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Abstract. Binary Decision Diagrams (BDDs) can be used to design
multiplexor based circuits. Unfortunately, the most commonly used kind
of BDDs – ordered BDDs – has exponential size in the number of vari-
ables for many functions. In some cases, more general forms of BDDs
are more compact. In constrast to the minimization of OBDDs, which is
well understood, there are no heuristics for the construction of compact
BDDs up to today. In this paper we show that compact BDDs can be
constructed using Genetic Programming.

1 Introduction

Decision Diagrams (DDs) are used for the representation of Boolean functions
in many applications of VLSI CAD, e.g. in the area of logic synthesis [1] and
verification [2]. In the meantime DD-based approaches have also been integrated
in commercial tools.

The state-of-the-art data structure are Ordered Binary Decision Diagrams
(OBDDs) [2]. Since OBDDs are often not able to represent Boolean functions
efficiently due to the ordering restriction [3],[4],[5] many researchers have ex-
tended the OBDD concept mainly in two directions:

1. Consider different decomposition, e.g. ordered functional decision diagrams
(OFDDs) [6] and ordered Kronecker functional decision diagrams (OKFDDs)
[7] make use of AND/EXOR based decompositions.

2. Loosen the ordering restriction, e.g. general BDDs (GBDDs) [8] allow vari-
ables to occur several times.

Following the second approach, of course, the most powerful technique is to have
no restriction on the ordering at all, i.e. to use BDDs without any restrictions
on ordering or variable repetition. BDDs are often exponentially more succinct
than OBDDs and also for the applications mentioned above the ordering restric-
tions are often not needed. The main reason why OBDDs have been used more
frequently is that efficient minimization procedures exist, like e.g. sifting [9]. For
BDDs similar techniques are not available.

Evolutionary approaches have also been applied successfully to OBDDs, but
there the problem reduces to finding a good variable ordering, i.e. a permutation



of the input variables [10]. In [11] Genetic Programming has been applied to a
tree-like form of BDDs with some additional constraints.

In this paper we present an approach to BDD minimization based on Ge-
netic Programming. In contrast to the minimization of OBDDs we carry out all
operations directly on the graph structure of the BDD. By this, we present the
first heuristic approach to BDD minimization. Experimental results are given to
demonstrate the efficiency of the approach.

2 Preliminaries

2.1 Binary Decision Diagrams

A BDD is a directed acyclic and rooted graph Gf = (V,E) representing a
Boolean Function f : Bn −→ Bm. Each internal node v is labeled with a
Variable label(v) = xi ∈ Xn = {x1, . . . , xn}, and has two successors then(v)
and else(v). The terminal nodes are labeled with 1 or 0 corresponding to the
constant Boolean functions. In each internal node the Shannon decomposition
g = xig|xi=1 +xig|xi=0 is carried out. The m root nodes represent the respective
output functions.

By restricting the structure of the BDD, special classes of BDDs can be
derived:

– A BDD is complete, if on each path from a root to a terminal node each
variable is encountered exactly once.

– A BDD is free (FBDD), if each variable is encountered at most once on each
path from a root to a terminal node.

– A BDD is ordered (OBDD), if it is free and the variables appear in the same
order on each path from a root to a terminal node.

OBDDs are a widely used data structure in hardware design and verification be-
cause they are a canonical representation of Boolean Functions and they provide
efficient synthesis algorithms. However, for many functions the size of the OBDD
depends on the variable ordering. It may vary between linear and exponential in
the number of variables [2]. A lot of research has focused on the so-called vari-
able ordering problem, which is NP-hard [12]. Furthermore, there are functions
for which all variable orderings lead to an OBDD with exponential size. In turn,
for some of these functions there exist FBDDs or BDDs of polynomial size [13].
This means that releasing the read-once restriction and the ordering of variables
can be advantageous. But in constrast to the minimization of OBDDs by finding
a good or optimal variable ordering – which is well understood [14],[9] – there
are no heuristics for the construction of small BDDs up to today.

2.2 BDD Circuits

BDDs can be directly mapped to a circuit based on multiplexors. If realized
with pass transistor logic, multiplexor cells can be used for synthesis at low cost



[15],[16],[1]. In the mapping, each internal node v of the BDD is replaced by a
MUX cell. Then the 1-input (the 0-input) is connected to the MUX cell corre-
spondig to then(v) (else(v)). The select line is connected to the primary input
index(v). An example for the transformation is shown in Figure 11. Obviously,
the size of the BDD has direct influence on the chip area of the derived BDD
circuit. For this reason, it is important to find a BDD representation as small as
possible to minimize chip area.
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Fig. 1. Example for a BDD circuit

3 Evolutionary Algorithm

The approach presented in this paper is based on Genetic Programming (GP)
[17]. Originally, GP was used to evolve LISP programs. The method at hand does
not consider programs, but works directly on the graph structure of the BDDs.
Several operators are provided to customize the algorithm for a specific problem.
The algorithm has been implemented on top of the evolving objects library [18],
an open source C++ library for evolutionary algorithms. The target function is
kept in memory as OBDD. For this the BDD package CUDD [19] is used. The
aim of the evolutionary algorithm is formulated as follows:

The objective is to evolve BDDs that are a correct and compact repre-
sentation of a given target function.

3.1 Flow of the Algorithm

The general structure of the evolutionary algorithm is based on the cycle given by
the EO library. The flow is depicted in Figure 2. The algorithm is parameterized
via command line switches in most of its parts. All of the operators described
below can be selected and the ratios can be adjusted individually. Furthermore
the algorithm provides different methods for selection, replacement and different
termination criterions. This high flexibility should enable the user to customize
the flow according to the respective problem.

1 In the figures, solid lines denote then edges and dashed lines denote else edges.
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Fig. 2. The flow of the algorithm

3.2 Representation

The individuals are directed acyclic graphs with multiple root nodes, each cor-
responding to an output of the represented function. By adopting some popular
techniques used in BDD packages, the graphs are always reduced, i.e. isomorphic
subgraphs exist only once and there are no nodes with then(v) and else(v) being
identical.

3.3 Evaluation Function

As mentioned above, there are two objectives – correctness and compactness.
The two dimensions of fitness are ordered lexicographically, with correctness
being the more important one. Initially there is no limitation for the structure
of the represented BDDs. This means that there will be many individuals that
do not represent the target function correctly. Such invalid individuals are given
a worse fitness than the correct ones.

For the first dimension – correctness – it would be easy to test, if an indi-
vidual represents the target function correctly or not. But this would draw no
distinction between individuals that are “almost correct” and totally degener-
ated individuals. For this reason, a more sophisticated measure of correctness
is used. The evaluation function calculates the ratio of assignments a ∈ Bn for
which the function represented by the individual evaluates equivalently to the
target function, i.e. the correlation between the individual’s function and the
target function. The computation of the correlation is realised by computing
the XOR-BDD of the target function and the individual’s function and then
computing its ratio of satisfying assignments. For the latter step, the underlying
BDD package provides an efficient implementation without considering each of
the 2n possible assignments.

The second dimension of fitness is the sum of the number of internal nodes
of the individual and of the XOR-BDD already computed in the previous step of
evaluation. The XOR-BDD is considered again in order to punish degenerated
individuals that have few minterms in common with the target function. For a



correct individual, the XOR-BDD is the zero function, and only the individual’s
nodes are counted.

3.4 Evolutionary Operators

Table 1. Genetic operators

initialization Init

CuddInit

recombination NodeXover

OutputXover

mutation VariableMut

EdgeSwapMut

EraseNodeMut

AddMinterm

functionally conserving Restructuring

VariableDuplication

CombinedRestructuring

TautoReduction

SplitReduction

Resize

Table 1 gives an overview of the genetic operators. Beyond the standard
classes – initialization, recombination and mutation – there are some special
operators, the functionally conserving ones, which do not change the functional
semantics of the individuals but the structure of the graphs.

Initialization. There are two types of initialization, Init and CuddInit. The
first one generates random graphs with a given maximum depth. The second one
creates OBDDs with a randomized variable ordering which represent the target
function correctly. The name is derived from the underlying BDD package which
is used for the synthesis of the OBDDs.

Crossover. NodeXover is basically a standard GP crossover, i.e. a node is se-
lected from each parent, and the corresponding subgraphs are exchanged. As
the individuals are rather DAGs than trees, it has to be assured that no cyclic
subgraphs appear during the operation. The second crossover – OutputXover

– performs a uniform crossover on the output nodes of the parent individuals.
Thus it can only be applied to functions with multiple outputs. OutputXover is
supposed to combine individuals that already provide good solutions for single
output functions.



Mutation. Among the mutation operators there are three simple ones and
the customized AddMinterm operator. VariableMut exchanges the variable of
one randomly selected node. EdgeSwapMut selects one node and swaps its then
and else egdes. EraseNodeMut removes one node from the graph by replacing
it with one of its successors. This may be useful to eliminate redundant nodes.
AddMinterm works as follows: first an assignment a ∈ Bn is generated. If the
individual and the target function evaluate to different values under this assign-
ment, a OBDD-like subgraph is added to the individual so that it will evaluate to
the correct value afterwards. In order to create the subgraph, the target function
is restricted in all variables that have been read on the path in the individual
that corresponds to the assignment a. Then the new subgraph is appended to
the end of this path. The operator can be used to speed up the algorithm, if
the target function is relatively complex and so it would take too long to find a
correct solution at all. It is a drawback that always OBDD-like subgraphs are
created. This may lead to local optima that are hard to escape from.
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Fig. 3. Example for the AddMinterm operator

Example 1. Figure 3 shows an example for the AddMinterm operator. Let the
target function be the 3 bit parity function given by f(x0, x1, x2) = x0⊕x1⊕x2.
Consider the individual in Figure 3(a) and the randomly chosen assignment
a = x0 x1 x2. The corresponding path is highlighted in the figure. As on this
path only x0 is evaluated, the remaining function to be added is frest = f |x0=1 =
x1 ·x2 +x1 ·x2. The OBDD for this function (see Figure 3(b)) is added to the end
of the path, obtaining the new indiviual in Figure 3(c). Note that the correlation
has increased from 5/8 to 7/8, i.e. only one of eight minterms is wrong after the
application of AddMinterm.

Functionally Conserving Operators. Among the functionally conserving op-
erators there are two operators that perform a local restructuring of the graphs.
Restructuring searches for subgraphs that are isomorphic to one of the graphs



shown in Figure 4 on the right and on the left. Then this subgraph is reduced to
the one shown in Figure 4 in the middle. Note that the three graphs are func-
tionally equivalent. The operator VariableDuplication duplicates a variable
on a randomly selected path. The transformation is shown in Figure 5. In this
way redundancy is added to the graph. In some cases this can lead to better so-
lutions if the redundancy is removed elsewhere in the graph (this can be done by
TautoReduction or SplitReduction which are described below). Furthermore
the operator increases the diversity of the population. CombinedRestructuring
is a combination of the two operators described above. Both are applied several
times in random order.
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Fig. 4. The Restructuring operator
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Fig. 5. The VariableDuplication operator

Finally there are two operators that try to reduce the number of nodes with-
out changing the function of an individual. Algorithmically they are very sim-
ilar. Figure 6 shows the TautoReduction operator in pseudocode. It searches
for redundant nodes from top to bottom. A node v is identified redundant, if
the variable index(v) has already been evaluated to the same value on all paths
reaching v. A redundant node can then be replaced by the appropriate successor.

Example 2. Consider the individual shown in Figure 7. The marked node is
redundant because x has already been evaluated to 0 above and it can be replaced



by its else successor. In the next step, another node is identified redundant. In
this case x has been evaluated to 1 before and the node is replaced by its then
successor. The node marked in the third graph may not be removed because it
can be reached on two paths on which x is evaluated to different values.

curr lvl = TOP LEV EL;
done = false;
while (¬done) do

for (i = TOP LEV EL downto curr lvl) do
for (each node in level i) do

update path infos of child nodes;
od

od
for (each node in level curr lvl + 1) do

if node is redundant then remove node;
od
curr lvl = curr lvl − 1;
if curr lvl ≤ 1 then done = true;

od

Fig. 6. Pseudocode for TautoReduction
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Fig. 7. Example for the TautoReduction operator

SplitReduction works similar, except that it does not remove redundant
nodes but redirects edges instead. If in a node v the variable of one of its successor
nodes has always been evaluated to a certain value and never to its complement,
the edge to this node can be redirected to the appropriate successor node.



Example 3. Consider the individual in Figure 8. The else edge of the marked
node can be redirected to the terminal 1-node. Furthermore the then edge can
be redirected to the z node below because x has always been evaluated to 1
before.

x

z

1 0

y y

x

z

1 0

x

yy

y

x

y

Fig. 8. Example for the SplitReduction operator

By redirecting edges, SplitReduction will possibly “relieve” a node of re-
dundant edges and make it in turn a candidate for TautoReduction. It could
be observed that the two operators work together quite well. Thus, there is a
combination of these two operators, called Resize. Resize can be called at the
end of every generation. It tries to reduce all individuals of the population using
TautoReduction and SplitReduction, so that the number of nodes does not
exceed a given bound. This can be used to keep the individuals relatively small
in order to save run time.

4 Experimental Results

Experiments have been carried out to show the effectiveness of the approach. The
runs presented in the following are supposed to exemplify the different working
methods of the evolutionary algorithm. The first one starts with a population of
randomly initialized graphs, the second one starts with correct OBDDs.

Example 4. Consider the hidden weighted bit (HWB) function given by the fol-
lowing equation:

HWB(x0, . . . , xn−1) =

{
0 if w = 0
xw−1 else

where w = |x0, . . . , xn−1|.

HWB is known to have only OBDD representations of exponential size in the
number of variables, but FBDDs of quadratic size [13]. In this example the pre-
sented approach is used to evolve a BDD that represents the 4 bit HWB function.



The OBDD is shown in Figure 9 on the left. The parameters are set up as follows:
a deterministic tournament selection of size 2 and a comma replacement com-
bined with weak elitism are used. The population contains 100 individuals which
are initialized randomly with an initial depth of 6. The following genetic oper-
ators are applied: OutputXover with a rate of 0.2, VariableMut, EdgeSwapMut
and EraseNodeMut each with a rate of 0.05 and CombRestucturing with a rate
of 0.2. The optimal BDD shown in Figure 9 on the right could be evolved after
90 generations.
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Fig. 9. OBDD and BDD for the 4 bit hidden weighted bit function

Example 5. In [2] Bryant introduced a function f(x0, . . . , x2n−1) = x0 · x1 +x2 ·
x3 + · · ·+ x2n−2 + x2n−1 that is sensible to the variable ordering, i.e. the size of
its OBDD varies between linear and exponential. In this example we consider a
benchmark function g : B6 → B4, where the four outputs are variants of Bryant’s
function:

g0(x0, . . . , x5) = x0 · x1 + x2 · x3 + x4 · x5

g1(x0, . . . , x5) = x0 · x2 + x1 · x3 + x4 · x5

g2(x0, . . . , x5) = x0 · x3 + x1 · x4 + x2 · x5

g3(x0, . . . , x5) = x0 · x5 + x1 · x4 + x2 · x3

Note that for each output function there is a different order leading to the op-
timal OBDD size, thus there is no global order for which all partial OBDDs
are optimal. The size of the optimal shared OBDD is 31. The evolutionary ap-
proach is applied with the following settings: the initial population consists of
100 correct OBDDs. OutputXover and CombRestucturing are applied each with
a rate of 0.3, TautoReduction and SplitReduction are applied with a respec-
tive rate of 0.1. Selection and replacement are the same as in Example 4. After
41 generations, an individual emerged that represents the target function with
17 nodes.



Table 2 shows additional results. Besides the name of the circuit and the
numer of inputs and outputs the size of the minimal OBDD is given. The last
column shows the size of the smallest BDD that could be found by our approach.
The algorithm has been run 50 times with a limit of 200 generations and a pop-
ulation size of 100. Only for the largest benchmarks with 7 inputs a population
size of 200 and a generation limit of 300 have been used. As can be seen, in many
cases smaller representations could be found. Especially the HWB and ISA func-
tions for which there is an exponential gap between their OBDD- and BDD-size
show good results. But also for randomly generated functions the graph size
could be improved. For other benchmarks no improvements could be made, but
it should be noted that for numerous common functions there are OBDDs of
linear size and thus no improvements can be expected by using BDDs instead.

Table 2. Benchmark circuits

circuit i/o OBDD GA

rnd 3 3 a 3/3 9 7
rnd 3 3 b 3/3 7 7
rnd 3 3 c 3/3 8 7
rnd 3 3 d 3/3 9 8
rnd 4 2 a 4/2 10 11
rnd 4 2 b 4/2 12 11
rnd 4 2 c 4/2 11 12
rnd 4 2 d 4/2 12 11
rnd 5 1 a 5/1 11 11
rnd 5 1 b 5/1 11 11
rnd 5 1 c 5/1 12 11
rnd 5 1 d 5/1 12 12
rnd 5 4 a 5/4 37 35
rnd 5 4 b 5/4 35 34
rnd 5 4 c 5/4 34 32
rnd 5 4 d 5/4 39 38

circuit i/o OBDD GA

hwb4 4/1 7 6
hwb5 5/1 14 12
hwb6 6/1 21 20
isa2 5/1 10 8
isa3 10/1 26 20
f51m.49 3/1 4 4
cm82a.f 3/1 5 5
b1 3/4 8 8
f51m.48 4/1 6 6
cm42a.e,f 4/2 5 5
cu.pq 4/2 10 10
cm82a.h 5/1 7 7
C17 5/2 7 7
cm138a.m 6/1 6 6
pcl3.3 7/1 8 8
cu.rs 7/2 8 8

5 Conclusions and Future Work

In this paper it has been shown that it is possible to construct compact BDDs
using genetic programming. First experiments have yielded some promising re-
sults. However, there are still some problems to be solved. For large functions
that depend on many variables, it takes too long to evolve a correct solution
from a randomly initialized population. This can be avoided, if correct OBDDs
are used as initial population. Unfortunately, the regular structure of the OB-
DDs seems to be very stable, and the algorithm will hardly escape from the local
optima induced by the OBDDs. Certainly there is still capability for improve-
ments. Possibly new operators that act less locally than Restructuring could
help to “break” the OBDDs.
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