
(figure 5) is 64.0. This individual scores 151 hits.
This metabolic pathway is superior to the best
individual of generation 0 in that it uses both
C00162 (fatty acid) and glycerol (C00116) as
external inputs. However, this metabolic pathway
does not use ATP (C00002). This metabolic
pathway is also defective in that it contains only two
of the four reactions.

In generation 25, the fitness of the best individual
(figure 6) is 14.3. This individual scores 224 hits.
This metabolic pathway contains all four of the
available reactions. This metabolic pathway is more
complex than previous best-of-generation individuals
in that it contains two topological features not
previously seen. First, this metabolic pathway
contains an internal feedback loop in which one
substance (glycerol C00116) is consumed by one
reaction (catalyzed by enzyme EC 2.7.1.30),
produced by another reaction (catalyzed by enzyme
EC 3.1.3.21), and then supplied as a substrate to the
first reaction. Second, this metabolic pathway
contains a place where there is an addition of
quantities of one substance. Specifically, glycerol
(C00116) comes from the reaction catalyzed by
enzyme EC 3.1.3.21 and is also externally supplied.
This metabolic pathway also contains two substances
(C00116 and C00162) which are each bifurcated
to two different reactions.

In generation 120, the fitness of the best
individual (figure 7) is 2.33. The cofactor ATP
(C00002) appears as an input to this metabolic
pathway. This pathway has the same topology as the
correct network. However, the numerical values
(sizing) is not yet correct and this individual scores
only 255 hits.

The best-of-run individual (figure 1) appears in
generation 225. Its fitness is almost zero (0.054).
This individual scores 270 hits (out of 270). In
addition to having the same topology as the correct
metabolic pathway, the rate constants of three of the
four reactions match the correct rates (to three
significant digits) while the fourth rate differs by
only about 2% from the correct rate (i.e., the rate of
EC 3.1.3.21 is 1.17 compared with 1.19 for the
correct network).

In the best-of-run network from generation 225,
the rate of production of the network's final product,
diacyl-glycerol (C00165), is given by [1].

Note that genetic programming has correctly
determined that the reaction that produces the
network's final product diacyl-glycerol (C00165)
has two substrates and one product. It has correctly

identified enzyme EC3.1.1.3 as the catalyst for this
final reaction.

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

C00162

C00162

C00165

Cell Membrane

Fatty Acid

OUTPUT
(MEASURED)

EC3.1.1.23
K = 0.69 (1.95)

Acylglycerol
lipase

INT-1

EC3.1.1.3
K = 1.80 (1.45)

INT-2
EC3.1.3.21

K = 1.03 (1.95)

Glycerol-1-
Phosphatase

Figure 4 Best of generation 0.

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

C00162

C00162

C00165

Cell Membrane

Fatty Acid

OUTPUT
(MEASURED)

EC3.1.1.23
K = 1.12 (1.95)

Acylglycerol
lipase

C00116

C00116 Glycerol

Glycerol

INT-1

EC3.1.1.3
K = 1.33 (1.45)

Figure 5 Best of generation 10.

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.58 (1.95)

Glycerol
kinase

Glycerol

Glycerol-1-
phosphatase

INT-2C00162

C00116

INT-1

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K =1.45 (1.45)

EC3.1.3.21
K = 1.61 (1.19)

EC2.7.1.30
K = 1.07 (1.69)

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

Figure 6 Best of generation 25.

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.73(1.95)

Glycerol
kinase

Glycerol

Glycerol-1-
phosphatase

INT-2C00162

C00116

INT-1

C00116C00162

C00165
Cell Membrane

EC3.1.1.3
K =1.36 (1.45)

EC3.1.3.21
K = 1.34 (1.19)

EC2.7.1.30
K = 1.46 (1.69)

Fatty
Acid

Glycerol

OUTPUT
(MEASURED)

ATP

C00002

Figure 7 Best of generation 120.

It has correctly determined the rate of this final
reaction as 1.45. It has correctly identified the
externally supplied substance, fatty acid (C00162), as
one of the two substrates for this final reaction. None

of this information was supplied a priori to genetic
programming.

Of course, genetic programming has no way of
knowing that biochemists call the intermediate
substance (INT_2) by the name Monoacyl-glycerol
(C01885) (as indicated in figure 1). It has, however,
correctly determined that an intermediate substance is
needed as one of the two substrates of the network's
final reaction and that this intermediate substance
should, in turn, be produced by a particular other
reaction (described next).

In the best-of-run network from generation 225,
the rate of production and consumption of the
intermediate substance INT_2 is given by [2].
Again, genetic programming has correctly
determined that the reaction that produces the
intermediate substance (INT_2) has two substrates
and one product; it has correctly identified enzyme
EC3.1.1.23 as the catalyst for this reaction; it has
correctly determined the rate of this reaction as 1.95;
it has correctly identified two externally supplied
substances, fatty acid (C00162) and glycerol
(C00116), as the two substrates for this reaction.

In the best-of-run network from generation 225,
the rate of production and consumption of the
intermediate substance INT_1 in the internal
feedback loop is given by [3]. Note that the
numerical rate constant of 1.17 in the above equation
is slightly different from the correct rate (as shown in
Figure 1).

Here again, genetic programming has correctly
determined that the reaction that produces the
intermediate substance (INT_1) has two substrates
and one product; it has correctly identified enzyme
EC2.7.1.30 as the catalyst for this reaction; it has
almost correctly determined the rate of this reaction
to be 1.17 (whereas the correct rate is 1.19, as shown
in figure 1); it has correctly identified two externally
supplied substances, glycerol (C00116) and the
cofactor ATP (C00002), as the two substrates for
this reaction.

Genetic programming has no way of knowing
that biochemists call the intermediate substance
(INT_1) by the name sn-Glycerol-3-Phosphate
(C00093) (as indicated in figure 1). Genetic
programming has, however, correctly determined that
an intermediate substance is needed as the single
substrate of the reaction catalyzed by Glycerol-1-
phosphatase (EC3.1.3.21) and that this intermediate
substance should, in turn, be produced by the
reaction catalyzed by Glycerol kinase (EC2.7.1.30).

In the best-of-run network from generation 225,
the rate of supply and consumption of ATP
(C00002) is given by [4].

The rate of supply and consumption of fatty acid
(C00162) in the best-of-run network is given by [5].

The rate of supply, consumption, and production
of glycerol (C00116) in the best-of-run network is
given by [6]. Again, note that the numerical rate
constant of 1.17 in the above equation is slightly
different from the correct rate (as shown in Figure 1).

In summary, driven only by the time-domain
concentration values of the final product C00165
(diacyl-glycerol), genetic programming created both
the topology and sizing for an entire metabolic
pathway whose time-domain behavior closely
matches that of the naturally occurring pathway,
including

• the total number of reactions in the network,
• the number of substrate(s) consumed by each
reaction,
• the number of product(s) produced by each
reaction,
• an indication of which enzyme (if any) acts as a
catalyst for each reaction,
• the pathways supplying the substrate(s) (either
from external sources or other reactions in the
network) to each reaction,
• the pathways dispersing each reaction's
product(s) (either to other reactions or external
outputs),
• the number of intermediate substances in the
network,
• emergent topological features such as

• internal feedback loops,
• bifurcation points,
• accumulation points, and

• numerical rates (sizing) for all reactions.
Genetic programming did this using only the 270

time-domain concentration values of the final
product C00165 (diacyl-glycerol).

This example demonstrates the principle that it is
possible to reverse engineer a metabolic pathway
using only observed data for the concentration values
of the pathway's final product.
6 CONCLUSION
Genetic programming automatically created (from
270 data points) a metabolic pathway involving four
chemical reactions that took in two substances and
produced another substance as the final product.
7 FUTURE WORK
7.1 IMPROVED REPRESENTATION
Although the representation herein yielded the
desired results, the authors believe that alternative
representations for the program tree would
significantly improve efficiency of the search. The
authors are currently working on this.

7.2 DESIGNING ALTERNATIVE
METABOLISMS

Mittenthal, Ao Yuan, and Scheeline (1998) presented
a method for generating alternative biochemical
pathways.

3.1.1.3] EC][2_][00162[45.1
]00165[

INTC
dt

Cd
= [1]

3.1.1.3] EC][2_][00162[45.1-3.1.1.23] EC][00116][00162[95.1]2_[INTCCC
dt

INTd
= [2]

3.1.3.21] EC][1_[17.1 -2.7.1.30] EC][00002][00116[69.1]1_[INTCC
dt

INTd
= [3]

2.7.1.30] EC][00002][00116[69.15.1][CC
dt
ATPd

−= [4]

3.1.1.3] EC][2_][00162[45.1-3.1.1.23] EC][00116][00162[95.12.1]00162[INTCCC
dt

Cd
−= [5]

3.1.1.23] EC][00116][00162[95.1-2.7.1.30] EC][00002][00116[69.1-3.1.3.21] EC][1_[17.15.0]00116[CCCCINT

dt
Cd

+= [6]

They observed that the naturally occurring pathway

for the non-oxidative stage of the pentose phosphate is
especially favorable in several respects to the
alternatives that they generated. Specifically, the
naturally occurring pathway has a comparatively small
number of steps, does not use any reducing or oxidizing
compounds, and requires only one ATP in one
direction of flux.

Mendes and Kell (1998) have also suggested that
novel pathways might be artificially constructed.

Conceivably, genetic programming could also be
used to generate realizable and advantageous
alternatives to naturally occurring pathways.

In one approach, the fitness measure might be
oriented toward duplicating the final output(s) of the
naturally occurring pathway (as was done in this
paper). However, instead of harvesting only the
individual from the population with the very best value
of fitness, individuals that are slightly inferior could be
examined to see if they simultaneously possess other
desirable characteristics.

In a second approach, the fitness measure might be
specifically oriented to factors such as the pathway's
efficiency or use or non-use of certain specified
reactants or enzymes.

In a third approach, the fitness measure might be
specifically oriented toward achieving novelty. Genetic
programming has previously been used as an invention
machine by employing a two-part fitness measure that
incorporates both the degree to which an individual
satisfies performance requirements and the degree to
which the individual does not possess the key

characteristics of previously known solutions (Koza,
Bennett, Andre, and Keane 1999).
ACKNOWLEDGMENTS
Douglas B. Kell of the University of Wales and the
GECCO-2001 reviewers made extremely useful
comments.
REFERENCES
Arkin, Adam, Shen, Peidong, and Ross, John. 1997. A

test case of correlation metric construction of a
reaction pathway from measurements. Science. 277:
1275 - 1279.

Bower, James M. and Bolouri, Hamid. 2000.
Computational Modeling of Genetic and
Biochemical Networks. Cambridge, MA: MIT Press.

Comisky, William, Yu, Jessen, and Koza, John. 2000.
Automatic synthesis of a wire antenna using genetic
programming. Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference,
Las Vegas, Nevada. Pages 179 - 186.

D'haeseleer, Patrik, Wen, Xiling, Fuhrman, Stefanie,
and Somogyi, Roland. 1999. Linear modeling of
mRNA expression levels during CNS development
and injury. In Altman, Russ B. Dunker, A. Keith,
Hunter, Lawrence, Klein, Teri E., and Lauderdale,
Kevin (editors). Pacific Symposium on Biocomputing
'99. Singapore: World Scientific. Pages 41 - 52.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1999. Genetic Programming
III: Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A., and Brave Scott. 1999. Genetic
Programming III Videotape: Human-Competitive
Machine Intelligence. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Keane, Martin A., Yu, Jessen, Bennett,
Forrest H III, and Mydlowec, William. 2000.
Automatic creation of human-competitive programs
and controllers by means of genetic programming.
Genetic Programming and Evolvable Machines. (1)
121 - 164.

Koza, John R., Mydlowec, William, Lanza, Guido, Yu,
Jessen, and Keane, Martin A. 2000. Reverse
Engineering and Automatic Synthesis of Metabolic
Pathways from Observed Data Using Genetic
Programming. Stanford Medical Informatics
Technical Report SMI-2000-0851.

Laing, Shoudan, Fuhrman, Stefanie, and Somogyi,
Roland. 1998. REVEAL: A general reverse
engineering algorithm for inference of genetic
network architecture. In Altman, Russ B. Dunker, A.
Keith, Hunter, Lawrence, and Klein, Teri E.
(editors). Pacific Symposium on Biocomputing '98.
Singapore: World Scientific. Pages 18 - 29.

Loomis, William F. and Sternberg, Paul W. 1995.
Genetic networks. Science. 269. 649. August 4,
1995.

McAdams, Harley H. and Shapiro, Lucy. 1995. Circuit
simulation of genetic networks. Science. 269. 650-
656. August 4, 1995.

Mendes, Pedro and Kell, Douglas B. 1998. Non-linear
optimization of biochemical pathways: Applications
to metabolic engineering and parameter estimation.
Bioinformatics. 14(10): 869 - 883.

Mittenthal, Jay E., Ao Yuan, Bertrand Clarke, and
Scheeline, Alexander. 1998. Designing metabolism:
Alternative connectivities for the pentose phosphate
pathway. Bulletin of Mathematical Biology. 60: 815
- 856.

Ptashne, Mark. 1992. A Genetic Switch: Phage λ and
Higher Organisms. Second Edition. Cambridge,
MA: Cell Press and Blackwell Scientific
Publications.

Quarles, Thomas, Newton, A. R., Pederson, D. O., and
Sangiovanni-Vincentelli, A. 1994. SPICE 3 Version
3F5 User's Manual. Department of Electrical
Engineering and Computer Science, University of
California. Berkeley. March 1994.

Tomita, Masaru, Hashimoto, Kenta, Takahashi,
Kouichi, Shimizu, Thomas Simon, Matsuzaki, Yuri,
Miyoshi, Fumihiko, Saito, Kanako, Tanida, Sakura,
Yugi, Katsuyuki, Venter, J. Craig, Hutchison, Clyde
A. III. 1999. E-CELL: Software environment for
whole cell simulation. Bioinformatics. Volume 15
(1) 72-84.

Voit, Eberhard O. 2000. Computational Analysis of
Biochemical Systems. Cambridge: Cambridge
University Press.

Yuh, Chiou-Hwa, Bolouri, Hamid, and Davidson, Eric
H. 1998. Genomic cis-regulatory logic: Experimental

and computational analysis of a sea urchin gene.
Science. 279. 1896 - 1902.

