
Automated Synthesis by Means of Genetic Programming of Human-
Competitive Designs Employing Reuse, Hierarchies, Modularities,

Development, and Parameterized Topologies

John R. Koza
Stanford University

koza@stanford.edu

Matthew J. Streeter
Genetic Programming Inc.

mjs@tmolp.com

Martin A. Keane
Econometrics Inc.

martinkeane@ameritech.net

Abstract
Genetic programming can be used as an

automated invention machine to create designs. Genetic
programming has automatically created designs that
infringe, improve upon, or duplicate the functionality
(in a novel way) of 16 previously patented inventions
involving circuits, controllers, and mathematical
algorithms. Genetic programming has also generated
two patentable new inventions for which patent
applications have been filed. Genetic programming has
also generated numerous other human-competitive
results, including the design of quantum computing
circuits that are superior to those designed by human
designers. Genetic programming has also designed
antennae, networks of chemical reactions (metabolic
pathways), and genetic networks. Genetic programming
can automatically create hierarchies, automatically
identify and reuse modularities, automatically
determine program architecture, and automatically
create parameterized topologies. When genetic
programming is used to design complex structures, it is
often advantageous to use a developmental process that
enables syntactic validity and locality to be preserved
under crossover.

1 Introduction
Genetic programming can be used as an automated
invention machine to create designs. Genetic
programming has automatically created structural
entities that infringe, improve upon, or duplicate the
functionality (in a novel way) of 16 previously patented
inventions from the fields of circuits, controllers, and
mathematical algorithms. Genetic programming has
also generated numerous other human-competitive
results, including the design of quantum computing
circuits that are superior to those designed by human
designers. Genetic programming has also designed
antennae, networks of chemical reactions (metabolic
pathways), and genetic networks. Genetic programming
can automatically create hierarchies, automatically
identify and reuse modularities, automatically
determine program architecture, and automatically
create parameterized topologies. When genetic
programming is used to design complex structures, it is
often advantageous to use a developmental process that
preserves syntactic validity and locality.

Section 2 provides general background on genetic
programming.

Section 3 describes eight features of genetic
programming that are particularly relevant to automated
design and computational synthesis, namely

• developmental genetic programming,
• reuse of useful substructures by means of the

crossover (recombination) operation,
• reuse of useful substructures by means of

subroutines (automatically defined functions),
• automatic creation of hierarchies, modularities,

and reuse by means of architecture-altering operations,
• automatic creation of parameterized topologies,
• automatic creation of parameterized topologies

containing conditional operators,
• passing parameters to substructures, and
• novelty-driven evolution.
Section 4 surveys 10 20th century patented

circuits, controllers, and mathematical algorithms and
six 21st-century patented circuits that have been
automatically synthesized by means of genetic
programming.

2 Genetic Programming
Genetic programming is an automatic method for
solving problems. Specifically, genetic programming
progressively breeds a population of computer
programs over a series of generations. Genetic
programming starts with a primordial ooze of
thousands of randomly created computer programs and
uses the Darwinian principle of natural selection and
analogs of recombination (crossover), mutation, gene
duplication, gene deletion, and certain mechanisms of
developmental biology to progressively breed an
improved population over a series of many generations.

Genetic programming (Koza 1992; Koza and Rice
1992; Koza 1994a; Koza 1994b; Koza, Bennett, Andre,
and Keane 1999; Koza, Bennett, Andre, Keane, and
Brave 1999; Koza, Keane, Streeter, Mydlowec, Yu, and
Lanza 2003) breeds computer programs to solve
problems by executing the following three steps:

(1) Generate an initial population of compositions
(typically random) of functions and terminals
appropriate to the problem.

(2) Iteratively perform the following substeps (a
generation) on the population of programs until the
termination criterion has been satisfied:

(A) Execute each program in the population and
assign it a fitness value using the problem’s
fitness measure.
(B) Create a new population of programs by
applying the following operations to program(s)
selected from the population with a probability
based on fitness (with reselection allowed).

(i) Reproduction: Copy the selected
program to the new population.
(ii) Crossover: Create a new offspring
program for the new population by
recombining randomly chosen parts of two
selected programs.
(iii) Mutation: Create one new offspring
program for the new population by randomly
mutating a randomly chosen part of the
selected program.
(iv) Architecture-altering operations:
Select an architecture-altering operation
from the available repertoire of such
operations and create one new offspring
program for the new population by applying
the selected architecture-altering operation to
the selected program.

(3) Designate the individual program that is
identified by result designation (e.g., the individual
with the best fitness) as the run’s result. This result
may be a solution (or approximate solution) to the
problem.

3 Eight Features of Genetic
Programming Relevant to Design

3.1 Developmental Genetic Programming
When genetic programming is used to automatically
create computer programs, the programs are ordinarily
represented as program trees (i.e., rooted, point-labeled
trees with ordered branches). However, when genetic
programming is used to design complex structures, it is
often advantageous to use a developmental process that
preserves syntactic validity and locality under the
crossover (recombination) operation.

For example, electrical circuits are usually
represented as labeled cyclic graphs. A developmental
process can be used to establish a mapping between
program trees and labeled cyclic graphs. The
developmental process may begin with a simple
embryo consisting of a single modifiable wire that is
not initially connected to the inputs or outputs of the to-
be-created circuit. A circuit is developed by
progressively applying the functions in a circuit-
constructing program tree (created by genetic
programming) to the embryo’s initial modifiable wire
(and to succeeding modifiable wires and modifiable
components). The functions in the circuit-constructing
program trees may include

(1) topology-modifying functions that alter the
topology of a developing circuit (e.g., series
division, parallel division, via between nodes, via to
ground, via to a power supply, via to the circuit’s
input signal, via to the circuit’s output points),
(2) component-creating functions that insert
components (i.e., resistors, capacitors, and
transistors) into a developing circuit, and
(3) development-controlling functions that control
the developmental process (e.g., cut, end).

To illustrate the developmental process, figure 1
shows a circuit-constructing program tree that develops
into the circuit shown in figure 2. In figure 2, the
incoming signal VSOURCE and its source resistor
RSOURCE at the far left as well as the load resistor
RLOAD at the far right are part of a fixed test fixture
that is not subject to evolutionary change.

The fully developed circuit of figure 2 consists of
one T-section containing two 105,500-micro-Henry
inductors (one on each arm of the “T”) and a 186-
nanofarad capacitor on the vertical segment of the “T.”
In the circuit-constructing program tree of figure 1, the
second argument of the THREE_GROUND topology-
modifying function (described in detail in Koza,
Bennett, Andre, and Keane 1999) is a TWO_LEAD
component-creating function that creates a capacitor
C1 connected between node 0 in figure 2 and node 6 in
figure 2 (an intermediate node created by the operation
of the THREE_GROUND function). The first argument
of the three-argument THREE_GROUND function is a
TWO_LEAD function that creates the 105,500-micro-
Henry inductor L1 connected between nodes 2 of figure
2 (one end of the embryo’s now-replaced original
modifiable wire) and node 6 of figure 2. The third
argument of the THREE_GROUND function in figure 1
is a TWO_LEAD function that creates the 105,500-
micro-Henry inductor L2 connected between nodes 6
and 3 of figure 2 (the other end of the embryo’s now-
replaced modifiable wire). The first argument of the
three-argument SERIES topology-modifying function
in figure 1 is a two-argument INPUT_0 topology-
modifying function that makes a connection between
the incoming signal and L1. The third argument of the
SERIES function in figure 1 is a two-argument
OUPTUT_0 topology-modifying function that makes a
connection between the circuit’s output point and L2.

3.2 Reuse by Means of Crossover
Anyone who has ever looked at a floor plan of a
building, a corporate organization chart, a musical
score, a protein molecule, a city map, or an electrical
circuit diagram will be struck by the massive reuse of
certain basic substructures within the overall structure.

Indeed, complex structures are almost always
replete with modularities, symmetries, and regularities.

Reuse avoids reinventing the wheel on each
occasion requiring a particular sequence of already-
learned steps.

SERIES

INPUT_0 OUTPUT_0

END ENDENDEND
THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

ENDL

105500

RPB0

PROGN

END

100

Figure 1 Circuit-constructing program tree that
develops into one T-section

Figure 2 Circuit consisting of one T-section

We believe that reuse is an essential precondition

for scalability in automated design.
Genetic programming automatically identifies

substructures that are to be reused. The crossover
(recombination) operation is one mechanism by which
genetic programming reuses useful substructures.

For example, one way to construct a lowpass filter
with a passband boundary of 1,000 Hz is by means of a
cascade of identical T-sections. See Koza, Keane,
Streeter, Mydlowec, Yu, and Lanza 2003 for detailed
specifications of the contemplated filter.

Figure 3 Circuit consisting of a cascade of two
identical T-sections

A circuit (such as figure 2) consisting of one T-
section is an extremely poor lowpass filter. A cascade
consisting of two identical T-sections (figure 3) is a
slightly better (but still poor) lowpass filter. The
crossover operation may create a circuit-constructing
program tree (such as the one shown in figure 4) by
reusing genetic material from figure 1. The subtree
rooted at the point labeled 200 in figure 4 is the subtree
rooted at the THREE_GROUND function labeled 100 in
figure 1. That is, the subtree that was responsible for
the T-section and for the reasonably high fitness of the
individual of figure 2 is now embedded inside another
reasonably high-fitness individual that itself produces a
T-section. The result is two identical T-sections.

SERIES

INPUT_0 OUTPUT_0

END ENDENDEND
THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

ENDL

105500

RPB0

PROGN

THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

END ENDL

105500

200

Figure 4 Circuit-constructing program tree that
develops into two T-sections

3.3 Reuse by Means of a Subroutine
Subroutines (automatically defined functions) provide
another (perhaps the most common) mechanism by
which genetic programming can automatically reuse
codeeither exactly or with different instantiations of
dummy variables or formal parameters. Genetic
programming is capable of automating creating
reusable subroutines along with main programs (result-
producing branches) dynamically during a run. Figure 5
shows a circuit-constructing program tree containing an
automatically defined function (ADF0) that develops
into the two T-sections shown in figure 3. ADF0
develops into one T-section. The result-producing
branch (RPB0) invokes ADF0 twice, thereby creating a
circuit consisting of two identical T-sections.

3.4 Automatic Creation of Hierarchies,
Modularities, and Reuse by Means of
Architecture-Altering Operations

The genome of the simplest currently-known living
organism manufactures only 470 different proteins,
whereas the human genome manufactures about 35,000
proteins. Since mutation and crossover modify only a
preexisting gene, the question arises as to how do new
genesthat is, new biological functionsoriginate in
nature? Occasionally, a gene may be duplicated,

thereby creating two places on the chromosome that
manufacture the same protein. After such a gene
duplication, one of the two initially identical genes may
remain intact and continue to manufacture the original
protein (thus conferring the gene's presumably survival-
related function on the organism). Meanwhile, over
many generations, the second gene may harmlessly
accumulate changes and diverge. Eventually the second
gene may come to manufacture a new protein with an
entirely new function. Thus, new biological functions
emerge in nature as part of the evolutionary process.

Genetic programming uses architecture-altering
operations (described in detail in Koza, Bennett, Andre,
and Keane 1999) to automatically determine program
architecture in a manner that parallels gene duplication,
and the related operation of gene deletion, in nature.

Thus, the architecture, hierarchy, size, and content
of the evolved computer program are part of the output
produced by genetic programmingnot part of the
input supplied by the human user.

The subroutine duplication operation duplicates a
preexisting subroutine in an individual program, gives a
new name to the copy, and randomly divides the
preexisting calls to the old subroutine between the two.
This operation changes the program architecture by
broadening the hierarchy of subroutines in the overall
program. As with gene duplication in nature, this
operation preserves semantics when it first occurs. The
two subroutines typically diverge latersometimes
yielding specialization.

The argument duplication operation duplicates
one argument of a subroutine, randomly divides
internal references to it, and preserves overall program
semantics by adjusting all calls to the subroutine. This
operation enlarges the dimensionality of the subspace
on which the subroutine operates.

The subroutine creation operation can create a
new subroutine from part of a main result-producing
branch (main program), thereby deepening the
hierarchy of references in the overall program, by
creating a hierarchical reference between the main
program and the new subroutine. ADF0 in figure 5
could, for example, possibly have been created in this

way. The subroutine creation operation can also create
a new subroutine from part of an existing subroutine by
creating a hierarchical reference between a preexisting
subroutine and a new subroutine, thus creating a deeper
and more complex overall hierarchy.

The subroutine deletion operation deletes a
subroutine from a program thereby making the
hierarchy of subroutines narrower or shallower.

The argument deletion operation deletes an
argument from a subroutine, thereby reducing the
amount of information available to the subroutinea
process that can be viewed as generalization.

The architecture-altering operations add and
delete iterations, loops, recursions, and memory.
Automatically defined iterations, automatically defined
loops, and automatically defined recursions provide
additional mechanisms that enable genetic
programming to automatically reuse code.
Automatically defined stores provide a way for
automatically reusing the results produced by the
execution of code.

The architecture-altering operations rapidly create
an architecturally diverse population containing
programs with different numbers of subroutines,
arguments, iterations, loops, recursions, and different
amounts of memory and, also, different hierarchical
arrangements of these elements. Programs with
architectures that are well-suited to the problem at hand
will tend to grow and prosper in the competitive
evolutionary process, while programs with inadequate
architectures will tend to wither away under the
relentless selective pressure of the problem's fitness
measure.

3.5 Automatic Creation of Parameterized
Topologies

Genetic programming automatically can create, in a
single run, a general (parameterized) solution to a
problem in the form of a graphical structure whose
nodes or edges represent components and where the
value of the components are specified by mathematical
expressions containing free variables.

SERIES

INPUT_0 OUTPUT_0

END ENDENDEND

RPB0

PROGN

THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

END ENDL

105500

SERIES

ADF0 ADF0

ADF0

END

ADF0 ARG0

Figure 5 Circuit-constructing program tree containing automatically defined function ADF0 that develops into
two T-sections

The genetically evolved individual represents a
complex structure (e.g., an electrical circuit, a
controller, a network of chemical reactions, an antenna,
a genetic network). In the automated process, genetic
programming determines the gross size of the graphical
structure (i.e., the number of nodes in the graph) as well
as the graph’s connectivity (i.e., a specification of the
nodes that are connected to each other). Genetic
programming also assigns component types to various
edges (or nodes) of the graphical structure. The
components may be transistors, resistors, and capacitors
in a circuit. They may be integrators, differentiators,
gain blocks, adders, and subtractors in a controller.
Genetic programming also creates mathematical
expressions that establish the parameter values for the
components (e.g., the capacitance of a capacitor in a
circuit, the amplification factor of a gain block in a
controller). The free variables in the mathematical
expressions confer generality on the genetically
evolved solution. The free variables enable a single
genetically evolved graphical structure to represent a
parameterized solution to an entire category of
problems. Genetic programming does all of the above
in an automated way in a single run.

As an example, suppose the goal is to design a
circuit to feed the woofer speaker of a hi-fi system.
That is, the desired circuit is intended to pass signals up
to a certain frequency at full power into the woofer but
to suppress all higher-frequency signals. Furthermore,
the goal is to create a general solution to this design
problem—that is, a solution that works for any value of
f (not just a solution that works for, say, just 1,250
Hertz). The general solution produced by genetic
programming includes the circuit’s topology. The
general solution has nine components. Four of the nine
components are inductors and five are capacitors. The
nine components are connected to each other in a
particular way. The genetically evolved solution is
general because the numerical values (capacitance) of
the five capacitors and the numerical values
(inductances) of the five inductors are not constant, but,
instead, are functions of the free variable f. That is, the
solution produced by genetic programming includes
nine different mathematical expressions—each
containing the free variable f—that establish the nine
component values. One of the nine mathematical
expressions is, for example,

f
C

5106786.12 ×
= .

When all nine mathematical expressions are
instantiated with a particular value of the free variable,
f, the resulting circuit is a lowpass filter with a
passband boundary of f. That is, genetic programming
produced a general solution to the problem (not just a
solution to a single instance of the problem).

The capability of genetic programming to create
parameterized topologies for design problems is also
illustrated by the automatic creation of a general-
purpose non-PID controller (figure 6) whose blocks are
parameterized by mathematical expressions containing
the problem’s four free variables, namely the plant’s
time constant, Tr, ultimate period, Tu, ultimate gain, Ku,
and dead time, L.

This genetically evolved controller outperforms
PID controllers tuned using the widely used 1942
Ziegler-Nichols tuning rules and the recently developed
1995 Astrom and Hagglund tuning rules on an
industrially representative set of plants. The authors
have applied for a patent on this new non-PID
controller (and other genetically evolved controllers
and PID tuning rules).

This controller’s overall topology consists of three
adders, three subtractors, four gain blocks
parameterized by a constant, two gain blocks
parameterized by non-constant mathematical
expressions containing free variables, and two lead
blocks parameterized by non-constant mathematical
expressions containing free variables. For purposes of
illustration, we mention that gain block 730 of figure 6
has a gain of

()log
log - + log

+1

L

r u
u

L
T T

T
 [31]

and that gain block 760 of figure 6 has a gain of

log +1rT [34].
The genetically evolved mathematical expressions for
the other blocks in this controller are detailed in Koza,
Keane, Streeter, Mydlowec, Yu, and Lanza 2003.

The techniques above have been applied (Koza,
Keane, Streeter, Mydlowec, Yu, and Lanza 2003) to a
variety of additional problems, including synthesis of

• a circuit-constructing program tree containing free
variables that yields a Zobel network,
• a parameterized circuit-constructing program tree
that yields a passive third-order elliptic lowpass
filter whose modular angle is specified by a free
variable,
• a parameterized circuit-constructing program tree
that yields a passive lowpass filter whose passband
boundary is specified by a free variable,
• a parameterized circuit-constructing program tree
that yields an active lowpass filter whose passband
boundary is specified by a free variable,
• a parameterized controller for controlling a three-
lag plant whose time constant is specified by a free
variable, and
• a parameterized controller for controlling plants
belonging to two families.

Astrom-
Hagglund
Controller

Control
variable

790
Eq. 34Eq. 31

Plant
Output

Reference
Signal

706

736

1+[Eq.32]* s
788738 748

10

778

2

2
720

770

780

3

1+[Eq.33]* s

710

+
-

+
-

734

730

+

- +

+
+

+

+
+

+

+
+

740 750 760

700

704

Figure 6 Genetically evolved general-purpose controller.

3.6 Automatic Creation of Parameterized
Topologies Containing Conditional
Operators

If the genetically evolved program contains conditional
developmental operators as well as free variables, a
different graphical structure will, in general, be
produced for different instantiations of the free
variables. That is, the genetically evolved program
operates as a genetic switch. Each program has inputs,
namely the problem’s free variables. Depending on the
values of the free variables, different graphical
structures will result from the execution of the program.

For example, a single genetically evolved circuit-
constructing program tree with free variables (two
frequencies, F1 and F2) and conditional operators may
yield either

• a lowpass filter with a variable passband boundary
determined by the free variables F1 and F2 (figure
7), or
• a highpass filter with a variable passband
boundary by the free variables F1 and F2 (figure 8).

Automatically created mathematical expressions
parameterize the components in these automatically
created circuits.

1
100

=1 F
Fµ

C 1
2.57

=2 F
Fµ

C 1
9.49

=3 F
Fµ

C 1
2.57

=4 F
Fµ

C
1
9.49

=5 F
Fµ

C 1
9.49

=6 F
Fµ

C

1
3.56

=1 F
H

L 1
113

=6 F
H

L
1
3.56

=2 F
H

L 1
3.56

=3 F
H

L 1
3.56

=4 F
H

L 1
3.56

=5 F
H

L

Figure 7 Genetically evolved generalized circuit
when free variables call for a highpass filter (that is,
F1 > F2)

1
113

=1 F
H

L
1

218
=2 F

H
L 1

218
=3 F

H
L 1

218
=4 F

H
L

1
9.58

=5 F
H

L

1
183

=1 F
Fµ

C
1

219
=2 F

Fµ
C 1

219
=3 F

Fµ
C

1
7.91

=4 F
Fµ

C

Figure 8 Genetically evolved generalized circuit
when free variables call for a lowpass filter.

The techniques above have also been applied
(Koza, Keane, Streeter, Mydlowec, Yu, and Lanza
2003) to additional problems, including synthesis of

• a circuit-constructing program tree containing
conditional developmental operators and free
variables that yields either a quadratic or cubic
function, and
• a circuit-constructing program tree containing
conditional developmental operators and free
variables that yields either a 40 dB or 60 dB
amplifier.

3.7 Passing Parameters to Substructures
In genetic programming, different instantiations of a
dummy variable (formal parameter) of an automatically
defined function may be passed to an automatically
defined function.

This aspect of genetic programming can be
illustrated by a portion of a genetically evolved circuit
for a two-band crossover (woofer-tweeter) filter
(described in detail in Koza, Bennett, Andre, and Keane
1999). Figure 9 shows the subcircuit that is created by
the execution of three-ported automatically defined
function. The execution of automatically defined
function (ADF3) has the following three consequences.

• It inserts a (not noteworthy) fixed 5,130 nanofarad
capacitor in the upper left of the figure.
• It inserts a (noteworthy) parameterized capacitor
C39 whose component value is dependent on the
dummy variable ARG0.
• It invokes a automatically defined function ADF2.
The dummy variable ARG0 is passed to ADF2.. In
turn, ADF2 creates a (noteworthy) parameterized
inductor whose component value is dependent on
the dummy variable ARG0 that is passed to ADF2.

Figure 9 Subcircuit produced by three-ported
automatically defined function ADF3

3.8 Novelty-Driven Evolution
One may have a scientific interest in producing novel
solutions to challenging design problems. Or, one may
be interested in patenting a novel design for
commercial advantage. Alternatively, one may want to
avoid infringing an existing patent (either to avoid
paying royalties or because the patent holder is
unwilling to license a competitor).

In any of the above three situations, a fitness
measure may be formulated so as to incorporate the
degree to which a candidate satisfies the problem’s
technical design requirements and the degree to which
it avoids characteristics that read on prior art. That is,
the evolutionary process can be directed to focus on
finding solutions that are novel and that also satisfy the
problem’s technical design requirements.

Because circuits can be conveniently represented
by labeled graphs, a graph isomorphism algorithm can
be applied to the candidate circuit and various template
graphs representing key characteristics of the relevant
prior art. The measure of similarity can be based on the
size of the maximal common subgraph between a
candidate circuit and a template. For details, see Koza,
Bennett, Andre, and Keane 1999.

4 Other Patented Designs
As an additional indicator of the ability of genetic
programming to automatically synthesize designs, table
1 shows 10 additional 20th century patented circuits,
controllers, and mathematical algorithms and six 21st-
century patented circuits that have been automatically
synthesized by means of genetic programming (Koza,
Bennett, Andre, and Keane 1999; Koza, Keane, Yu,

Bennett, and Mydlowec 2000; Koza, Keane, Streeter,
Mydlowec, Yu, and Lanza 2003).

5 Conclusions
This paper has described the following eight features of
genetic programming that are particularly relevant to
problems of automated design:

• developmental genetic programming,
• reuse of useful substructures by crossover,
• reuse of useful substructures by subroutines,
• architecture-altering operations,
• parameterized topologies,
• parameterized topologies containing conditional

operators,
• passing parameters to substructures, and
• novelty-driven evolution.

References
Astrom, Karl J. and Hagglund, Tore. 1995. PID

Controllers: Theory, Design, and Tuning. Second
Edition. Research Triangle Park, NC: Instrument
Society of America.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT
Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge, MA:
MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1999. Genetic Programming
III: Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David,
Keane, Martin A., and Brave Scott. 1999. Genetic
Programming III Videotape: Human-Competitive
Machine Intelligence. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Keane, Martin A., Streeter, Matthew J.,
Mydlowec, William, Yu, Jessen, and Lanza, Guido.
2003. Genetic Programming IV. Routine Human-
Competitive Machine Intelligence. Kluwer Academic
Publishers. In press.

Koza, John R., Keane, Martin A., Yu, Jessen, Bennett,
Forrest H III, and Mydlowec, William. 2000.
Automatic creation of human-competitive programs
and controllers by means of genetic programming.
Genetic Programming and Evolvable Machines. (1)
121 - 164.

Ziegler, J. G. and Nichols, N. B. 1942. Optimum
settings for automatic controllers. Transactions of
ASME. (64)759–768.

Table 1 Sixteen patented circuits, controllers, or mathematical algorithms that have been reinvented by means of
genetic programming
 Invention Date Inventor Place Patent Reference
1 Darlington

emitter-follower
section

1953 Sidney
Darlington

Bell Telephone
Laboratories

2,663,806 Genetic Programming III

2 Ladder filter 1917 George
Campbell

American Telephone
and Telegraph

1,227,113 Genetic Programming III

3 Crossover filter 1925 Otto Julius
Zobel

American Telephone
and Telegraph

1,538,964 Genetic Programming III

4 “M-derived half
section” filter

1925 Otto Julius
Zobel

American Telephone
and Telegraph

1,538,964 Genetic Programming III

5 Cauer (elliptic)
topology for
filters

1934–
1936

Wilhelm
Cauer

University of
Gottingen

1,958,742,
1,989,545

Genetic Programming III

6 Sorting network 1962 Daniel G.
O'Connor and
Raymond J.
Nelson

General Precision,
Inc.

3,029,413 Genetic Programming III

7 PID
(proportional,
integrative, and
derivative)
controller

1939 Albert
Callender and
Allan
Stevenson

Imperial Chemical
Limited

2,175,985 Genetic Programming IV

8 Second-
derivative
controller

1942 Harry Jones Brown Instrument
Company

2,282,726 Genetic Programming IV

9 Philbrick circuit 1956 George
Philbrick

George A. Philbrick
Researches

2,730,679 Genetic Programming IV

10 Negative
feedback

1937 Harold S.
Black

American Telephone
and Telegraph

2,102,670,
2,102,671

Genetic Programming IV

11 Mixed analog-
digital variable
capacitor circuit

2000 Turgut Sefket
Aytur

Lucent Technologies
Inc.

6,013,958 Genetic Programming IV

12 Voltage-current
conversion circuit

2000 Akira Ikeuchi
and Naoshi
Tokuda

Mitsumi Electric Co.,
Ltd.

6,166,529 Genetic Programming IV

13 Cubic signal
generator

2000 Stefano
Cipriani and
Anthony A.
Takeshian

Conexant Systems,
Inc.

6,160,427 Genetic Programming IV

14 High-current load
circuit

2001 Timothy
Daun-
Lindberg and
Michael
Miller

International Business
Machines
Corporation

6,211,726 Genetic Programming IV

15 Low-voltage
balun circuit

2001 Sang Gug
Lee

Information and
Communications
University

6,265,908 Genetic Programming IV

16 Tunable
integrated active
filter

2001 Robert Irvine
and Bernd
Kolb

Infineon
Technologies AG

6,225,859 Genetic Programming IV

