Skip to main content

Learnable Embeddings of Program Spaces

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6621))

Abstract

We consider a class of adaptive, globally-operating, semantic-based embeddings of programs into discrete multidimensional spaces termed prespaces. In the proposed formulation, the original space of programs and its prespace are bound with a learnable mapping, where the process of learning is aimed at improving the overall locality of the new representation with respect to program semantics. To learn the mapping, which is formally a permutation of program locations in the prespace, we propose two algorithms: simple greedy heuristics and an evolutionary algorithm. To guide the learning process, we use a new definition of semantic locality. In an experimental illustration concerning four symbolic regression domains, we demonstrate that an evolutionary algorithm is able to improve the embedding designed by means of greedy search, and that the learned prespaces usually offer better search performance than the original program space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming: An Introduction. On the automatic Evolution of Computer Programs and its Application. Morgan Kaufmann, San Francisco (1998)

    Book  MATH  Google Scholar 

  2. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Genetic and Evolutionary Computation, vol. XVI. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  3. Dijkstra, E.W.: On the cruelty of really teaching computing science. circulated privately (December 1988)

    Google Scholar 

  4. Johnson, C.: Genetic programming crossover: Does it cross over? In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 97–108. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: Raidl, G., et al. (eds.) GECCO 2009: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (2009)

    Google Scholar 

  6. Looks, M.: Competent Program Evolution. Doctor of science, Washington University, St. Louis, USA (December 11, 2006)

    Google Scholar 

  7. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, July 13-17, vol. 2, pp. 1135–1142. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  8. Moraglio, A., Poli, R.: Topological interpretation of crossover. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic aware crossover for genetic programming: The case for real-valued function regression. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 292–302. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary Language. Genetic programming, vol. 4. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  11. Rothlauf, F.: On the locality of representations. Technical Report, University of Mannheim, Department of Information Systems 1 (2003)

    Google Scholar 

  12. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15, 185–212 (2009)

    Article  Google Scholar 

  13. Vanneschi, L., Tomassini, M.: Pros and cons of fitness distance correlation in genetic programming. In: Barry, A.M. (ed.) GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, Chigaco, July 11, pp. 284–287. AAAI, Menlo Park (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krawiec, K. (2011). Learnable Embeddings of Program Spaces. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds) Genetic Programming. EuroGP 2011. Lecture Notes in Computer Science, vol 6621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20407-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20407-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20406-7

  • Online ISBN: 978-3-642-20407-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics