

Simultaneous Discovery of Reusable Detectors and Subroutines
Using Genetic Programming

John R. Koza
Computer Science Department, Margaret Jacks Hall

Stanford University
Stanford, California 94305-2140

 Koza@CS.Stanford.Edu, 415-941-0336

Abstract

This paper describes an approach for
automatically decomposing a problem into
subproblems and then automatically discovering
reusable subroutines, and a way of assembling
the results produced by these subroutines in
order to solve a problem. The approach uses
genetic programming with automatic function
definition. Genetic programming provides a way
to genetically breed a computer program to solve
a problem. Automatic function definition
enables genetic programming to define
potentially useful subroutines dynamically
during a run. The approach is applied to an
illustrative problem. Genetic programming with
automatic function definition reduced the
computational effort required to learn a solution
to the problem by a factor of 2.0 as compared to
genetic programming without automatic function
definition. Similarly, the average structural
complexity of the solution was reduced by about
21%.

1. INTRODUCTION AND OVERVIEW
An important goal of machine learning and artificial
intelligence is the discovery of an automatic way to solve
problems hierarchically.
The hierarchical approach to problem-solving can be
viewed a three-step process. In the top-down way of
describing this three-step process, one starts with the
overall problem and seeks to discover a way to
decompose the problem into subproblems. Second, one
tries a way to solve each of the presumably simpler
subproblems. Third, one seeks a way to assemble the
solutions to the subproblems into a solution to the original
overall problem.
Solving some of the subproblems may require further
invocation of this three-step process. If this three-step

process is successful, one ends up with a hierarchical
solution to the problem.
Hierarchical solutions to problems are potentially
advantageous for machine learning because they avoid
tediously re-solving what are essentially identical
problems, because hierarchical solutions may be more
parsimonious, and because hierarchical solutions may
reduce the computational effort involved in doing the
machine learning necessary to solve the problem.
The acceleration in learning is especially great when it is
possible to reuse, with or without modification, the
solutions to the subproblems. This acceleration is
important because performance improvement by means of
some kind of hierarchical approach appears to be
necessary if machine learning methods are ever to be
scaled up from small "proof of principle" problems to
large problems.
Conventional approaches to machine learning usually
require that the user hand-craft reusable subroutines for
key features in the problem environment. Conventional
approaches often additionally require the user to specify
in advance the size and shape of the eventual way of
combining the subroutines into a compete solution.
However, in many instances, finding the reusable
subroutines and a way of combining the subroutines in
order to solve the problem really is the problem. Indeed,
the necessity for pre-identification of the particular
components of solutions and the necessity for pre-
determination of a way of combining these components
has been recognized as a bane of machine learning
starting with Samuel's ground-breaking work in machine
learning involving learning to play the game of checkers
[Samuel 1959].
In Samuel's checkers player, learning consisted of
progressively adjusting numerical coefficients in an
algebraic expression of a predetermined functional form
(specifically, a polynomial of specified order). Each
component term of the polynomial represented a hand-
crafted detector reflecting some aspect of the current state

of the board (e.g., number of pieces, center control, etc.).
The polynomial weighted each detector with a numerical
coefficient and thereby assigned a single numerical value
of a board to the player. If a polynomial were good at
assigning values to boards, the polynomial could be used
to compare the boards that would arise if the player were
to make various alternative moves – thus permitting the
best move to be selected from among the alternatives on
the basis of the polynomial. In Samuel's learning system,
the numerical coefficients of the polynomial were
adjusted with experience, so that the predictive quality of
the polynomial progressively improved. Samuel
predetermined the way the detectors would be combined
to solve the problem by selecting the functional form of
the polynomial. Samuel recognized, from the beginning,
the importance of enabling learning to occur without
predetermining the size and shape of the solution and of

"[getting] the program to generate its own parameters
(detectors) for the evaluation polynomial."

This paper describes a general approach for
simultaneously discovering reusable subroutines
(detectors in Samuel's checker player) and a way of
assembling calls to the reusable subroutines in order to
solve a problem. Specifically, we will describe a
problem-solving process that
• automatically decomposes a problem into subproblems,
• automatically discovers the solution to the

subproblems, and
• automatically discovers a way to assemble the solutions

of the subproblems into a solution of the overall
problem.

The approach involves using genetic programming with
automatic function definition to evolve a solution to the
problem.
Genetic programming provides a way to search the space
of all possible programs composed of certain terminals
and primitive functions to find a function which solves, or
approximately solves, a problem.
Automatic function definition enables genetic
programming to define potentially useful functions
automatically and dynamically during a run and also to
combine these defined functions dynamically during a run
in order to solve a problem.
Section 2 of this paper reviews genetic programming and
section 3 describes automatic function definition. Section
4 states the illustrative problem. Section 5 details the
preparatory steps for applying genetic programming to
the problem. The problem is solved in section 6 without
automatic function definition, and with automatic
function definition in section 7. The two approaches are
compared in section 8. Related and future work is
discussed in section 9.

2. BACKGROUND
Since the invention of the genetic algorithm by John
Holland [1975], the genetic algorithm has proven
successful at finding an optimal point in a search space
for a wide variety of problems.
Genetic programming is an extension of the genetic
algorithm in which the genetic population consists of
computer programs. Genetic programming provides a
way to search the space of programs composed of certain
terminals and primitive functions to find a function which
solves, or approximately solves, a problem. The book
Genetic Programming: On the Programming of
Computers by Means of Natural Selection [Koza 1992a]
describes genetic programming and demonstrates that
populations of computer programs (i.e., compositions of
primitive functions and terminals) can be genetically bred
to solve a surprising variety of problems in a wide variety
of fields. A description of the crossover operation
appropriate for programs is presented there in detail. A
videotape visualization of numerous applications of
genetic programming can be found in the Genetic
Programming: The Movie [Koza and Rice 1992].

3. AUTOMATIC FUNCTION
DEFINITION

When a human programmer writes a computer program to
solve a problem, he often creates a subroutine (procedure,
function) enabling a common calculation to be performed
without tediously rewriting the code for that calculation.
For example, if a programmer needed to write a program
for Boolean parity functions of several different orders,
he might find it convenient first to write a subroutine for
some lower-order parity function. He would call on the
code for this low-order parity function at different places
and in different ways in his main program and combine
the results to produce the desired higher-order parity
function. Specifically, if the programmer were using the
LISP programming language, he might first write a
function definition for the odd-2-parity function xor
(exclusive-or) as follows:

(defun xor (arg0 arg1)
 (values (or (and arg0 (not arg1))
 (and (not arg0) arg1)))).

This function definition (called a "defun" in LISP) does
four things. First, it assigns a name, xor, to the function
being defined thereby permitting subsequent reference to
it. Second, this function definition identifies the
argument list of the function being defined, namely the
list (arg0 arg1) containing two dummy variables
(formal parameters) called arg0 and arg1. Third, this
function definition contains a body which performs the
work of the function. Fourth, this function definition
identifies the value to be returned by the function. In this
example, the single value to be returned is emphasized

using an explicit invocation of the values function.
This particular function definition has two dummy
variables, returns only a single value, has no side effects,
and refers only to the two local dummy variables (i.e., it
does not refer to any of the actual variables of the overall
problem contained in the "main" program). However, in
general, defined functions may have any number of
arguments (including no arguments), may return multiple
values (or no values), may or may not perform side
effects, and may or may not explicitly refer to the actual
(global) variables of the main program.
Once the function xor is defined, it may then be
repeatedly called with different instantiations of its
dummy variables from more than one place in the main
program. For example, if the programmer needed the
even-4-parity at some point in his main program, he
might write
(xor (xor d0 d1) (not (xor d2 d3))).

Function definitions exploit the underlying regularities
and symmetries of a problem by obviating the need to
tediously rewrite lines of essentially similar code.
However, the importance of function definition goes well
beyond avoiding tedium. The process of defining and
calling a function, in effect, decomposes the problem into
a hierarchy of subproblems.
Automatic function definition can be implemented within
the context of genetic programming by establishing a
constrained syntactic structure for the individual
programs in the population [Koza 1992a, 1992b, 1993;
Koza and Rice 1992]. Each program in the population
contains one (or more) function-defining branches and
one (or more) "main" result-producing branches. A
result-producing branch usually calls one or more of the
defined functions. One defined function may
hierarchically refer to another already-defined function
(and potentially even itself), although such hierarchical or
recursive references will not be used in this paper.
Figure 1 shows the overall structure of a program
consisting of one function-defining branch and one result-
producing branch. The function-defining branch appears
in the left part of this figure and the result-producing
branch appears on the right.

DEFUN

PROGN

VALUES

Argument
ListADF0

Body of ADF0
Function Definition

Body of Value
Returning Branch

VALUES

Figure 1 Program with one function-defining branch
and one result-producing branch

There are eight different "types" of points in this program.
The first six types are invariant and appear above the
horizontal dotted line in this figure. The eight types are
as follows:
(1) the root of the tree (which consists of the place-

holding PROGN connective function),
(2) the top point, DEFUN, of the function-defining

branch,
(3) the name, ADF0, of the automatically defined

function,
(4) the argument list of the automatically defined

function,
(5) the VALUES function of the function-defining branch

identifying, for emphasis, the value(s) to be returned
by the automatically defined function,

(6) the VALUES function of the result-producing branch
identifying, for emphasis, the value(s) to be returned
by the result-producing branch,

(7) the body (i.e., work) of the automatically defined
function ADF0, and

(8) the body of the result-producing branch.
When the overall program is evaluated, the PROGN
causes the sequential evaluation of the two branches. The
function-defining branch merely defines the automatically
defined function ADF0 and does not immediately return
any useful value. The value(s) returned by the overall
program consists only of the value(s) returned by the
VALUES function associated with the result-producing
branch.

4. THE PROBLEM
After discovering that genetic programming with
automatic function definition could solve Boolean parity
problems of various orders [Koza 1992a, 1992b] as well
as the discovery of an impulse response function of a
time-invariant linear system [Koza, Keane, and Rice
1993], and to discovery of a pattern-recognizing program
[Koza 1993], the question arose as to whether this new
technique was applicable to other types of problems. This
paper explores this question in the context of a problem
requiring the discovery of a computer program for
controlling the movement of an artificial ant so that the
ant can find all the food lying along an irregular trail.
The “San Mateo” trail consists of nine parts, each
consisting of a square 13 by 13 grid containing different
irregularities in the sequence of food. The irregularities
include single and double gaps, corners where a single
piece of food is missing, corners where there are two
pieces of food that are missing in the trail’s current
direction, and corners where there are two pieces of food
that are missing to the left or right of the current direction
of the trail.
Figure 2 shows the nine parts (i.e., fitness cases) of the
San Mateo trail. Food is represented by solid black
squares. The starting point of the ant within each part is

in the middle of the top row (denoted by a small circle in
the figure). The ant faces south at the start of each part.
There are a total of 96 pieces of food in the trail as a
whole. For convenience of illustration, gaps in the trail
are indicated by gray squares; however, the ant cannot
distinguish between gray squares and white squares.
In the first of the nine parts of the trail, there are 12 pieces
of food and the irregularities in the trail consist only of
one single gap and one double gap. The last four parts of
the trail each contain an instance of the most difficult
irregularity, namely corners where two pieces of food are
missing to the left or right of the current direction of the
trail.
The original version of this problem involving a simpler
Santa Fe trail was solved in Jefferson et al. (1991).

5. PREPARATORY STEPS FOR
GENETIC PROGRAMMING
WITHOUT AUTOMATIC FUNCTION
DEFINITION

There are five major steps in preparing to use genetic
programming, namely determining
(1) the set of terminals,
(2) the set of primitive functions,
(3) the fitness measure,
(4) the parameters for controlling the run, and

(5) the method for designating a result and
the criterion for terminating a run.

The terminal set T for this problem consists
of

T = {(RIGHT), (LEFT), (MOVE)},

(RIGHT), (LEFT), and (MOVE) are each
operators that take no explicit arguments, but
have side effects on the state of the ant.
(RIGHT) turns the facing direction of the
ant right by 90° (without moving the ant).
(LEFT) turns the facing direction of the ant
left by 90° (without moving the ant).
(MOVE) moves the ant forward in the di-
rection it is currently facing. When an ant
moves into a square, it eats the food, if there
is any, in that square (thereby removing that
piece food from that square). Moreover, the
eating of a piece of food throws execution of
the program back to its beginning.

The function set F consists of
F = {IF-FOOD-AHEAD, PROGN},

with these functions each taking 2 arguments.
IF-FOOD-AHEAD permits the ant to sense
the single adjacent square in the direction the
ant is currently facing. This conditional
branching operator takes two arguments and

executes the first argument if (and only if) if there is
currently food in the single adjacent square in the
direction the ant is currently facing, but executes the
second argument if (and only if) if there is currently no
food in that square. This conditional branching operator
is implemented as a macro as described in Koza [1992a].
PROGN is a two-argument connective form that causes
the execution of its two arguments in sequence and
returns the value of the last argument.
Each branch of the overall program is a composition of
primitive functions from the function set F and terminals
from the terminal set T.

The third major step in preparing to use genetic
programming is the identification of the fitness measure
for evaluating the goodness of each individual in the
population.
The ant's goal is to eat as much food as possible in the
nine parts of the overall San Mateo trail. Each individual
in the population is tested against an environment
consisting of Nfc = 9 fitness cases, each consisting of one
of the parts of the San Mateo trail. The raw fitness of a
particular program is the number of pieces of food (from
0 to 96) eaten over the nine parts of the trail.
The movement of the ant is terminated on a particular part
of the trail when the ant touches the outer boundary of the

Figure 2 The 9 parts of the San Mateo trail

13 by 13 grid or it has executed a total of 120 RIGHT or
LEFT turns or 80 MOVEs for the current part of the trail.
The amount of food eaten up to the time of termination on
each part of the trail is accumulated over the nine parts of
the trail.
Standardized fitness is the total amount of available food
(i.e., 96) minus raw fitness.
The fourth major step in preparing to use genetic
programming is the selection of values for certain
parameters. Our choice of 4,000 as the population size
and our choice of 51 as the maximum number of
generations to be run reflect an estimate on our part as to
the likely difficulty of this problem. Our choice of values
for the various secondary parameters that control a run of
genetic programming are the same default values as we
have consistently used on numerous other problems
[Koza 1992a], except that we continue our recently
adopted practice of using tournament selection (with a
group size of seven) as the selection method (as opposed
to fitness proportionate reproduction).
Finally, the fifth major step in preparing to use genetic
programming is the selection of the criterion for
terminating a run and the selection of the method for
designating a result. We will terminate a given run if we
encounter a 100% correct individual or after 51
generations. We designate the best individual obtained
during the run (the best-so-far individual) as the result of
the run.

6. RESULTS WITHOUT AUTOMATIC
FUNCTION DEFINITION

In one successful run of genetic programming without
automatic function definition on this problem, the
following 95-point individual collecting 96 (out of 96)
pieces of food emerged on generation 13:
(PROGN (IF-FOOD-AHEAD (PROGN (IF-FOOD-AHEAD (MOVE)
(RIGHT)) (RIGHT)) (LEFT)) (IF-FOOD-AHEAD (IF-FOOD-AHEAD
(IF-FOOD-AHEAD (MOVE) (RIGHT)) (MOVE)) (PROGN (PROGN
(MOVE) (RIGHT)) (PROGN (IF-FOOD-AHEAD (IF-FOOD-AHEAD
(PROGN (MOVE) (RIGHT)) (PROGN (PROGN (IF-FOOD-AHEAD
(IF-FOOD-AHEAD (LEFT) (LEFT)) (PROGN (LEFT) (MOVE)))
(PROGN (IF-FOOD-AHEAD (MOVE) (RIGHT)) (PROGN (RIGHT)
(LEFT)))) (PROGN (PROGN (PROGN (PROGN (LEFT) (MOVE)) (IF-
FOOD-AHEAD (RIGHT) (LEFT))) (PROGN (IF-FOOD-AHEAD
(LEFT) (RIGHT)) (PROGN (LEFT) (LEFT)))) (IF-FOOD-AHEAD
(PROGN (PROGN (MOVE) (MOVE)) (IF-FOOD-AHEAD (MOVE)
(MOVE))) (IF-FOOD-AHEAD (MOVE) (MOVE)))))) (PROGN
(PROGN (PROGN (PROGN (LEFT) (MOVE)) (IF-FOOD-AHEAD
(RIGHT) (LEFT))) (PROGN (IF-FOOD-AHEAD (LEFT) (RIGHT))
(PROGN (LEFT) (LEFT)))) (IF-FOOD-AHEAD (MOVE) (LEFT))))
(IF-FOOD-AHEAD (PROGN (MOVE) (MOVE)) (PROGN (PROGN
(RIGHT) (MOVE)) (MOVE))))))).

Over a series of 26 runs of this problem with a population
of 4,000 without automatic function definition, the
average structural complexity (i.e., functions and
terminals in the program) of the 22 100%-correct
solutions was 90.9 points.

The rising curve in figure 3 shows, by generation, the
experimentally observed cumulative probability of
success, P(M,i), of solving the problem by generation i
(i.e., finding at least one program in the population which
scores 96). As can be seen, the experimentally observed
value of P(M,i) is 69% by generation 16, and 85% by
generation 50 over the 26 runs.
The second curve in figure 3 (which first falls and then
rises) shows, by generation, the number of individuals
that must be processed, I(M,i,z), to yield, with probability
z, a solution to the problem by generation i. I(M,i,z) is
derived from the experimentally observed values of
P(M,i). Specifically, I(M,i,z) is the product of the
population size M, the generation number i, and the
number of independent runs R(z) necessary to yield a
solution to the problem with probability z by generation i.
In turn, the number of runs R(z) is given by

R(z) =
log(1− z)

log(1− P(M,i))

 


  ,

where the brackets indicate the ceiling function for
rounding up to the next highest integer. Throughout this
paper, the probability z will be 99%.
The I(M,i,z) curve reaches a minimum value at generation
16 (highlighted by the light dotted vertical line). For a
value of P(M,i) of 69%, the number of independent runs,
R(z), necessary to yield a solution to the problem with a
99% probability by generation i is 4. The two summary
numbers (16 and 272,000) in the oval indicate that if this
problem is run through to generation 16 (the initial
random generation being counted as generation 0),
processing a total of 272,000 individuals (i.e., 4,000 ∞ 17
generations ∞ 4 runs) is sufficient to yield a solution to
this problem with 99% probability. This number,
272,000, is a measure of the computational effort
necessary to yield a solution to this problem with 99%
probability without automatic function definition.

0 25 50
0

50

100

0

2,000,000

4,000,000

P(M,i)%
I(M,i,z)

Without Function Definition

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

16 272,000

Figure 3 Performance curves showing that it is
sufficient to process 272,000 individuals to yield a
solution with 99% probability without automatic

function definition.

7. PREPARATORY STEPS FOR
GENETIC PROGRAMMING WITH

AUTOMATIC FUNCTION
DEFINITION

In applying genetic programming with automatic function
definition to this problem, we decided that each
individual program in the population will consist of one
function-defining branch defining a function called ADF0
taking no arguments and one result-producing branch.
We first consider the function-defining branch.

The terminal set Tfd for the zero-argument defined
function ADF0 consists of

Tfd = {(RIGHT), (LEFT), (MOVE)}.

The function set Ffd for ADF0 is
Ffd = {IF-FOOD-AHEAD, PROGN},

each taking 2 arguments.
The body of ADF0 is a composition of primitive functions
from the function set Ffd and terminals from the terminal
set Tfd.

We now consider the result-producing branch.

The terminal set Trp for the result-producing branch is
Trp = {(RIGHT), (LEFT), (MOVE)}.

The function set Frp for the result-producing branch is
Frp = {ADF0, IF-FOOD-AHEAD, PROGN},

with the functions taking 0, 2, and 2 arguments,
respectively.
The result-producing branch is a composition of the
functions from the function set Frp and terminals from the
terminal set Trp.

Since each individual program in the population consists
of one function-defining branch and one result-producing
branch, we must create the initial random generation so
that every individual program in the population has this
particular constrained syntactic structure. Specifically,
every individual program must have the invariant
structure represented by the six points of types 1 through
6 described above. Each function and terminal in the
function-defining branch is of type 7. Each function and
terminal in the result-producing branch is of type 8.
Since a constrained syntactic structure is involved, we
must perform crossover so as to preserve the syntactic
validity of all offspring as the run proceeds from
generation to generation. Since each program must have
the invariant structure represented by the six points of
types 1 through 6, crossover is limited to points of types 7
and 8. Structure-preserving crossover is implemented by
limiting crossover to points of type 7 or 8. This
restriction on the selection of the crossover point of the
second parent ensures the offspring's syntactic validity.

Genetic programming will evolve a different function
definition in the function-defining branch of each overall
program and then, at its discretion, it may call the defined
function from its result-producing branch. The structures
of both the function-defining and the result-producing
branch are determined by the combined effect, over many
generations, of the selective pressure exerted by the
fitness measure and by the effects of the operations of
Darwinian fitness proportionate reproduction and
crossover.

8. RESULTS WITH AUTOMATIC
FUNCTION DEFINITION

In one successful run of genetic programming with
automatic function definition on this problem, about half
(2,044 of the 4,000) of the individuals in generation 0
scored zero in their search for food over the 9 parts of the
San Mateo trail. Most of these individuals turned and
looked, but were immobile. Another 20% (868) scored
18 out of 96 because there are, over the 9 parts of the
trail, 18 pieces of food available to a program that merely
moves south whenever food is present to the south.
About 1% of the individuals scored between 54 and 72.

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-96
0

2500 Generation 0

Hits

Fr
eq

ue
nc

y

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-96
0

2500 Generation 2

Hits

Fr
eq

ue
nc

y

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-96
0

2500 Generation 5

Hits

Fr
eq

ue
nc

y

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-96
0

2500 Generation 7

Hits

Fr
eq

ue
nc

y

Figure 4 Hits histograms
Figure 4 shows the hits histograms for generations 0, 2, 5,
and 7 of this run. Notice the left-to-right undulating
movement of both the high point and the center of mass
of these histograms. This “slinky” movement reflects the
improvement of the population as a whole.
In generation 7 of this run, the following 100% correct
solution emerged:
(progn (defun ADF0 ()
 (values (PROGN (IF-FOOD-AHEAD (IF-FOOD-AHEAD

(MOVE) (RIGHT)) (PROGN (LEFT) (MOVE))) (PROGN
(IF-FOOD-AHEAD (IF-FOOD-AHEAD (MOVE) (LEFT))

(PROGN (PROGN (RIGHT) (LEFT)) (PROGN (LEFT)
(MOVE)))) (IF-FOOD-AHEAD (LEFT) (RIGHT))))

 (values (PROGN (PROGN (MOVE) (ADF0)) (PROGN (IF-
FOOD-AHEAD (MOVE) (MOVE)) (PROGN (ADF0)
(ADF0))))).

In this program, ADF0 is invoked three times from the
result-producing branch. The result-producing branch
serves to reposition the ant just prior to the first and
second invocation of ADF0.
Figure 5 shows the trajectory for the ninth fitness case of
the ant for this run. In this figure (and the following
figures in this section), the light lines represent
movements executed while in the result-producing branch
of the program, while the heavy lines indicate movements
executed by the automatically defined function ADF0.
The figure is suggestive of the reuse of a semicircular
counterclockwise inspecting motion.
The best-of-run individual from generation 7 can be
simplified as follows:
(progn (defun ADF0 ()

(values (IF-FOOD-AHEAD (MOVE) ;a
 (PROGN (LEFT) (MOVE) ;b
 (IF-FOOD-AHEAD (MOVE) ;c
 (PROGN (LEFT) (MOVE) ;d
 (IF-FOOD-AHEAD (LEFT)
 (RIGHT))))))))

 (values (PROGN (MOVE) (ADF0) (MOVE) (ADF0)
 (ADF0))))
; R 1 P 2 Q

Figure 6 shows the trajectory of the artificial ant
executing this semicircular counterclockwise inspecting
motion specified by the best-of-run individual from
generation 7. For simplicity, this figure shows only part
of the 13 by 13 grid and contains food in only four
squares. As usual, the ant starts at the circle in the top
row.
Since the ant encounters food on each of its first four
downward movements, evaluation of the program

terminates upon execution of the first (MOVE) operation
(labeled "1") in the result-producing branch. The four
places on the trajectory where this occurs are similarly
labeled "1."
The remainder of the trajectory shown represents three
evaluations of the program. These three executions occur
in the absence of any food. Each circle denotes the ant's
exit from one invocation of ADF0. The two filled circles
(labeled "E") denote the ant's exit from the first and
second of the three evaluations of the program. The large
filled circle denotes the ant's exit from the third
evaluation of the program.
Lines in the figure labeled with "2" denote a movement
caused by the second (MOVE) operation of the result-
producing branch.
Points in the figure labeled with capital letters (P, Q, or
R) denote invocations of ADF0 by the result-producing
branch.
All the bold lines in the figure denote a movement caused
by the (MOVE) operations on lines "b" or "d" of ADF0.
Note that this solution is a hierarchical decomposition of
the problem. First, genetic programming discovered a
decomposition of the overall problem into a subroutine
for performing an inspecting motion. Then, genetic
programming discovered the sequence of sensor tests,
turns, and moves to implement this inspecting motion.
Thirdly, genetic programming assembled the results of
three such inspecting motions along with other stage-
setting sensor tests, turns, and moves into a solution of
the overall problem.

Over a series of 19 runs of
this problem with automatic
function definition, the
average structural
complexity of the 19 100%-
correct solutions was 71.7
points. This average size is
smaller than the average size
of 90.9 when automatic
function definition is not
used.
Figure 7 presents the
performance curves based on
the 19 runs for this problem
with automatic function
definition. The cumulative
probability of success P(M,i)
was 95% by generation 16
and was 100% by generation
33. The two numbers in the
oval indicate that if this
problem is run through to
generation 16, processing a
total of 136,000 individuals
(i.e., 4,000 ∞ 17 generations

Figure 5 Trajectory of artificial ant
for the ninth fitness case of the

successful run solving on
generation 7.

Q R 1
P

2
Q

R

E1
P

Q

2

R

E
1

P

2

1

1

1

1

Figure 6
Trajectory of
artificial ant
showing its
semicircular

counterclockwise
inspecting motion.

∞ 2 runs) is sufficient to yield a solution to this problem
with 99% probability.

0 25 50
0

50

100

0

2,000,000

4,000,000

P(M,i)%
I(M,i,z)

With Function Definition

Generation

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

 (%
)

In
di

vi
du

al
s t

o
be

 P
ro

ce
ss

ed

16 136,000

Figure 7 Performance curves showing that it is sufficient

to process 136,000 individuals to yield a solution with
99% probability with automatic function definition.

The 136,000 individuals that must be processed to yield a
solution with automatic function definition is half of the
272,000 individuals required when automatic function
definition is not used. In particular, automatic function
definition is 2.0 times more efficient.

9. CONCLUSION
This paper has described a general automatic approach
for simultaneously discovering reusable subroutines and
an invoking them to solve problems.
As we have now seen, genetic programming can solve a
particular illustrative problem with or without automatic
function definition.
Table 1 compares the solutions of this problem with and
without automatic function definition with respect to the
average structural complexity of the 100%-correct
solutions and the computational effort I(M,i,z) sufficient
to yield a solution to this problem with 99% probability.

Table 1 Comparison table

Without Automatic
Function
Definition

With Automatic
Function
Definition

Average Structural
Complexity S

90.9 71.7

Computational
effort - I(M,i,z)

272,000 136,000

As can be seen from table 1, there is a reduction in the
structural complexity of the solutions as a reult of using
automatic function definition. The ratio of the average
structural complexity, S , between the two approaches is
1.27. In addition, there is a reduction in the
computational effort required to solve the problem when
using automatic function definition. The ratio of the
computational effort between the two approaches is 2.00.
Figure 8 compares the information in table 1 showing
these two ratios.

Without ADFs With ADFs
0

50

100

Without ADFs With ADFs
0

S

R = 1.27S

Without ADFs With ADFs
00

100,000

200,000

300,000

R = 2.0
E

C
om

pu
ta

tio
na

l E
ff

or
t

Without ADFs With ADFs

Figure 8 Summary graphs
Acknowledgements

James P. Rice of the Knowledge Systems Laboratory at
Stanford University did the computer programming of the
above on a Texas Instruments Explorer II+ computer.

References
Holland, John H. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan Press
1975. Revised Second Edition 1992 from The MIT Press.
Jefferson, David, Collins, Robert, Cooper, Claus, Dyer,
Michael, Flowers, Margot, Korf, Richard, Taylor,
Charles, and Wang, Alan. Evolution as a theme in
artificial life: The genesys/tracker system. In Langton,
Christopher, Taylor, Charles, Farmer, J. Doyne, and
Rasmussen, Steen (editors). Artificial Life II, SFI Studies
in the Sciences of Complexity. Volume X. Redwood City,
CA: Addison-Wesley 1991. Pages 549-578.
Koza, John R. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press 1992. 1992a.
Koza, John R. Hierarchical automatic function definition
in genetic programming. In Whitley, Darrell (editor).
Proceedings of Workshop on the Foundations of Genetic
Algorithms and Classifier Systems, Vail, Colorado 1992.
San Mateo, CA: Morgan Kaufmann Publishers Inc. 1992.
1992b.
Koza, John R. Simultaneous discovery of detectors and a
way of using the detectors via genetic programming.
1993 IEEE International Conference on Neural
Networks, San Francisco. Piscataway, NJ: IEEE 1993.
Volume III. Pages 1794-1801. 1993.
Koza, John R. and Rice, James P. Genetic Programming:
The Movie. Cambridge, MA: The MIT Press 1992.
Koza, John R., Keane, Martin A., and Rice, James P.
Performance improvement of machine learning via
automatic discovery of facilitating functions as applied to
a problem of symbolic system identification. 1993 IEEE
International Conference on Neural Networks, San
Francisco. Piscataway, NJ: IEEE 1993. Volume I.
Pages 191-198. 1993 .
Samuel, Arthur L. Some studies in machine learning
using the game of checkers. IBM Journal of Research and
Development, 3(3): 210–229. July 1959.

