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Abstract 
Genetic programming can be used as an 

automated invention machine to create designs. Genetic 
programming has automatically created designs that 
infringe, improve upon, or duplicate the functionality 
(in a novel way) of 16 previously patented inventions 
involving circuits, controllers, and mathematical 
algorithms. Genetic programming has also generated 
two patentable new inventions for which patent 
applications have been filed. Genetic programming has 
also generated numerous other human-competitive 
results, including the design of quantum computing 
circuits that are superior to those designed by human 
designers. Genetic programming has also designed 
antennae, networks of chemical reactions (metabolic 
pathways), and genetic networks. Genetic programming 
can automatically create hierarchies, automatically 
identify and reuse modularities, automatically 
determine program architecture, and automatically 
create parameterized topologies. When genetic 
programming is used to design complex structures, it is 
often advantageous to use a developmental process that 
enables syntactic validity and locality to be preserved 
under crossover. 

 
 

1 Introduction 
Genetic programming can be used as an automated 
invention machine to create designs. Genetic 
programming has automatically created structural 
entities that infringe, improve upon, or duplicate the 
functionality (in a novel way) of 16 previously patented 
inventions from the fields of circuits, controllers, and 
mathematical algorithms. Genetic programming has 
also generated numerous other human-competitive 
results, including the design of quantum computing 
circuits that are superior to those designed by human 
designers. Genetic programming has also designed 
antennae, networks of chemical reactions (metabolic 
pathways), and genetic networks. Genetic programming 
can automatically create hierarchies, automatically 
identify and reuse modularities, automatically 
determine program architecture, and automatically 
create parameterized topologies. When genetic 
programming is used to design complex structures, it is 
often advantageous to use a developmental process that 
preserves syntactic validity and locality. 

Section 2 provides general background on genetic 
programming. 

Section 3 describes eight features of genetic 
programming that are particularly relevant to automated 
design and computational synthesis, namely 

• developmental genetic programming, 
• reuse of useful substructures by means of the 

crossover (recombination) operation, 
• reuse of useful substructures by means of 

subroutines (automatically defined functions),  
• automatic creation of hierarchies, modularities, 

and reuse by means of architecture-altering operations, 
• automatic creation of parameterized topologies, 
• automatic creation of parameterized topologies 

containing conditional operators,  
• passing parameters to substructures, and 
• novelty-driven evolution.  
Section 4 surveys 10 20th century patented 

circuits, controllers, and mathematical algorithms and 
six 21st-century patented circuits that have been 
automatically synthesized by means of genetic 
programming.  

 

2 Genetic Programming 
Genetic programming is an automatic method for 
solving problems. Specifically, genetic programming 
progressively breeds a population of computer 
programs over a series of generations. Genetic 
programming starts with a primordial ooze of 
thousands of randomly created computer programs and 
uses the Darwinian principle of natural selection and 
analogs of recombination (crossover), mutation, gene 
duplication, gene deletion, and certain mechanisms of 
developmental biology to progressively breed an 
improved population over a series of many generations.  

Genetic programming (Koza 1992; Koza and Rice 
1992; Koza 1994a; Koza 1994b; Koza, Bennett, Andre, 
and Keane 1999; Koza, Bennett, Andre, Keane, and 
Brave 1999; Koza, Keane, Streeter, Mydlowec, Yu, and 
Lanza 2003) breeds computer programs to solve 
problems by executing the following three steps:  

(1) Generate an initial population of compositions 
(typically random) of functions and terminals 
appropriate to the problem. 



(2) Iteratively perform the following substeps (a 
generation) on the population of programs until the 
termination criterion has been satisfied: 

(A) Execute each program in the population and 
assign it a fitness value using the problem’s 
fitness measure. 
(B) Create a new population of programs by 
applying the following operations to program(s) 
selected from the population with a probability 
based on fitness (with reselection allowed). 

(i) Reproduction: Copy the selected 
program to the new population. 
(ii) Crossover: Create a new offspring 
program for the new population by 
recombining randomly chosen parts of two 
selected programs. 
(iii) Mutation: Create one new offspring 
program for the new population by randomly 
mutating a randomly chosen part of the 
selected program. 
(iv) Architecture-altering operations: 
Select an architecture-altering operation 
from the available repertoire of such 
operations and create one new offspring 
program for the new population by applying 
the selected architecture-altering operation to 
the selected program.  

(3) Designate the individual program that is 
identified by result designation (e.g., the individual 
with the best fitness) as the run’s result. This result 
may be a solution (or approximate solution) to the 
problem.  
 

3 Eight Features of Genetic 
Programming Relevant to Design 

3.1 Developmental Genetic Programming 
When genetic programming is used to automatically 
create computer programs, the programs are ordinarily 
represented as program trees (i.e., rooted, point-labeled 
trees with ordered branches). However, when genetic 
programming is used to design complex structures, it is 
often advantageous to use a developmental process that 
preserves syntactic validity and locality under the 
crossover (recombination) operation.  

For example, electrical circuits are usually 
represented as labeled cyclic graphs. A developmental 
process can be used to establish a mapping between 
program trees and labeled cyclic graphs. The 
developmental process may begin with a simple 
embryo consisting of a single modifiable wire that is 
not initially connected to the inputs or outputs of the to-
be-created circuit. A circuit is developed by 
progressively applying the functions in a circuit-
constructing program tree (created by genetic 
programming) to the embryo’s initial modifiable wire 
(and to succeeding modifiable wires and modifiable 
components). The functions in the circuit-constructing 
program trees may include  

(1) topology-modifying functions that alter the 
topology of a developing circuit (e.g., series 
division, parallel division, via between nodes, via to 
ground, via to a power supply, via to the circuit’s 
input signal, via to the circuit’s output points),  
(2) component-creating functions that insert 
components (i.e., resistors, capacitors, and 
transistors) into a developing circuit, and 
(3) development-controlling functions that control 
the developmental process (e.g., cut, end).  

To illustrate the developmental process, figure 1 
shows a circuit-constructing program tree that develops 
into the circuit shown in figure 2. In figure 2, the 
incoming signal VSOURCE and its source resistor 
RSOURCE at the far left as well as the load resistor 
RLOAD at the far right are part of a fixed test fixture 
that is not subject to evolutionary change.  

The fully developed circuit of figure 2 consists of 
one T-section containing two 105,500-micro-Henry 
inductors (one on each arm of the “T”) and a 186-
nanofarad capacitor on the vertical segment of the “T.” 
In the circuit-constructing program tree of figure 1, the 
second argument of the THREE_GROUND topology-
modifying function (described in detail in Koza, 
Bennett, Andre, and Keane 1999) is a TWO_LEAD 
component-creating function that creates a capacitor 
C1 connected between node 0 in figure 2 and node 6 in 
figure 2 (an intermediate node created by the operation 
of the THREE_GROUND function). The first argument 
of the three-argument THREE_GROUND function is a 
TWO_LEAD function that creates the 105,500-micro-
Henry inductor L1 connected between nodes 2 of figure 
2 (one end of the embryo’s now-replaced original 
modifiable wire) and node 6 of figure 2. The third 
argument of the THREE_GROUND function in figure 1 
is a TWO_LEAD function that creates the 105,500-
micro-Henry inductor L2 connected between nodes 6 
and 3 of figure 2 (the other end of the embryo’s now-
replaced modifiable wire). The first argument of the 
three-argument SERIES topology-modifying function 
in figure 1 is a two-argument INPUT_0 topology-
modifying function that makes a connection between 
the incoming signal and L1. The third argument of the 
SERIES function in figure 1 is a two-argument 
OUPTUT_0 topology-modifying function that makes a 
connection between the circuit’s output point and L2.  

3.2 Reuse by Means of Crossover 
Anyone who has ever looked at a floor plan of a 
building, a corporate organization chart, a musical 
score, a protein molecule, a city map, or an electrical 
circuit diagram will be struck by the massive reuse of 
certain basic substructures within the overall structure.  

Indeed, complex structures are almost always 
replete with modularities, symmetries, and regularities.  

Reuse avoids reinventing the wheel on each 
occasion requiring a particular sequence of already-
learned steps.  
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Figure 1 Circuit-constructing program tree that 
develops into one T-section   

 

 
Figure 2 Circuit consisting of one T-section   

 
We believe that reuse is an essential precondition 

for scalability in automated design. 
Genetic programming automatically identifies 

substructures that are to be reused. The crossover 
(recombination) operation is one mechanism by which 
genetic programming reuses useful substructures.  

For example, one way to construct a lowpass filter 
with a passband boundary of 1,000 Hz is by means of a 
cascade of identical T-sections. See Koza, Keane, 
Streeter, Mydlowec, Yu, and Lanza 2003 for detailed 
specifications of the contemplated filter. 

 

 
Figure 3 Circuit consisting of a cascade of two 
identical T-sections   

A circuit (such as figure 2) consisting of one T-
section is an extremely poor lowpass filter. A cascade 
consisting of two identical T-sections (figure 3) is a 
slightly better (but still poor) lowpass filter. The 
crossover operation may create a circuit-constructing 
program tree (such as the one shown in figure 4) by 
reusing genetic material from figure 1. The subtree 
rooted at the point labeled 200 in figure 4 is the subtree 
rooted at the THREE_GROUND function labeled 100 in 
figure 1. That is, the subtree that was responsible for 
the T-section and for the reasonably high fitness of the 
individual of figure 2 is now embedded inside another 
reasonably high-fitness individual that itself produces a 
T-section. The result is two identical T-sections. 

 

SERIES

INPUT_0 OUTPUT_0

END ENDENDEND
THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

ENDL

105500

RPB0

PROGN

THREE_

GROUND

TWO-

LEAD

END ENDC

186

TWO-

LEAD

END ENDL

105500

TWO-

LEAD

END ENDL

105500

200

 
Figure 4 Circuit-constructing program tree that 
develops into two T-sections   

3.3 Reuse by Means of a Subroutine 
Subroutines (automatically defined functions) provide 
another (perhaps the most common) mechanism by 
which genetic programming can automatically reuse 
codeeither exactly or with different instantiations of 
dummy variables or formal parameters. Genetic 
programming is capable of automating creating 
reusable subroutines along with main programs (result-
producing branches) dynamically during a run. Figure 5 
shows a circuit-constructing program tree containing an 
automatically defined function (ADF0) that develops 
into the two T-sections shown in figure 3. ADF0 
develops into one T-section. The result-producing 
branch (RPB0) invokes ADF0 twice, thereby creating a 
circuit consisting of two identical T-sections.  

3.4 Automatic Creation of Hierarchies, 
Modularities, and Reuse by Means of 
Architecture-Altering Operations 

The genome of the simplest currently-known living 
organism manufactures only 470 different proteins, 
whereas the human genome manufactures about 35,000 
proteins. Since mutation and crossover modify only a 
preexisting gene, the question arises as to how do new 
genesthat is, new biological functionsoriginate in 
nature? Occasionally, a gene may be duplicated, 



thereby creating two places on the chromosome that 
manufacture the same protein. After such a gene 
duplication, one of the two initially identical genes may 
remain intact and continue to manufacture the original 
protein (thus conferring the gene's presumably survival-
related function on the organism). Meanwhile, over 
many generations, the second gene may harmlessly 
accumulate changes and diverge. Eventually the second 
gene may come to manufacture a new protein with an 
entirely new function. Thus, new biological functions 
emerge in nature as part of the evolutionary process. 

Genetic programming uses architecture-altering 
operations (described in detail in Koza, Bennett, Andre, 
and Keane 1999) to automatically determine program 
architecture in a manner that parallels gene duplication, 
and the related operation of gene deletion, in nature.  

Thus, the architecture, hierarchy, size, and content 
of the evolved computer program are part of the output 
produced by genetic programmingnot part of the 
input supplied by the human user.  

The subroutine duplication operation duplicates a 
preexisting subroutine in an individual program, gives a 
new name to the copy, and randomly divides the 
preexisting calls to the old subroutine between the two. 
This operation changes the program architecture by 
broadening the hierarchy of subroutines in the overall 
program. As with gene duplication in nature, this 
operation preserves semantics when it first occurs. The 
two subroutines typically diverge latersometimes 
yielding specialization.  

The argument duplication operation duplicates 
one argument of a subroutine, randomly divides 
internal references to it, and preserves overall program 
semantics by adjusting all calls to the subroutine. This 
operation enlarges the dimensionality of the subspace 
on which the subroutine operates.  

The subroutine creation operation can create a 
new subroutine from part of a main result-producing 
branch (main program), thereby deepening the 
hierarchy of references in the overall program, by 
creating a hierarchical reference between the main 
program and the new subroutine. ADF0 in figure 5 
could, for example, possibly have been created in this 

way. The subroutine creation operation can also create 
a new subroutine from part of an existing subroutine by 
creating a hierarchical reference between a preexisting 
subroutine and a new subroutine, thus creating a deeper 
and more complex overall hierarchy. 

The subroutine deletion operation deletes a 
subroutine from a program thereby making the 
hierarchy of subroutines narrower or shallower.  

The argument deletion operation deletes an 
argument from a subroutine, thereby reducing the 
amount of information available to the subroutinea 
process that can be viewed as generalization.  

The architecture-altering operations add and 
delete iterations, loops, recursions, and memory. 
Automatically defined iterations, automatically defined 
loops, and automatically defined recursions provide 
additional mechanisms that enable genetic 
programming to automatically reuse code. 
Automatically defined stores provide a way for 
automatically reusing the results produced by the 
execution of code.  

The architecture-altering operations rapidly create 
an architecturally diverse population containing 
programs with different numbers of subroutines, 
arguments, iterations, loops, recursions, and different 
amounts of memory and, also, different hierarchical 
arrangements of these elements. Programs with 
architectures that are well-suited to the problem at hand 
will tend to grow and prosper in the competitive 
evolutionary process, while programs with inadequate 
architectures will tend to wither away under the 
relentless selective pressure of the problem's fitness 
measure.  

3.5 Automatic Creation of Parameterized 
Topologies 

Genetic programming automatically can create, in a 
single run, a general (parameterized) solution to a 
problem in the form of a graphical structure whose 
nodes or edges represent components and where the 
value of the components are specified by mathematical 
expressions containing free variables.  
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Figure 5 Circuit-constructing program tree containing automatically defined function ADF0 that develops into 
two T-sections   



The genetically evolved individual represents a 
complex structure (e.g., an electrical circuit, a 
controller, a network of chemical reactions, an antenna, 
a genetic network). In the automated process, genetic 
programming determines the gross size of the graphical 
structure (i.e., the number of nodes in the graph) as well 
as the graph’s connectivity (i.e., a specification of the 
nodes that are connected to each other). Genetic 
programming also assigns component types to various 
edges (or nodes) of the graphical structure. The 
components may be transistors, resistors, and capacitors 
in a circuit. They may be integrators, differentiators, 
gain blocks, adders, and subtractors in a controller. 
Genetic programming also creates mathematical 
expressions that establish the parameter values for the 
components (e.g., the capacitance of a capacitor in a 
circuit, the amplification factor of a gain block in a 
controller). The free variables in the mathematical 
expressions confer generality on the genetically 
evolved solution. The free variables enable a single 
genetically evolved graphical structure to represent a 
parameterized solution to an entire category of 
problems. Genetic programming does all of the above 
in an automated way in a single run.  

As an example, suppose the goal is to design a 
circuit to feed the woofer speaker of a hi-fi system. 
That is, the desired circuit is intended to pass signals up 
to a certain frequency at full power into the woofer but 
to suppress all higher-frequency signals. Furthermore, 
the goal is to create a general solution to this design 
problem—that is, a solution that works for any value of 
f (not just a solution that works for, say, just 1,250 
Hertz). The general solution produced by genetic 
programming includes the circuit’s topology. The 
general solution has nine components. Four of the nine 
components are inductors and five are capacitors. The 
nine components are connected to each other in a 
particular way. The genetically evolved solution is 
general because the numerical values (capacitance) of 
the five capacitors and the numerical values 
(inductances) of the five inductors are not constant, but, 
instead, are functions of the free variable f. That is, the 
solution produced by genetic programming includes 
nine different mathematical expressions—each 
containing the free variable f—that establish the nine 
component values. One of the nine mathematical 
expressions is, for example, 

f
C

5106786.12 ×
= . 

When all nine mathematical expressions are 
instantiated with a particular value of the free variable, 
f, the resulting circuit is a lowpass filter with a 
passband boundary of f. That is, genetic programming 
produced a general solution to the problem (not just a 
solution to a single instance of the problem).  

The capability of genetic programming to create 
parameterized topologies for design problems is also 
illustrated by the automatic creation of a general-
purpose non-PID controller (figure 6) whose blocks are 
parameterized by mathematical expressions containing 
the problem’s four free variables, namely the plant’s 
time constant, Tr, ultimate period, Tu, ultimate gain, Ku, 
and dead time, L.  

This genetically evolved controller outperforms 
PID controllers tuned using the widely used 1942 
Ziegler-Nichols tuning rules and the recently developed 
1995 Astrom and Hagglund tuning rules on an 
industrially representative set of plants. The authors 
have applied for a patent on this new non-PID 
controller (and other genetically evolved controllers 
and PID tuning rules).  

This controller’s overall topology consists of three 
adders, three subtractors, four gain blocks 
parameterized by a constant, two gain blocks 
parameterized by non-constant mathematical 
expressions containing free variables, and two lead 
blocks parameterized by non-constant mathematical 
expressions containing free variables. For purposes of 
illustration, we mention that gain block 730 of figure 6 
has a gain of  

( )log
log - + log

+1

L

r u
u

L
T T

T
          [31] 

and that gain block 760 of figure 6 has a gain of  

log +1rT           [34]. 
The genetically evolved mathematical expressions for 
the other blocks in this controller are detailed in Koza, 
Keane, Streeter, Mydlowec, Yu, and Lanza 2003.  

The techniques above have been applied (Koza, 
Keane, Streeter, Mydlowec, Yu, and Lanza 2003) to a 
variety of additional problems, including synthesis of 

• a circuit-constructing program tree containing free 
variables that yields a Zobel network,  
• a parameterized circuit-constructing program tree 
that yields a passive third-order elliptic lowpass 
filter whose modular angle is specified by a free 
variable,  
• a parameterized circuit-constructing program tree 
that yields a passive lowpass filter whose passband 
boundary is specified by a free variable,  
• a parameterized circuit-constructing program tree 
that yields an active lowpass filter whose passband 
boundary is specified by a free variable,  
• a parameterized controller for controlling a three-
lag plant whose time constant is specified by a free 
variable, and 
• a parameterized controller for controlling plants 
belonging to two families. 
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Figure 6 Genetically evolved general-purpose controller.   

 

3.6 Automatic Creation of Parameterized 
Topologies Containing Conditional 
Operators 

If the genetically evolved program contains conditional 
developmental operators as well as free variables, a 
different graphical structure will, in general, be 
produced for different instantiations of the free 
variables. That is, the genetically evolved program 
operates as a genetic switch. Each program has inputs, 
namely the problem’s free variables. Depending on the 
values of the free variables, different graphical 
structures will result from the execution of the program.  

For example, a single genetically evolved circuit-
constructing program tree with free variables (two 
frequencies, F1 and F2) and conditional operators may 
yield either  

• a lowpass filter with a variable passband boundary 
determined by the free variables F1 and F2 (figure 
7), or  
• a highpass filter with a variable passband 
boundary by the free variables F1 and F2 (figure 8).  

Automatically created mathematical expressions 
parameterize the components in these automatically 
created circuits.  

1
100

=1 F
Fµ

C   1
2.57

=2 F
Fµ

C   1
9.49

=3 F
Fµ

C   1
2.57

=4 F
Fµ

C  
1
9.49

=5 F
Fµ

C   1
9.49

=6 F
Fµ

C  

1
3.56

=1 F
H

L   1
113

=6 F
H

L  
1
3.56

=2 F
H

L   1
3.56

=3 F
H

L   1
3.56

=4 F
H

L   1
3.56

=5 F
H

L  

 
Figure 7 Genetically evolved generalized circuit 
when free variables call for a highpass filter (that is, 
F1 > F2)   
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Figure 8 Genetically evolved generalized circuit 
when free variables call for a lowpass filter.   

The techniques above have also been applied 
(Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 
2003) to additional problems, including synthesis of 

• a circuit-constructing program tree containing 
conditional developmental operators and free 
variables that yields either a quadratic or cubic 
function, and  
• a circuit-constructing program tree containing 
conditional developmental operators and free 
variables that yields either a 40 dB or 60 dB 
amplifier.  

3.7 Passing Parameters to Substructures 
In genetic programming, different instantiations of a 
dummy variable (formal parameter) of an automatically 
defined function may be passed to an automatically 
defined function.  

This aspect of genetic programming can be 
illustrated by a portion of a genetically evolved circuit 
for a two-band crossover (woofer-tweeter) filter 
(described in detail in Koza, Bennett, Andre, and Keane 
1999). Figure 9 shows the subcircuit that is created by 
the execution of three-ported automatically defined 
function. The execution of automatically defined 
function (ADF3) has the following three consequences. 



• It inserts a (not noteworthy) fixed 5,130 nanofarad 
capacitor in the upper left of the figure. 
• It inserts a (noteworthy) parameterized capacitor 
C39 whose component value is dependent on the 
dummy variable ARG0.  
• It invokes a automatically defined function ADF2. 
The dummy variable ARG0 is passed to ADF2.. In 
turn, ADF2 creates a (noteworthy) parameterized 
inductor whose component value is dependent on 
the dummy variable ARG0 that is passed to ADF2.  

 
Figure 9 Subcircuit produced by three-ported 
automatically defined function ADF3   

3.8 Novelty-Driven Evolution 
One may have a scientific interest in producing novel 
solutions to challenging design problems. Or, one may 
be interested in patenting a novel design for 
commercial advantage. Alternatively, one may want to 
avoid infringing an existing patent (either to avoid 
paying royalties or because the patent holder is 
unwilling to license a competitor).  

In any of the above three situations, a fitness 
measure may be formulated so as to incorporate the 
degree to which a candidate satisfies the problem’s 
technical design requirements and the degree to which 
it avoids characteristics that read on prior art. That is, 
the evolutionary process can be directed to focus on 
finding solutions that are novel and that also satisfy the 
problem’s technical design requirements.  

Because circuits can be conveniently represented 
by labeled graphs, a graph isomorphism algorithm can 
be applied to the candidate circuit and various template 
graphs representing key characteristics of the relevant 
prior art. The measure of similarity can be based on the 
size of the maximal common subgraph between a 
candidate circuit and a template. For details, see Koza, 
Bennett, Andre, and Keane 1999.  

 

4 Other Patented Designs 
As an additional indicator of the ability of genetic 
programming to automatically synthesize designs, table 
1 shows 10 additional 20th century patented circuits, 
controllers, and mathematical algorithms and six 21st-
century patented circuits that have been automatically 
synthesized by means of genetic programming (Koza, 
Bennett, Andre, and Keane 1999; Koza, Keane, Yu, 

Bennett, and Mydlowec 2000; Koza, Keane, Streeter, 
Mydlowec, Yu, and Lanza 2003). 
 

5 Conclusions 
This paper has described the following eight features of 
genetic programming that are particularly relevant to 
problems of automated design:  

• developmental genetic programming, 
• reuse of useful substructures by crossover, 
• reuse of useful substructures by subroutines,  
• architecture-altering operations, 
• parameterized topologies, 
• parameterized topologies containing conditional 

operators,  
• passing parameters to substructures, and 
• novelty-driven evolution.  
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Table 1 Sixteen patented circuits, controllers, or mathematical algorithms that have been reinvented by means of 
genetic programming  
 Invention Date Inventor Place Patent Reference 
1 Darlington 

emitter-follower 
section 

1953 Sidney 
Darlington 

Bell Telephone 
Laboratories 

2,663,806 Genetic Programming III 

2 Ladder filter 1917 George 
Campbell 

American Telephone 
and Telegraph 

1,227,113 Genetic Programming III 

3 Crossover filter  1925 Otto Julius 
Zobel 

American Telephone 
and Telegraph 

1,538,964 Genetic Programming III 

4 “M-derived half 
section” filter 

1925 Otto Julius 
Zobel 

American Telephone 
and Telegraph 

1,538,964 Genetic Programming III 

5 Cauer (elliptic) 
topology for 
filters 

1934–
1936 

Wilhelm 
Cauer 

University of 
Gottingen 

1,958,742, 
1,989,545 

Genetic Programming III 

6 Sorting network 1962 Daniel G. 
O'Connor and 
Raymond J. 
Nelson 

General Precision, 
Inc. 

3,029,413 Genetic Programming III 

7 PID 
(proportional, 
integrative, and 
derivative) 
controller 

1939 Albert 
Callender and 
Allan 
Stevenson 

Imperial Chemical 
Limited 

2,175,985 Genetic Programming IV 

8 Second-
derivative 
controller 

1942 Harry Jones Brown Instrument 
Company 

2,282,726 Genetic Programming IV 

9 Philbrick circuit 1956 George 
Philbrick 

George A. Philbrick 
Researches 

2,730,679 Genetic Programming IV 

10 Negative 
feedback 

1937 Harold S. 
Black 

American Telephone 
and Telegraph 

2,102,670, 
2,102,671 

Genetic Programming IV 

11 Mixed analog-
digital variable 
capacitor circuit 

2000 Turgut Sefket 
Aytur 

Lucent Technologies 
Inc. 

6,013,958 Genetic Programming IV 

12 Voltage-current 
conversion circuit 

2000 Akira Ikeuchi 
and Naoshi 
Tokuda 

Mitsumi Electric Co., 
Ltd. 

6,166,529 Genetic Programming IV 

13 Cubic signal 
generator 

2000 Stefano 
Cipriani and 
Anthony A. 
Takeshian 

Conexant Systems, 
Inc. 

6,160,427 Genetic Programming IV 

14 High-current load 
circuit 

2001 Timothy 
Daun-
Lindberg and 
Michael 
Miller 

International Business 
Machines 
Corporation 

6,211,726 Genetic Programming IV 

15 Low-voltage 
balun circuit 

2001 Sang Gug 
Lee 

Information and 
Communications 
University 

6,265,908 Genetic Programming IV 

16 Tunable 
integrated active 
filter 

2001 Robert Irvine 
and Bernd 
Kolb 

Infineon 
Technologies AG 

6,225,859 Genetic Programming IV 

 


