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Abstract 

This paper describes an approach for 
automatically decomposing a problem into 
subproblems and then automatically discovering 
reusable subroutines, and a way of assembling 
the results produced by these subroutines in 
order to solve a problem.  The approach uses 
genetic programming with automatic function 
definition.  Genetic programming provides a way 
to genetically breed a computer program to solve 
a problem.  Automatic function definition 
enables genetic programming to define 
potentially useful subroutines dynamically 
during a run.  The approach is applied to an 
illustrative problem.  Genetic programming with 
automatic function definition reduced the 
computational effort required to learn a solution 
to the problem by a factor of 2.0 as compared to 
genetic programming without automatic function 
definition.   Similarly, the average structural 
complexity of the solution was reduced by about 
21%.    

1. INTRODUCTION AND OVERVIEW 
An important goal of machine learning and artificial 
intelligence is the discovery of an automatic way to solve 
problems hierarchically.   
The hierarchical approach to problem-solving can be 
viewed a three-step process.  In the top-down way of 
describing this three-step process, one starts with the 
overall problem and seeks to discover a way to 
decompose the problem into subproblems.  Second, one 
tries a way to solve each of the presumably simpler 
subproblems.  Third, one seeks a way to assemble the 
solutions to the subproblems into a solution to the original 
overall problem.   
Solving some of the subproblems may require further 
invocation of this three-step process.  If this three-step 

process is successful, one ends up with a hierarchical 
solution to the problem.   
Hierarchical solutions to problems are potentially 
advantageous for machine learning because they avoid 
tediously re-solving what are essentially identical 
problems, because hierarchical solutions may be more 
parsimonious, and because hierarchical solutions may 
reduce the computational effort involved in doing the 
machine learning necessary to solve the problem.   
The acceleration in learning is especially great when it is 
possible to reuse, with or without modification, the 
solutions to the subproblems.  This acceleration is 
important because performance improvement by means of 
some kind of hierarchical approach appears to be 
necessary if machine learning methods are ever to be 
scaled up from small "proof of principle" problems to 
large problems.   
Conventional approaches to machine learning usually 
require that the user hand-craft reusable subroutines for 
key features in the problem environment.  Conventional 
approaches often additionally require the user to specify 
in advance the size and shape of the eventual way of 
combining the subroutines into a compete solution.  
However, in many instances, finding the reusable 
subroutines and a way of combining the subroutines in 
order to solve the problem really is the problem.  Indeed, 
the necessity for pre-identification of the particular 
components of solutions and the necessity for pre-
determination of a way of combining these components 
has been recognized as a bane of machine learning 
starting with Samuel's ground-breaking work in machine 
learning involving learning to play the game of checkers 
[Samuel 1959].   
In Samuel's checkers player, learning consisted of 
progressively adjusting numerical coefficients in an 
algebraic expression of a predetermined functional form 
(specifically, a polynomial of specified order).  Each 
component term of the polynomial represented a hand-
crafted detector reflecting some aspect of the current state 



 

of the board (e.g., number of pieces, center control, etc.).  
The polynomial weighted each detector with a numerical 
coefficient and thereby assigned a single numerical value 
of a board to the player.  If a polynomial were good at 
assigning values to boards, the polynomial could be used 
to compare the boards that would arise if the player were 
to make various alternative moves – thus permitting the 
best move to be selected from among the alternatives on 
the basis of the polynomial.  In Samuel's learning system, 
the numerical coefficients of the polynomial were 
adjusted with experience, so that the predictive quality of 
the polynomial progressively improved.  Samuel 
predetermined the way the detectors would be combined 
to solve the problem by selecting the functional form of 
the polynomial.  Samuel recognized, from the beginning, 
the importance of enabling learning to occur without 
predetermining the size and shape of the solution and of  

"[getting] the program to generate its own parameters 
(detectors) for the evaluation polynomial."   

This paper describes a general approach for 
simultaneously discovering reusable subroutines 
(detectors in Samuel's checker player) and a way of 
assembling calls to the reusable subroutines in order to 
solve a problem.  Specifically, we will describe a 
problem-solving process that 
• automatically decomposes a problem into subproblems, 
• automatically discovers the solution to the 

subproblems, and 
• automatically discovers a way to assemble the solutions 

of the subproblems into a solution of the overall 
problem.   

The approach involves using genetic programming with 
automatic function definition to evolve a solution to the 
problem.   
Genetic programming provides a way to search the space 
of all possible programs composed of certain terminals 
and primitive functions to find a function which solves, or 
approximately solves, a problem.   
Automatic function definition enables genetic 
programming to define potentially useful functions 
automatically and dynamically during a run and also to 
combine these defined functions dynamically during a run 
in order to solve a problem.   
Section 2 of this paper reviews genetic programming and 
section 3 describes automatic function definition.  Section 
4 states the illustrative problem.   Section 5 details the 
preparatory steps for applying genetic programming to 
the problem.  The problem is solved in section 6 without 
automatic function definition, and with automatic 
function definition in section 7.  The two approaches are 
compared in section 8.  Related and future work is 
discussed in section 9. 

2. BACKGROUND 
Since the invention of the genetic algorithm by John 
Holland [1975], the genetic algorithm has proven 
successful at finding an optimal point in a search space 
for a wide variety of problems. 
Genetic programming is an extension of the genetic 
algorithm in which the genetic population consists of 
computer programs.  Genetic programming provides a 
way to search the space of programs composed of certain 
terminals and primitive functions to find a function which 
solves, or approximately solves, a problem.  The book 
Genetic Programming: On the Programming of 
Computers by Means of Natural Selection [Koza 1992a] 
describes genetic programming and demonstrates that 
populations of computer programs (i.e., compositions of 
primitive functions and terminals) can be genetically bred 
to solve a surprising variety of problems in a wide variety 
of fields.  A description of the crossover operation 
appropriate for programs is presented there in detail.  A 
videotape visualization of numerous applications of 
genetic programming can be found in the Genetic 
Programming: The Movie [Koza and Rice 1992].   

3. AUTOMATIC FUNCTION 
DEFINITION 

When a human programmer writes a computer program to 
solve a problem, he often creates a subroutine (procedure, 
function) enabling a common calculation to be performed 
without tediously rewriting the code for that calculation.   
For example, if a programmer needed to write a program 
for Boolean parity functions of several different orders, 
he might find it convenient first to write a subroutine for 
some lower-order parity function.  He would call on the 
code for this low-order parity function at different places 
and in different ways in his main program and combine 
the results to produce the desired higher-order parity 
function.   Specifically, if the programmer were using the 
LISP programming language, he might first write a 
function definition for the odd-2-parity function xor 
(exclusive-or) as follows: 

(defun xor (arg0 arg1) 
  (values (or (and arg0 (not arg1)) 
                     (and (not arg0) arg1)))). 

This function definition (called a "defun" in LISP) does 
four things.  First, it assigns a name, xor, to the function 
being defined thereby permitting subsequent reference to 
it.  Second, this function definition identifies the 
argument list of the function being defined, namely the 
list (arg0 arg1) containing two dummy variables 
(formal parameters) called arg0 and arg1.  Third, this 
function definition contains a body which performs the 
work of the function.  Fourth, this function definition 
identifies the value to be returned by the function.  In this 
example, the single value to be returned is emphasized 



 

using an explicit invocation of the values function.  
This particular function definition has two dummy 
variables, returns only a single value, has no side effects, 
and refers only to the two local dummy variables (i.e., it 
does not refer to any of the actual variables of the overall 
problem contained in the "main" program).  However, in 
general, defined functions may have any number of 
arguments (including no arguments), may return multiple 
values (or no values), may or may not perform side 
effects, and may or may not explicitly refer to the actual 
(global) variables of the main program.   
Once the function xor is defined, it may then be 
repeatedly called with different instantiations of its 
dummy variables from more than one place in the main 
program.  For example, if the programmer needed the 
even-4-parity at some point in his main program, he 
might write 
(xor (xor d0 d1) (not (xor d2 d3))). 

Function definitions exploit the underlying regularities 
and symmetries of a problem by obviating the need to 
tediously rewrite lines of essentially similar code.  
However, the importance of function definition goes well 
beyond avoiding tedium.  The process of defining and 
calling a function, in effect, decomposes the problem into 
a hierarchy of subproblems.   
Automatic function definition can be implemented within 
the context of genetic programming by establishing a 
constrained syntactic structure for the individual 
programs in the population [Koza 1992a, 1992b, 1993; 
Koza and Rice 1992].  Each program in the population 
contains one (or more) function-defining branches and 
one (or more) "main" result-producing branches.  A 
result-producing branch usually calls one or more of the 
defined functions.  One defined function may 
hierarchically refer to another already-defined function 
(and potentially even itself), although such hierarchical or 
recursive references will not be used in this paper.   
Figure 1 shows the overall structure of a program 
consisting of one function-defining branch and one result-
producing branch.  The function-defining branch appears 
in the left part of this figure and the result-producing 
branch appears on the right.   
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Figure 1  Program with one function-defining branch 
and one result-producing branch 

There are eight different "types" of points in this program.  
The first six types are invariant and appear above the 
horizontal dotted line in this figure.  The eight types are 
as follows:  
(1) the root of the tree (which consists of the place-

holding PROGN connective function),  
(2) the top point, DEFUN, of the function-defining 

branch,  
(3) the name, ADF0, of the automatically defined 

function,  
(4) the argument list of the automatically defined 

function,  
(5) the VALUES function of the function-defining branch 

identifying, for emphasis, the value(s) to be returned 
by the automatically defined function,  

(6) the VALUES function of the result-producing branch 
identifying, for emphasis, the value(s) to be returned 
by the result-producing branch,  

(7) the body (i.e., work) of the automatically defined 
function ADF0, and  

(8) the body of the result-producing branch.   
When the overall program is evaluated, the PROGN 
causes the sequential evaluation of the two branches.  The 
function-defining branch merely defines the automatically 
defined function ADF0 and does not immediately return 
any useful value.  The value(s) returned by the overall 
program consists only of the value(s) returned by the 
VALUES function associated with the result-producing 
branch.   

4. THE PROBLEM 
After discovering that genetic programming with 
automatic function definition could solve Boolean parity 
problems of various orders [Koza 1992a, 1992b] as well 
as the discovery of an impulse response function of a 
time-invariant linear system [Koza, Keane, and Rice 
1993], and to discovery of a pattern-recognizing program 
[Koza 1993], the question arose as to whether this new 
technique was applicable to other types of problems.  This 
paper explores this question in the context of a problem 
requiring the discovery of a computer program for 
controlling the movement of an artificial ant so that the 
ant can find all the food lying along an irregular trail.   
The “San Mateo” trail consists of nine parts, each 
consisting of a square 13 by 13 grid containing different 
irregularities in the sequence of food.  The irregularities 
include single and double gaps, corners where a single 
piece of food is missing, corners where there are two 
pieces of food that are missing in the trail’s current 
direction, and corners where there are two pieces of food 
that are missing to the left or right of the current direction 
of the trail.   
Figure 2 shows the nine parts (i.e., fitness cases) of the 
San Mateo trail.  Food is represented by solid black 
squares.  The starting point of the ant within each part is 



 

in the middle of the top row (denoted by a small circle in 
the figure).  The ant faces south at the start of each part.  
There are a total of 96 pieces of food in the trail as a 
whole.  For convenience of illustration, gaps in the trail 
are indicated by gray squares; however, the ant cannot 
distinguish between gray squares and white squares. 
In the first of the nine parts of the trail, there are 12 pieces 
of food and the irregularities in the trail consist only of 
one single gap and one double gap.  The last four parts of 
the trail each contain an instance of the most difficult 
irregularity, namely corners where two pieces of food are 
missing to the left or right of the current direction of the 
trail.   
The original version of this problem involving a simpler  
Santa Fe trail was solved in Jefferson et al. (1991). 

5. PREPARATORY STEPS FOR 
GENETIC PROGRAMMING 
WITHOUT AUTOMATIC FUNCTION 
DEFINITION 

There are five major steps in preparing to use genetic 
programming, namely determining 
(1) the set of terminals, 
(2) the set of primitive functions,  
(3) the fitness measure, 
(4) the parameters for controlling the run, and 

(5) the method for designating a result and 
the criterion for terminating a run. 

The terminal set T for this problem consists 
of 

T = {(RIGHT), (LEFT), (MOVE)}, 

(RIGHT), (LEFT), and (MOVE) are each 
operators that take no explicit arguments, but 
have side effects on the state of the ant.   
(RIGHT) turns the facing direction of the 
ant right by 90° (without moving the ant).   
(LEFT) turns the facing direction of the ant 
left by 90° (without moving the ant).  
(MOVE) moves the ant forward in the di-
rection it is currently facing.  When an ant 
moves into a square, it eats the food, if there 
is any, in that square (thereby removing that 
piece food from that square).  Moreover, the 
eating of a piece of food throws execution of 
the program back to its beginning.    

The function set F consists of 
F = {IF-FOOD-AHEAD, PROGN}, 

with these functions each taking 2 arguments.   
IF-FOOD-AHEAD permits the ant to sense 
the single adjacent square in the direction the 
ant is currently facing.  This conditional 
branching operator takes two arguments and 

executes the first argument if (and only if) if there is 
currently food in the single adjacent square in the 
direction the ant is currently facing, but executes the 
second argument if (and only if) if there is currently no 
food in that square.  This conditional branching operator 
is implemented as a macro as described in Koza [1992a].   
PROGN is a two-argument connective form that causes 
the execution of its two arguments in sequence and 
returns the value of the last argument.   
Each branch of the overall program is a composition of 
primitive functions from the function set F and terminals 
from the terminal set T.   

The third major step in preparing to use genetic 
programming is the identification of the fitness measure 
for evaluating the goodness of each individual in the 
population.   
The ant's goal is to eat as much food as possible in the 
nine parts of the overall San Mateo trail.  Each individual 
in the population is tested against an environment 
consisting of Nfc = 9 fitness cases, each consisting of one 
of the parts of the San Mateo trail. The raw fitness of a 
particular program is the number of pieces of food (from 
0 to 96) eaten over the nine parts of the trail.   
The movement of the ant is terminated on a particular part 
of the trail when the ant touches the outer boundary of the 

 

 

 

Figure 2  The 9 parts of the San Mateo trail  



 

13 by 13 grid or it has executed a total of 120 RIGHT or 
LEFT turns or 80 MOVEs for the current part of the trail.  
The amount of food eaten up to the time of termination on 
each part of the trail is accumulated over the nine parts of 
the trail. 
Standardized fitness is the total amount of available food 
(i.e., 96) minus raw fitness.   
The fourth major step in preparing to use genetic 
programming is the selection of values for certain 
parameters.  Our choice of 4,000 as the population size 
and our choice of 51 as the maximum number of 
generations to be run reflect an estimate on our part as to 
the likely difficulty of this problem.  Our choice of values 
for the various secondary parameters that control a run of 
genetic programming are the same default values as we 
have consistently used on numerous other problems 
[Koza 1992a], except that we continue our recently 
adopted practice of using tournament selection (with a 
group size of seven) as the selection method (as opposed 
to fitness proportionate reproduction). 
Finally, the fifth major step in preparing to use genetic 
programming is the selection of the criterion for 
terminating a run and the selection of the method for 
designating a result.  We will terminate a given run if we 
encounter a 100% correct individual or after 51 
generations.  We designate the best individual obtained 
during the run (the best-so-far individual) as the result of 
the run.   

6. RESULTS WITHOUT AUTOMATIC 
FUNCTION DEFINITION 

In one successful run of genetic programming without 
automatic function definition on this problem, the 
following 95-point individual collecting 96 (out of 96) 
pieces of food emerged on generation 13: 
(PROGN (IF-FOOD-AHEAD (PROGN (IF-FOOD-AHEAD (MOVE) 
(RIGHT)) (RIGHT)) (LEFT)) (IF-FOOD-AHEAD (IF-FOOD-AHEAD 
(IF-FOOD-AHEAD (MOVE) (RIGHT)) (MOVE)) (PROGN (PROGN 
(MOVE) (RIGHT)) (PROGN (IF-FOOD-AHEAD (IF-FOOD-AHEAD 
(PROGN (MOVE) (RIGHT)) (PROGN (PROGN (IF-FOOD-AHEAD 
(IF-FOOD-AHEAD (LEFT) (LEFT)) (PROGN (LEFT) (MOVE))) 
(PROGN (IF-FOOD-AHEAD (MOVE) (RIGHT)) (PROGN (RIGHT) 
(LEFT)))) (PROGN (PROGN (PROGN (PROGN (LEFT) (MOVE)) (IF-
FOOD-AHEAD (RIGHT) (LEFT))) (PROGN (IF-FOOD-AHEAD 
(LEFT) (RIGHT)) (PROGN (LEFT) (LEFT)))) (IF-FOOD-AHEAD 
(PROGN (PROGN (MOVE) (MOVE)) (IF-FOOD-AHEAD (MOVE) 
(MOVE))) (IF-FOOD-AHEAD (MOVE) (MOVE)))))) (PROGN 
(PROGN (PROGN (PROGN (LEFT) (MOVE)) (IF-FOOD-AHEAD 
(RIGHT) (LEFT))) (PROGN (IF-FOOD-AHEAD (LEFT) (RIGHT)) 
(PROGN (LEFT) (LEFT)))) (IF-FOOD-AHEAD (MOVE) (LEFT)))) 
(IF-FOOD-AHEAD (PROGN (MOVE) (MOVE)) (PROGN (PROGN 
(RIGHT) (MOVE)) (MOVE))))))). 

Over a series of 26 runs of this problem with a population 
of 4,000 without automatic function definition, the 
average structural complexity (i.e., functions and 
terminals in the program) of the 22 100%-correct 
solutions was 90.9 points.   

The rising curve in figure 3 shows, by generation, the 
experimentally observed cumulative probability of 
success, P(M,i), of solving the problem by generation i 
(i.e., finding at least one program in the population which 
scores 96).  As can be seen, the experimentally observed 
value of P(M,i) is 69% by generation 16, and 85% by 
generation 50 over the 26 runs. 
The second curve in figure 3 (which first falls and then 
rises) shows, by generation, the number of individuals 
that must be processed, I(M,i,z), to yield, with probability 
z, a solution to the problem by generation i.  I(M,i,z) is 
derived from the experimentally observed values of 
P(M,i).  Specifically, I(M,i,z) is the product of the 
population size M, the generation number i, and the 
number of independent runs R(z) necessary to yield a 
solution to the problem with probability z by generation i.  
In turn, the number of runs R(z) is given by 

R(z ) =
log(1− z)

log(1− P( M,i))
 
  

 
  , 

where the brackets indicate the ceiling function for 
rounding up to the next highest integer.  Throughout this 
paper, the probability z will be 99%.   
The I(M,i,z) curve reaches a minimum value at generation 
16 (highlighted by the light dotted vertical line).   For a 
value of P(M,i) of 69%, the number of independent runs, 
R(z), necessary to yield a solution to the problem with a 
99% probability by generation i is 4.  The two summary 
numbers (16 and 272,000) in the oval indicate that if this 
problem is run through to generation 16 (the initial 
random generation being counted as generation 0), 
processing a total of 272,000 individuals (i.e., 4,000 ∞ 17 
generations ∞ 4 runs) is sufficient to yield a solution to 
this problem with 99% probability.  This number, 
272,000, is a measure of the computational effort 
necessary to yield a solution to this problem with 99% 
probability without automatic function definition.   
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Figure 3  Performance curves showing that it is 
sufficient to process 272,000 individuals to yield a 
solution with 99% probability without automatic 

function definition.  

7. PREPARATORY STEPS FOR 
GENETIC PROGRAMMING WITH 



 

AUTOMATIC FUNCTION 
DEFINITION 

In applying genetic programming with automatic function 
definition to this problem, we decided that each 
individual program in the population will consist of one 
function-defining branch defining a function called ADF0 
taking no arguments and one result-producing branch.   
We first consider the function-defining branch. 

The terminal set Tfd for the zero-argument defined 
function ADF0 consists of 

Tfd = {(RIGHT), (LEFT), (MOVE)}.   

The function set Ffd for ADF0 is  
Ffd = {IF-FOOD-AHEAD, PROGN}, 

each taking 2 arguments.   
The body of ADF0 is a composition of primitive functions 
from the function set Ffd and terminals from the terminal 
set Tfd.   

We now consider the result-producing branch. 

The terminal set Trp for the result-producing branch is 
Trp = {(RIGHT), (LEFT), (MOVE)}. 

The function set Frp for the result-producing branch is  
Frp = {ADF0, IF-FOOD-AHEAD, PROGN}, 

with the functions taking 0, 2, and 2 arguments, 
respectively. 
The result-producing branch is a composition of the 
functions from the function set Frp and terminals from the 
terminal set Trp. 

Since each individual program in the population consists 
of one function-defining branch and one result-producing 
branch, we must create the initial random generation so 
that every individual program in the population has this 
particular constrained syntactic structure.  Specifically, 
every individual program must have the invariant 
structure represented by the six points of types 1 through 
6 described above.  Each function and terminal in the 
function-defining branch is of type 7.  Each function and 
terminal in the result-producing branch is of type 8.   
Since a constrained syntactic structure is involved, we 
must perform crossover so as to preserve the syntactic 
validity of all offspring as the run proceeds from 
generation to generation.  Since each program must have 
the invariant structure represented by the six points of 
types 1 through 6, crossover is limited to points of types 7 
and 8.  Structure-preserving crossover is implemented by 
limiting crossover to points of type 7 or 8.  This 
restriction on the selection of the crossover point of the 
second parent ensures the offspring's syntactic validity.   

Genetic programming will evolve a different function 
definition in the function-defining branch of each overall 
program and then, at its discretion, it may call the defined 
function from its result-producing branch.  The structures 
of both the function-defining and the result-producing 
branch are determined by the combined effect, over many 
generations, of the selective pressure exerted by the 
fitness measure and by the effects of the operations of 
Darwinian fitness proportionate reproduction and 
crossover.   

8. RESULTS WITH AUTOMATIC 
FUNCTION DEFINITION 

In one successful run of genetic programming with 
automatic function definition on this problem, about half 
(2,044 of the 4,000) of the individuals in generation 0 
scored zero in their search for food over the 9 parts of the 
San Mateo trail.  Most of these individuals turned and 
looked, but were immobile.  Another 20% (868) scored 
18 out of 96 because there are, over the 9 parts of the 
trail, 18 pieces of food available to a program that merely 
moves south whenever food is present to the south.  
About 1% of the individuals scored between 54 and 72. 
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Figure 4  Hits histograms  
Figure 4 shows the hits histograms for generations 0, 2, 5, 
and 7 of this run.  Notice the left-to-right undulating 
movement of both the high point and the center of mass 
of these histograms.  This “slinky” movement reflects the 
improvement of the population as a whole.   
In generation 7 of this run, the following 100% correct 
solution emerged: 
(progn (defun ADF0 () 
 (values (PROGN (IF-FOOD-AHEAD (IF-FOOD-AHEAD 

(MOVE) (RIGHT)) (PROGN (LEFT) (MOVE))) (PROGN 
(IF-FOOD-AHEAD (IF-FOOD-AHEAD (MOVE) (LEFT)) 



 

(PROGN (PROGN (RIGHT) (LEFT)) (PROGN (LEFT) 
(MOVE)))) (IF-FOOD-AHEAD (LEFT) (RIGHT)))) 

 (values (PROGN (PROGN (MOVE) (ADF0)) (PROGN (IF-
FOOD-AHEAD (MOVE) (MOVE)) (PROGN (ADF0) 
(ADF0))))). 

In this program, ADF0 is invoked three times from the 
result-producing branch.  The result-producing branch 
serves to reposition the ant just prior to the first and 
second invocation of  ADF0. 
Figure 5 shows the trajectory for the ninth fitness case of 
the ant for this run.  In this figure (and the following 
figures in this section), the light lines represent 
movements executed while in the result-producing branch 
of the program, while the heavy lines indicate movements 
executed by the automatically defined function ADF0.  
The figure is suggestive of the reuse of a semicircular 
counterclockwise inspecting motion.   
The best-of-run individual from generation 7 can be 
simplified as follows: 
(progn (defun ADF0 () 

(values (IF-FOOD-AHEAD (MOVE) ;a 
                    (PROGN (LEFT) (MOVE) ;b 
                                 (IF-FOOD-AHEAD (MOVE) ;c 
                                        (PROGN (LEFT) (MOVE) ;d 
                                                     (IF-FOOD-AHEAD (LEFT)  
                                                         (RIGHT)))))))) 

 (values (PROGN (MOVE) (ADF0) (MOVE) (ADF0)  
              (ADF0)))) 
;                  R        1            P            2           Q 

Figure 6 shows the trajectory of the artificial ant 
executing this semicircular counterclockwise inspecting 
motion specified by the best-of-run individual from 
generation 7.  For simplicity, this figure shows only part 
of the 13 by 13 grid and contains food in only four 
squares.  As usual, the ant starts at the circle in the top 
row.   
Since the ant encounters food on each of its first four 
downward movements, evaluation of the program 

terminates upon execution of the first (MOVE) operation 
(labeled "1") in the result-producing branch.  The four 
places on the trajectory where this occurs are similarly 
labeled "1." 
The remainder of the trajectory shown represents three 
evaluations of the program.  These three executions occur 
in the absence of any food.  Each circle denotes the ant's 
exit from one invocation of ADF0.  The two filled circles 
(labeled "E") denote the ant's exit from the first and 
second of the three evaluations of the program.  The large 
filled circle denotes the ant's exit from the third 
evaluation of the program.   
Lines in the figure labeled with "2" denote a movement 
caused by the second (MOVE) operation of the result-
producing branch.   
Points in the figure labeled with capital letters (P, Q, or 
R) denote invocations of ADF0 by the result-producing 
branch.   
All the bold lines in the figure denote a movement caused 
by the (MOVE) operations on lines "b" or "d" of ADF0.   
Note that this solution is a hierarchical decomposition of 
the problem.  First, genetic programming discovered a 
decomposition of the overall problem into a subroutine 
for performing an inspecting motion.  Then, genetic 
programming discovered the sequence of sensor tests, 
turns, and moves to implement this inspecting motion.  
Thirdly, genetic programming assembled the results of 
three such inspecting motions along with other stage-
setting sensor tests, turns, and moves into a solution of 
the overall problem.   

Over a series of 19 runs of 
this problem with automatic 
function definition, the 
average structural 
complexity of the 19 100%-
correct solutions was 71.7 
points.  This average size is 
smaller than the average size 
of 90.9 when automatic 
function definition is not 
used.  
Figure 7 presents the 
performance curves based on 
the 19 runs for this problem 
with automatic function 
definition.  The cumulative 
probability of success P(M,i) 
was 95% by generation 16 
and was 100% by generation 
33.  The two numbers in the 
oval indicate that if this 
problem is run through to 
generation 16, processing a 
total of 136,000 individuals 
(i.e., 4,000 ∞ 17 generations 

 

Figure 5  Trajectory of artificial ant 
for the ninth fitness case of the 

successful run solving on 
generation 7. 
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Figure 6  
Trajectory of 
artificial ant 
showing its 
semicircular 

counterclockwise 
inspecting motion. 



 

∞ 2 runs) is sufficient to yield a solution to this problem 
with 99% probability.   
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Figure 7 Performance curves showing that it is sufficient 

to process 136,000 individuals to yield a solution with 
99% probability with automatic function definition.  

The 136,000 individuals that must be processed to yield a 
solution with automatic function definition is half of the 
272,000 individuals required when automatic function 
definition is not used.  In particular, automatic function 
definition is 2.0 times more efficient.   

9. CONCLUSION 
This paper has described a general automatic approach 
for simultaneously discovering reusable subroutines and 
an invoking them to solve problems.    
As we have now seen, genetic programming can solve a 
particular illustrative problem with or without automatic 
function definition.   
Table 1 compares the solutions of this problem with and 
without automatic function definition with respect to the 
average structural complexity of the 100%-correct 
solutions and the computational effort I(M,i,z) sufficient 
to yield a solution to this problem with 99% probability.   

Table 1  Comparison table 

Without Automatic 
Function  
Definition 

With Automatic 
Function 
Definition 

Average Structural 
Complexity S  

90.9 71.7 

Computational 
effort  - I(M,i,z) 

272,000 136,000 

As can be seen from table 1, there is a reduction in the 
structural complexity of the solutions as a reult of using 
automatic function definition.  The ratio of the average 
structural complexity, S , between the two approaches is 
1.27.  In addition, there is a reduction in the 
computational effort required to solve the problem when 
using automatic function definition.  The ratio of the 
computational effort between the two approaches is 2.00.   
Figure 8 compares the information in table 1 showing 
these two ratios.   
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Figure 8  Summary graphs 
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